JPS60121605A - Composite dielectric film and method of producing same - Google Patents

Composite dielectric film and method of producing same

Info

Publication number
JPS60121605A
JPS60121605A JP22874683A JP22874683A JPS60121605A JP S60121605 A JPS60121605 A JP S60121605A JP 22874683 A JP22874683 A JP 22874683A JP 22874683 A JP22874683 A JP 22874683A JP S60121605 A JPS60121605 A JP S60121605A
Authority
JP
Japan
Prior art keywords
dielectric
film
breakdown
self
healing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22874683A
Other languages
Japanese (ja)
Other versions
JPH0562402B2 (en
Inventor
純 桑田
洋介 藤田
富造 松岡
阿部 惇
任田 隆夫
新田 恒治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP22874683A priority Critical patent/JPS60121605A/en
Publication of JPS60121605A publication Critical patent/JPS60121605A/en
Publication of JPH0562402B2 publication Critical patent/JPH0562402B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は複合誘電体膜およびその製造法に関するもので
あり、この複合誘電体膜は半導体装置、固体表示装置等
に用いられる誘電体膜として利用することができるもの
である。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a composite dielectric film and a method for manufacturing the same, and this composite dielectric film is used as a dielectric film used in semiconductor devices, solid-state display devices, etc. It is something that can be done.

従来例の構成とその問題点 半導体装置等に用いられる誘電体膜では、それに印加さ
れる電界強度が105v/6n以上の高い値となること
が多い。したがって、このような用途においては、誘電
体膜の耐圧が十分高くなければならない。誘電体膜は、
蒸着、スパッタリング。
Conventional Structures and Their Problems In dielectric films used in semiconductor devices and the like, the electric field strength applied thereto often has a high value of 105v/6n or more. Therefore, in such applications, the dielectric film must have a sufficiently high breakdown voltage. The dielectric film is
Vapor deposition, sputtering.

CVD等の方法で作製されるが、いずれの場合において
も膜形成前に基板に付着した塵埃や形成時に生ずるピン
ホール等で欠陥が発生し、絶縁破壊の原因となる。誘電
体膜が絶縁破壊する場合、破壊後に短絡状態になるいわ
ゆる自己回復形絶縁破壊しない場合と破壊後に開放状態
になるいわゆる自己回復形絶縁破壊する場合のふたつが
ある。前者の短絡状態となる絶縁破壊を生ずる自己回復
形絶縁破壊しない誘電体膜の中には、誘電率が100以
上と大きく、絶縁破壊電場もIMV/cm程度のものが
ある。しかし、この絶縁破壊特性が自己回復形でないだ
めに各種電子装置の誘電体膜として適用できなかった。
The film is manufactured by a method such as CVD, but in either case, defects may occur due to dust adhering to the substrate before film formation or pinholes generated during film formation, causing dielectric breakdown. When dielectric breakdown occurs in a dielectric film, there are two cases: a so-called self-healing dielectric breakdown, in which the dielectric film becomes short-circuited after the breakdown, and a so-called self-healing dielectric breakdown, in which the dielectric film becomes open after the breakdown. Among the self-healing non-breakdown dielectric films that cause dielectric breakdown leading to short-circuit conditions, some have a dielectric constant of 100 or more and a dielectric breakdown electric field of about IMV/cm. However, unless this dielectric breakdown property is self-healing, it cannot be applied as a dielectric film for various electronic devices.

この自己回復しない絶縁膜の場合でも、上部電極を極端
に薄くして用いると、このモードの絶縁破壊を起こりに
くくすることができる。たとえば20 nm程度の薄い
Au電極を用いた場合には、自己回復形絶縁破壊とする
こともできる。しかしあまり薄くすると抵抗が高くなり
、電極として好捷しくないので、数十nm程度が最低限
度の厚みである。電極材料としてAu の他にZn、 
Al を用いても自己回復形絶縁破壊とすることもでき
る。しかし、上部電極に薄い数十nmの厚さのAu、 
Zn、 AIの電極を用いてもなおかつ自己回復形絶縁
破壊しない誘電体膜がある。その原因は明らかでないが
、その状態での絶縁破壊はミ材料の持つ固有の性質に起
因すると推測される。一方、誘電率が20以下と小さい
が絶縁破壊電場が3MV/an以上である電体膜があり
、絶縁破壊状態が開放となる自己回復形絶縁破壊するも
のがあることを見い出しだ。しかし、誘電率が低いだめ
に膜厚を薄くしなければ、高誘電率を持つ膜と同じ電気
容量が得られないため、絶縁破壊電場が大きいという長
所と絶縁破壊後の回路が開放となり自己回復するという
長所が活用できなくなる場合があった。特に、前述の高
誘電率を持つが絶縁破壊後に短絡回路となってしまう誘
電体膜の中には、非常にすぐれた種々の特性を持った材
料が多いが、絶縁破壊後に短絡回路となったり、絶縁破
壊が広範囲に拡がるだめに電子装置に用いにくいもので
あった。
Even in the case of an insulating film that does not self-heal, this mode of dielectric breakdown can be made less likely to occur if the upper electrode is made extremely thin. For example, when a thin Au electrode of about 20 nm is used, self-healing dielectric breakdown can be achieved. However, if it is made too thin, the resistance becomes high and it is not suitable as an electrode, so the minimum thickness is about several tens of nanometers. In addition to Au, Zn,
Self-recovery dielectric breakdown can also be achieved by using Al. However, the upper electrode is made of thin Au with a thickness of several tens of nanometers.
There are dielectric films that do not undergo self-healing dielectric breakdown even when using Zn or AI electrodes. Although the cause is not clear, it is assumed that dielectric breakdown in this state is caused by the inherent properties of the material. On the other hand, it has been discovered that there are electric films that have a dielectric constant of 20 or less but a dielectric breakdown electric field of 3 MV/an or more, and that there are some that undergo self-healing dielectric breakdown in which the dielectric breakdown state becomes open. However, since the dielectric constant is low, unless the film thickness is thinned, the same capacitance as a film with a high dielectric constant cannot be obtained, so it has the advantage of having a large dielectric breakdown electric field and self-recovery as the circuit opens after dielectric breakdown. In some cases, the advantage of doing so could not be utilized. In particular, among the dielectric films mentioned above that have a high dielectric constant but become short-circuited after dielectric breakdown, there are many materials with very excellent properties; However, the dielectric breakdown spread over a wide area, making it difficult to use in electronic devices.

発明の目的 本発明は以上の点に鑑みてなされたものであって、従来
利用できなかった自己回復形絶縁破壊しない誘電体膜の
持つ、優れた電気的特性を半導体装置、固体表示装置等
の電子部品に活用することを目的とする。
Purpose of the Invention The present invention has been made in view of the above-mentioned points. The purpose is to use it in electronic components.

発明の構成 本発明の構成は、比誘電率ε1.絶縁破壊電場F1の自
己回復形絶縁破壊しない誘電体膜(厚さd、)の上に、
ε1より小さい比誘電率ε2.Flより太きい絶縁破壊
電場F2 を持ち、さらに絶縁破壊電気的に開放となる
性質を持った自己回復形絶縁破壊する誘電体膜(厚さd
2)をそれぞれに印加される電圧V1.v2に対しvl
<dlFl〈V2〈d2F2ノ条件を満たす膜厚で積層
しその上に上部電極を形成することにより、膜中の欠陥
部において生じる絶縁破壊を自己回復形にして、高い電
気容量を持った誘電体膜を電子装置に利用できるように
しだものである。
Structure of the Invention The structure of the present invention has a relative dielectric constant ε1. On a dielectric film (thickness d,) that does not undergo self-healing dielectric breakdown in the dielectric breakdown electric field F1,
Specific dielectric constant ε2 smaller than ε1. A self-healing dielectric film (thickness d
2) respectively applied voltage V1. vl for v2
<dlFl〈V2〈d2F2 By laminating a film with a thickness that satisfies the conditions and forming an upper electrode on top of it, the dielectric breakdown that occurs at the defective part in the film can be self-healed, making it possible to create a dielectric material with high capacitance. This allows the membrane to be used in electronic devices.

実施例の説明 以下、本発明の詳細について実施例とともに説明する。Description of examples Hereinafter, details of the present invention will be explained together with examples.

第1図は本発明の複合誘電体膜の一実施例の構成を示す
図である。図において、11は基板で、その上に下部電
極12が形成されている。13は比誘電率が81.絶縁
破壊電場F1 を持った自己回復しない絶縁破壊状態と
なる第1の誘電体膜である014は比誘電率ε2が第1
の誘電体膜13より小さく、絶縁破壊電場F2が誘電体
膜13に比べて高くかつ自己回復する絶縁破壊状態とな
る第2の誘電体膜であり、その上に上部電極15を形成
する。通常、下部電極12と誘電体膜13との間、ある
いは誘電体膜13.14間に種々の機能を有する膜が形
成されることが多い。このような構成にすることにより
、膜中の欠陥により駆動電圧以下で生じた絶縁破壊によ
って誘電体膜中に穴16が開いた場合でも、上側の誘電
体膜の性質が現われ、上部電極16は穴16の周辺では
飛散し、電気的に開放回路となり、絶縁破壊は自己回復
することができる。
FIG. 1 is a diagram showing the structure of an embodiment of the composite dielectric film of the present invention. In the figure, 11 is a substrate, on which a lower electrode 12 is formed. 13 has a dielectric constant of 81. 014, which is the first dielectric film that is in a dielectric breakdown state that does not self-recover with a dielectric breakdown electric field F1, has a dielectric constant ε2 of the first
The upper electrode 15 is formed on the second dielectric film, which is smaller than the dielectric film 13 of FIG. Usually, films having various functions are often formed between the lower electrode 12 and the dielectric film 13 or between the dielectric films 13 and 14. With this configuration, even if a hole 16 is formed in the dielectric film due to dielectric breakdown that occurs below the driving voltage due to a defect in the film, the properties of the upper dielectric film will be exhibited, and the upper electrode 16 will remain intact. It scatters around the hole 16, creating an electrically open circuit, and the dielectric breakdown can be self-recovered.

本発明にかかる複合誘電体膜の特徴を第2図の等価回路
で示す。第1の誘電体膜13と第2の誘電体膜14の誘
電率、印加電圧、印加電界、膜厚電気容量をそレソレε
1.ε2.”1.■2’ ”1.E2.dl、d2C1
,C2とする。この複合膜の電気容量Cは、電極面積を
Sとすると C−(C1+02 ) ・・・(1) =S (d1/61+ d2/62> −1・・・・(
2)で表わせる。したがって、複合膜全体の誘電率εは
、 ε−d(d1/ε1+d2/ε2)−1・・・・・・(
3)で与えられる。一方、この複合膜全体に印加された
電圧をVとすると、各層に印加される電圧■1゜F2は
、 ”1” (cl−” 十02−’)−1、、(+)
1 F2−− (c、−1+c2’ ) ’ ・・・・・−
(5)2 であり、各誘電体膜13.14の電界強度E1.E2は
、E1=〜(C1”−” + 02 ” ) −1・−
・(6)1d1 E2== −(C1−1+02−1)−” =(7)2
d2 と表わせる。
The features of the composite dielectric film according to the present invention are shown in the equivalent circuit of FIG. The permittivity, applied voltage, applied electric field, and film thickness electric capacitance of the first dielectric film 13 and the second dielectric film 14 are determined by ε.
1. ε2. ``1.■2' ``1. E2. dl, d2C1
, C2. The capacitance C of this composite membrane is C-(C1+02)...(1) =S(d1/61+d2/62>-1...() where S is the electrode area.
It can be expressed as 2). Therefore, the dielectric constant ε of the entire composite film is ε−d(d1/ε1+d2/ε2)−1・・・・・・(
3) is given by On the other hand, if the voltage applied to the entire composite film is V, the voltage ■1°F2 applied to each layer is "1"(cl-"102-')-1, (+)
1 F2-- (c,-1+c2')' ・・・・・・-
(5) 2, and the electric field strength E1 of each dielectric film 13.14. E2 is E1=~(C1"-"+02") -1・-
・(6)1d1 E2== −(C1-1+02-1)−” =(7)2
It can be expressed as d2.

ここで、各誘電体膜の誘電率比ε1/ε2.電圧比V1
/V2.電界強度比E1/E2および膜厚比d1/d2
の間には、次のような関係がある。
Here, the dielectric constant ratio ε1/ε2 of each dielectric film. Voltage ratio V1
/V2. Electric field strength ratio E1/E2 and film thickness ratio d1/d2
There is the following relationship between them.

ε1/ε2−ε2/ε1 ・・・ (8)■1/■2=
(ε2d1)/(ε1d2) ・(9)一般に、複合誘
電体膜の絶縁破壊は、各層の絶縁耐圧で決定される。こ
の場合、誘電体膜13はd、 Fl、誘電体膜14はd
2F2である。ここでFl、F2は、各々の誘電体の絶
縁破壊電場である。このことから複合誘電体として自己
回復形絶縁破壊しない誘電体膜と自己回復形絶縁破壊す
る誘電体膜を組み合わせた場合、絶縁破壊が自己回復形
となる条件は、 (1) 自己回復形絶縁破壊する誘電体膜が上部電極側
にある (2) 自己回復形絶縁破壊する誘電体膜に印加される
電圧が自己回復形絶縁破壊しない誘電体膜の耐圧より高
イ(F2〉dlFl) 02点であることが実験事実から判明した。この(1)
、(2)の事柄を言い換えると、下部電極側の誘電体膜
に印加される電圧■1 が上部電極側の誘電体膜の電圧
v2 より小さいことになり、次式で表わせる。
ε1/ε2−ε2/ε1... (8) ■1/■2=
(ε2d1)/(ε1d2) (9) Generally, the dielectric breakdown of a composite dielectric film is determined by the dielectric strength voltage of each layer. In this case, the dielectric film 13 is d, Fl, and the dielectric film 14 is d
It is 2F2. Here, Fl and F2 are dielectric breakdown electric fields of each dielectric. Therefore, when a dielectric film that does not undergo self-healing dielectric breakdown and a dielectric film that exhibits self-healing dielectric breakdown are combined as a composite dielectric, the conditions for the dielectric breakdown to be self-healing are as follows: (1) Self-healing dielectric breakdown (2) The voltage applied to the dielectric film that causes self-healing dielectric breakdown is higher than the withstand voltage of the dielectric film that does not cause self-healing dielectric breakdown (F2>dlFl) At 02 points One thing has become clear from the experimental facts. This (1)
, (2) in other words, the voltage v1 applied to the dielectric film on the lower electrode side is smaller than the voltage v2 on the dielectric film on the upper electrode side, which can be expressed by the following equation.

vl〈dlFl<F2〈d2F2・・・・・(1o)こ
の条件下の絶縁破壊の機構として、次の2種類が考えら
れる。(1)下部誘電体層13が膜内の欠陥により短絡
状態となり、上部誘電体層14に全電圧■(=■1+■
2)が加わシ、耐圧d2F2を越えた場合、(2)上部
誘電体層14の欠陥により全電圧が下部誘電体層に加わ
り、耐圧d1F1を越えて短絡し、さらに上部誘電体層
の局所において印加電圧が耐圧d2F2を越える場合で
ある。いずれも上部誘電体層が絶縁破壊する時のみ複合
膜の絶縁破壊が生ずることがわかる。すなわち、絶縁破
壊は、上部電極側の自己回復形絶縁破壊する誘電体に支
配される。
vl<dlFl<F2<d2F2 (1o) The following two types of dielectric breakdown mechanisms can be considered under this condition. (1) The lower dielectric layer 13 becomes short-circuited due to a defect in the film, and the entire voltage ■(=■1+■
2) is applied and the withstand voltage d2F2 is exceeded, (2) the entire voltage is applied to the lower dielectric layer due to the defect in the upper dielectric layer 14, the withstand voltage d1F1 is exceeded, a short circuit occurs, and furthermore, in the local area of the upper dielectric layer This is a case where the applied voltage exceeds the breakdown voltage d2F2. In both cases, it can be seen that dielectric breakdown of the composite film occurs only when the upper dielectric layer undergoes dielectric breakdown. That is, dielectric breakdown is dominated by the dielectric material that undergoes self-healing dielectric breakdown on the upper electrode side.

また、一般に、高誘電率の誘電体膜はど絶縁破壊電場が
低いという傾向があり、しかも高誘電率の膜はど自己回
復形絶縁破壊しにくいから、上記の条件 ε1〉ε2.Fl〈F2 −・・(11)は、累月の選
択自由度を上げ、設計上好都合である。さらに、複合誘
電体の全体の誘電率εは(3)式で与えられるので、ε
1/d1とε2/d2は両方とも大きい方がよく、逆に
どちらか低い方に全体の誘電率が支配される。高い電気
容量を得るには、膜厚を薄くすることが考えられるが、
絶縁耐圧が低下するため、基本的に高誘電率、高耐圧の
誘電体でしかも絶縁破壊が自己回復形となるものが理想
である。しかし、本発明により自己回復形絶縁破 −壊
しない誘電体膜もその膜の持つ誘電率、絶縁破壊電場を
あらかじめ知ることにより、自己回復形絶縁破壊する誘
電体膜を積層する構造で誘電率の高い誘電体の持つすぐ
れた特性を活用することができる。実際に、この設計に
基づく本発明にかかる複合誘電体を製造するには、二種
類の別の組成物からなる誘電体膜を利用することが最初
に考えられるが、一方では、チタン酸ストロンチウムと
チタン酸バリウムの固溶体のような複合酸化物焼結体を
ターゲットに用いてスパッタリング法で誘電体膜を形成
した際、基板温度を200℃以下で膜形成を行なうと比
誘電率が20未満、まだ基板温度を400 ’C以上で
膜形成すると比誘電率が100以上となり、同じ希ガス
と酸素ガスを流し、ガス圧も一定にしていても誘電的性
質が異なる膜が得られる。
Furthermore, in general, dielectric films with a high dielectric constant tend to have a low dielectric breakdown electric field, and since high dielectric constant films are less likely to undergo self-healing dielectric breakdown, the above conditions ε1>ε2. Fl<F2 - (11) increases the degree of freedom in selecting the cumulative month and is convenient in terms of design. Furthermore, since the overall permittivity ε of the composite dielectric is given by equation (3), ε
It is better for both 1/d1 and ε2/d2 to be large, and conversely, the lower of the two will control the overall dielectric constant. In order to obtain high capacitance, it is possible to reduce the film thickness, but
Since the dielectric strength voltage decreases, it is ideal to use a dielectric material with a high dielectric constant and a high withstand voltage, and whose dielectric breakdown is self-healing. However, according to the present invention, by knowing in advance the dielectric constant and dielectric breakdown electric field of the dielectric film that does not cause self-healing dielectric breakdown, we can create a structure in which dielectric films that exhibit self-healing dielectric breakdown are laminated. The excellent properties of a high dielectric material can be utilized. In fact, in order to manufacture a composite dielectric according to the present invention based on this design, it is initially considered to utilize a dielectric film consisting of two different compositions, on the one hand, strontium titanate and When a dielectric film is formed by sputtering using a composite oxide sintered body such as a solid solution of barium titanate as a target, if the film is formed at a substrate temperature of 200°C or less, the dielectric constant is less than 20, which is still When a film is formed at a substrate temperature of 400'C or higher, the dielectric constant becomes 100 or higher, and films with different dielectric properties can be obtained even if the same rare gas and oxygen gas are flowed and the gas pressure is constant.

さらに注目すべき点は、基板温度を200 ’C以下に
しだ時に得られた低誘電率(20以下)の膜の中には、
自己回復形絶縁破壊する膜があり、一方、基板温度を4
00 ’C以上にすると高誘電率となるが自己回復形絶
縁破壊しない膜となるものがあり、この場合にも本発明
の複合誘電体構造が適用できる。
A further noteworthy point is that some of the films with low dielectric constants (20 or less) obtained when the substrate temperature is kept below 200'C.
There is a film that undergoes self-healing dielectric breakdown, and on the other hand, when the substrate temperature is
When the temperature is 00'C or higher, there are films that have a high dielectric constant but do not undergo self-healing dielectric breakdown, and the composite dielectric structure of the present invention can also be applied to this case.

〔実施例1〕 ガラス基板上に酸化インジウム錫の透明導電膜を電子ビ
ーム蒸着により厚さ300 nm伺着させ、これを下部
電極とした。この上にS r Z ro、 2T 1o
、 8os膜をマグネトロンRFスパッタリング法によ
り厚さ760nmイー1着させた。ターゲy t−(!
: して5rZr0.2TI0.803 の焼結体を用
いた。スパッタリングガスには酸素とアルゴンの1:4
の混合ガスを用い、。
[Example 1] A transparent conductive film of indium tin oxide was deposited on a glass substrate to a thickness of 300 nm by electron beam evaporation, and this was used as a lower electrode. On top of this S r Z ro, 2T 1o
, 8os film was deposited to a thickness of 760 nm by magnetron RF sputtering method. Target yt-(!
: A sintered body of 5rZr0.2TI0.803 was used. The sputtering gas contains oxygen and argon in a ratio of 1:4.
using a mixture of gases.

ガス圧は0.6Paである。基板温度は400°Cであ
る。こうして得られた素子を4分割素子1〜4とした。
Gas pressure is 0.6 Pa. The substrate temperature was 400°C. The thus obtained elements were designated as four-part elements 1 to 4.

素子2には、さらにB aT a 206膜をマグネト
ロンRFスパッタリング法により厚さ45 nm伺着さ
せた。素子3には、素子2と同様にB a T a 2
06膜を厚さ280 nm付着させ、素子4には700
n、m付着させた。ターゲットとしては、BaTa2O
6の焼結体を用いた。スパッタリングガスには02とA
r の1:4の混合ガスを用い、ガス圧を。、1Pa 
とした。基板温度は、100’Cである。
A 45 nm thick BaTa 206 film was further deposited on element 2 by magnetron RF sputtering. Similarly to element 2, element 3 has B a T a 2
06 film was deposited to a thickness of 280 nm, and a 700 nm film was deposited on element 4.
n and m were attached. As a target, BaTa2O
A sintered body of No. 6 was used. 02 and A for sputtering gas
Using a 1:4 mixed gas of r, the gas pressure. , 1Pa
And so. The substrate temperature is 100'C.

また、下部誘電体膜であるS r Z ro、 2T 
1o、 5o3)膜厚を380 nm とし、素子2,
3.4と同様に上部誘電体膜としてB a T a 2
06を45 nm、 270nm。
In addition, the lower dielectric film S r Z ro, 2T
1o, 5o3) The film thickness was 380 nm, and elements 2,
As in 3.4, B a T a 2 is used as the upper dielectric film.
06 at 45 nm, 270 nm.

700 nmの厚さでスパッタリングした素子6゜6.
7を作製した。ついで素子1〜7の上にAI膜を抵抗加
熱蒸着により、厚さ100 nm付着させこれを上部電
極とした。このようにして形成された薄膜コンデンサの
特性を第1表に示す。
Element sputtered with a thickness of 700 nm 6°6.
7 was produced. Next, an AI film with a thickness of 100 nm was deposited on the elements 1 to 7 by resistance heating vapor deposition, and this was used as an upper electrode. Table 1 shows the characteristics of the thin film capacitor thus formed.

以下余白 第1表 注)* 測定周波数I KHz **SZTは、S r Z ro、 2T 1 o、 
so3の略記***BTは、B a T a206の略
記△ 」二部電極にAu電極(20nm)使用ただし、
絶縁破壊電場の測定の際、素子1,2゜6に関しては、
電圧を印加した時点で短絡状態となり、その後測定不能
となっただめ、上部電極に20nmの厚みの金の蒸着膜
をAI 膜の代わりに用いて絶縁破壊電場の測定を行な
ったことである。
Note: Table 1 in the margin below *Measurement frequency I KHz **SZT is S r Z ro, 2T 1 o,
Abbreviation for so3 ***BT is an abbreviation for B a Ta a206 △ "Au electrode (20 nm) is used for the two-part electrode.However,
When measuring the dielectric breakdown electric field, for elements 1 and 2°6,
Since a short circuit occurred when a voltage was applied and measurement was no longer possible, the dielectric breakdown electric field was measured using a 20 nm thick vapor deposited gold film as the upper electrode instead of the AI film.

この結果から、S r Z ro、 2T 1 o、 
sos誘電体膜(以下SZT膜と略記する)の誘電率が
107で絶縁破壊電場が1.1MV/cmであり、B 
aT a 206 誘電体膜(以下BT膜と略記する)
の誘電率が21で絶縁破壊電場が3.6MV/cnであ
ることが(3) 、 (4)式および(12)式から算
出される。ここでSZT膜とBT膜の構成について、前
述した複合誘電体膜の設計の際に必要な不等式(10)
についての横側結果を示す。第1の誘電体膜の誘電率ε
1 を107とし、絶縁破壊電場F1を1 、1 hi
V/crnとし、膜厚d1を760nm、 380 n
mとし、第2の誘電体膜の誘電率ε2を21とし、絶縁
破壊電場F2を3.5MV、4海とし膜厚d2をOnm
、 45 nm、 270 nm、 280 nm。
From this result, S r Z ro, 2T 1 o,
The dielectric constant of the SOS dielectric film (hereinafter abbreviated as SZT film) is 107, the dielectric breakdown electric field is 1.1 MV/cm, and B
aT a 206 Dielectric film (hereinafter abbreviated as BT film)
It is calculated from equations (3), (4), and (12) that the dielectric constant of is 21 and the dielectric breakdown electric field is 3.6 MV/cn. Here, regarding the structure of the SZT film and the BT film, the inequality (10) necessary for designing the composite dielectric film mentioned above is used.
The side results for are shown. Dielectric constant ε of the first dielectric film
1 is 107, and the dielectric breakdown electric field F1 is 1, 1 hi
V/crn, film thickness d1 is 760 nm, 380 n
m, the dielectric constant ε2 of the second dielectric film is 21, the dielectric breakdown electric field F2 is 3.5 MV, 4 seas, and the film thickness d2 is Onm.
, 45 nm, 270 nm, 280 nm.

700 nmとして素子1〜7に対応する複合誘電体膜
の特性を式(1) 、 (2) 、 (4) 、 (5
)より各膜の電圧v1゜v2および電気容量C(C−ε
08TS/d)を計算し、さらにdlFl およびd2
F2を算出し、第2表にまとめた。
700 nm, the characteristics of the composite dielectric film corresponding to elements 1 to 7 are expressed by formulas (1), (2), (4), (5
), the voltage v1゜v2 and electric capacity C (C-ε
08TS/d) and further dlFl and d2
F2 was calculated and summarized in Table 2.

この表より素子3,4,6.7は不等式(10)を満足
し、素子1,2.6は満足していないことがわかり、前
記に実験結果と一致し、絶縁破壊状態に関して素子1,
2,5id、短絡状態となるが、素子3□4,6.7は
初期より開放状態となることか不等式(1o)の成立の
可否に対応した。
From this table, it can be seen that elements 3, 4, and 6.7 satisfy inequality (10), while elements 1 and 2.6 do not.
2, 5id, a short-circuit state occurs, but the elements 3□4, 6.7 are in an open state from the initial stage, which corresponds to whether inequality (1o) holds true.

す、下余白 〔実施例2〕 ガラス基板−ヒに酸化インジウム錫の透明導電膜を電子
ビーム蒸着により厚さ300 nm付着させ、これを下
部電極とした。この上にS ro、 eB ao、 4
T tos膜ヲマグネトロンRFスパッタリング法によ
り厚さ7oOnm(=1着させた。ターゲットとしてS
 r o、 eB ao、 4T103の焼結体を用い
た。スパッタリングガスには、酸素とアルゴンの1=4
の混合ガスを用い、ガス圧を0.8Paとした。基板温
度は380 ”Cである。こうして得られた素子を2分
割し素子1,2とした。素子2には、さらに、同じター
ゲットを用い、基板温度を200 ’Cとして、マグネ
トロンRFスパッタリング法により厚さ700 nmの
S ro、 eB ao、 4T IQ3膜を付着させ
た。また、前記同様の方法で、ガラス基板上に透明導電
膜の付着した基板に、基板温度200℃のS ro、 
eB ao、 4T 103膜を付着させた素子3を作
製した。ついで素子1〜3の土にAl 膜を抵抗加熱蒸
着により厚さ1100n (=j着させ、これを上部電
極とした。このようシして形成された薄膜コンデンサの
特性を第3表に示す。素子1は、絶縁破壊時に短絡状態
となり、絶縁破壊が伝搬していくが、素子2,3は開放
状態となった。この結果は、実施例1の結果と同様であ
る。したがって、同一組成物の焼結体をターゲットに用
いても、基板温度を変えることのみにより、スパッタリ
ング法で誘電特性、絶縁破壊状態の異なる膜が形成でき
、本発明にかかる複合誘電体薄膜が形成できることが明
らかとなった。
Lower margin [Example 2] A transparent conductive film of indium tin oxide was deposited to a thickness of 300 nm on a glass substrate by electron beam evaporation, and this was used as a lower electrode. On top of this, S ro, eB ao, 4
A T tos film was deposited to a thickness of 70 nm (=1) by magnetron RF sputtering.S
Sintered bodies of r o, eB ao, and 4T103 were used. The sputtering gas contains oxygen and argon, 1=4.
The gas pressure was set to 0.8 Pa. The substrate temperature was 380'C. The device thus obtained was divided into two parts, forming devices 1 and 2. Device 2 was further processed by magnetron RF sputtering using the same target at a substrate temperature of 200'C. A 700 nm thick S ro, eB ao, 4T IQ3 film was deposited. Also, in the same manner as above, a S ro, eB ao, 4T IQ3 film with a substrate temperature of 200° C. was deposited on a substrate on which a transparent conductive film was deposited on a glass substrate.
Element 3 was fabricated to which an eBao, 4T 103 film was attached. Next, an Al film with a thickness of 1100 nm (=j) was deposited on the soil of elements 1 to 3 by resistance heating vapor deposition, and this was used as an upper electrode.Table 3 shows the characteristics of the thin film capacitor thus formed. Element 1 was in a short-circuit state at the time of dielectric breakdown, and the dielectric breakdown propagated, but elements 2 and 3 were in an open state. This result is similar to the result of Example 1. Therefore, the same composition It has become clear that even when using a sintered body of as a target, films with different dielectric properties and dielectric breakdown states can be formed by sputtering simply by changing the substrate temperature, and the composite dielectric thin film according to the present invention can be formed. Ta.

この膜質の違いは膜内の結晶性が異なっていることが誘
電的性質と関連があるものと推測される。
This difference in film quality is presumed to be due to the difference in crystallinity within the film, which is related to dielectric properties.

この中には、強誘電体が含まれ、分極処理をした膜で圧
電性、焦電性電気光学効果を示すものがあった。
Some of these included ferroelectric materials and exhibited piezoelectric and pyroelectric electro-optic effects with polarized films.

以下余白 第3表 水上部電極に金電極(厚み20nm )使用発明の詳細 な説明したように、本発明によれば、種々の優れた物性
を有するが、自己回復形絶縁破壊しないすなわち電気洛
勺に短絡状態になる誘電体膜上に、自己回復形絶縁破壊
するすなわち電気的に開放状態になる誘電体膜を各膜の
絶縁破壊電場および誘電率を考慮し膜厚を決定し積層す
ることにより、欠陥部に生じる絶縁破壊を自己回復形と
し、単独では自己回復形絶縁破壊しない誘電体膜の持つ
優れた物性を十分に利用できるものである。
As described in detail below, the present invention uses a gold electrode (thickness: 20 nm) as the third surface water upper electrode.According to the present invention, the present invention has various excellent physical properties, but has no self-healing dielectric breakdown, that is, no electric resistance. By laminating a dielectric film that undergoes self-healing dielectric breakdown, that is, becomes electrically open, on top of a dielectric film that becomes short-circuited when the film thickness is determined by considering the dielectric breakdown electric field and dielectric constant of each film. , the dielectric breakdown that occurs at the defective portion is self-healing, and the excellent physical properties of the dielectric film, which does not have self-healing dielectric breakdown when used alone, can be fully utilized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の複合誘電体の構成を示す図
、第2図は第1図に示した複合誘電体の等価回路を示す
図である。 11・・・・・基板、12・・ 下部電極、13・・・
パ・・自己回復形絶縁破壊しない誘電体膜、14・・・
・・自己回復形絶縁破壊する誘電体膜、16・・・・・
上部電極、16・・・・・・絶縁破壊の穴。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 (幻 (b) 第2図
FIG. 1 is a diagram showing the structure of a composite dielectric material according to an embodiment of the present invention, and FIG. 2 is a diagram showing an equivalent circuit of the composite dielectric material shown in FIG. 1. 11... Substrate, 12... Lower electrode, 13...
Pa... Self-healing dielectric film that does not break down, 14...
...Dielectric film with self-healing dielectric breakdown, 16...
Upper electrode, 16...Dielectric breakdown hole. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure (phantom (b)) Figure 2

Claims (2)

【特許請求の範囲】[Claims] (1)比誘電率ε、膜厚d1.絶縁破壊電場F1 の自
己回復形絶縁破壊しない第1の誘電体膜上に、比誘電率
ε2(ただしε2〈ε1)、膜厚d2.絶縁破壊電場F
2(だだしF2〉Fl)の絶縁破壊後開放回路となる自
己回復形絶縁破壊する第2の誘電体膜を積層し、かつこ
れら第1.第2の誘電体膜の各々に加わる電圧を■1.
■2としたとき、前記第1゜第2の誘電体膜の膜厚d1
.d2カ当〈dlFl<F2<d2F2の条件を満たす
ことを特徴とする複合誘電体膜。
(1) Relative dielectric constant ε, film thickness d1. On the self-healing type non-breakdown first dielectric film of the dielectric breakdown electric field F1, a dielectric constant ε2 (where ε2<ε1), a film thickness d2. Breakdown electric field F
A second dielectric film that undergoes self-healing dielectric breakdown which becomes an open circuit after dielectric breakdown of F2>Fl is laminated, and these first dielectric films are laminated. The voltage applied to each of the second dielectric films is 1.
■ When 2, the film thickness d1 of the first degree second dielectric film
.. A composite dielectric film characterized in that it satisfies the condition of d2 power <dlFl<F2<d2F2.
(2)同一組成焼結体をターゲットとして用い、基板温
度を変えることにより、自己回復形絶縁゛破壊しない誘
電体膜と自己回復形絶縁破壊する誘電体膜とをスパッタ
リング法で形成することを特徴とする複合誘電体膜の製
造法。
(2) Using a sintered body of the same composition as a target and changing the substrate temperature, a self-healing dielectric film that does not cause dielectric breakdown and a dielectric film that causes self-healing dielectric breakdown are formed by sputtering. A method for manufacturing a composite dielectric film.
JP22874683A 1983-12-02 1983-12-02 Composite dielectric film and method of producing same Granted JPS60121605A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22874683A JPS60121605A (en) 1983-12-02 1983-12-02 Composite dielectric film and method of producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22874683A JPS60121605A (en) 1983-12-02 1983-12-02 Composite dielectric film and method of producing same

Publications (2)

Publication Number Publication Date
JPS60121605A true JPS60121605A (en) 1985-06-29
JPH0562402B2 JPH0562402B2 (en) 1993-09-08

Family

ID=16881174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22874683A Granted JPS60121605A (en) 1983-12-02 1983-12-02 Composite dielectric film and method of producing same

Country Status (1)

Country Link
JP (1) JPS60121605A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0662080U (en) * 1993-02-04 1994-09-02 勝也 平岡 Decorative material driven floorboard
JP2012244750A (en) * 2011-05-19 2012-12-10 Hitachi Ltd Semiconductor unit and power conversion apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0662080U (en) * 1993-02-04 1994-09-02 勝也 平岡 Decorative material driven floorboard
JP2012244750A (en) * 2011-05-19 2012-12-10 Hitachi Ltd Semiconductor unit and power conversion apparatus

Also Published As

Publication number Publication date
JPH0562402B2 (en) 1993-09-08

Similar Documents

Publication Publication Date Title
US5390072A (en) Thin film capacitors
US5587870A (en) Nanocrystalline layer thin film capacitors
US4873610A (en) Dielectric articles and condensers using the same
US5907470A (en) Dielectric thin film capacitor element
US4073846A (en) Reduction-reoxidation type semiconducting ceramic capacitor
JPS60121605A (en) Composite dielectric film and method of producing same
JP2019512164A (en) Microelectronic electrode assembly
JP2001127358A (en) Solid-phase excimer device and its manufacturing method
JP2003045987A (en) Dielectric laminating thin film and electronic parts using the same
JPH0387055A (en) Thin film capacitor and manufacture thereof
JP2796099B2 (en) Superconducting element
JP2500611B2 (en) High dielectric constant thin film
JP2001189422A (en) Method of manufacturing thin-film capacitor
JPH10256085A (en) Capacitance-varying element, its driving method, and its manufacturing method
JPS6253923B2 (en)
JP2001302400A (en) Oxide superlatice
JP3172665B2 (en) Dielectric thin film capacitor element and method of manufacturing the same
JPH0624222B2 (en) Method of manufacturing thin film capacitor
JPS58212119A (en) Composite dielectric material
JPH0587164B2 (en)
JPH10269842A (en) Conductive oxide thin film, thin film capacitor and magneto-resistance effect element
JPH0738004A (en) Ferroelectric memory cell
JPS6094716A (en) Thin film condenser
KR100247141B1 (en) Electroluminescence device and manufacturing method thereof
JPH04360507A (en) Thin film capacitor