JPS60121408A - Distance measuring device - Google Patents

Distance measuring device

Info

Publication number
JPS60121408A
JPS60121408A JP22967983A JP22967983A JPS60121408A JP S60121408 A JPS60121408 A JP S60121408A JP 22967983 A JP22967983 A JP 22967983A JP 22967983 A JP22967983 A JP 22967983A JP S60121408 A JPS60121408 A JP S60121408A
Authority
JP
Japan
Prior art keywords
light
lens
distance
distance measuring
light receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22967983A
Other languages
Japanese (ja)
Inventor
Shuichi Tamura
秀一 田村
Ryoichi Suzuki
良一 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP22967983A priority Critical patent/JPS60121408A/en
Publication of JPS60121408A publication Critical patent/JPS60121408A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C3/00Measuring distances in line of sight; Optical rangefinders
    • G01C3/10Measuring distances in line of sight; Optical rangefinders using a parallactic triangle with variable angles and a base of fixed length in the observation station, e.g. in the instrument
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/28Systems for automatic generation of focusing signals
    • G02B7/30Systems for automatic generation of focusing signals using parallactic triangle with a base line
    • G02B7/32Systems for automatic generation of focusing signals using parallactic triangle with a base line using active means, e.g. light emitter

Abstract

PURPOSE:To measure the distance of an object without placing the object to be focused in the center of a screen, by rotating a light projecting lens and a light receiving lens, whose optical axes are off respective rotation center lines, around rotation center lines synchronously with each other. CONSTITUTION:A light projecting lens 2 and a light receiving lens 4 are shifted from respective rotation center lines by the same quantity and are rotated synchronously with each other while keeping the same shift directions, and the luminous flux from a light emitting element 1 is projected from the light projecting lens 2 to an object in an object field 3, and the reflected light is focused onto a light receiving face of a photodetector 5 by the light receiving lens 4. The object field 3 is scanned in the direction of an arrow to measure the distance successively. Since the incidence position of the refected light on the light receiving face of the photodetector 5 is different by the distance of the object, variation of electric outputs from two output terminals of the photodetector 5 is obtained to measure the distance of the object.

Description

【発明の詳細な説明】 本発明はカメラ等に用いる測距装置、特に赤外光等を被
写体に向は投射し、その反射光により被写体距離を検出
する測距装置の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a distance measuring device used in a camera or the like, and particularly in a distance measuring device that projects infrared light or the like toward a subject and detects the distance to the subject based on the reflected light.

従来、この種の測距合する自動焦点検出装置は被写体を
ほぼ画面の中央に置くようにカメラを向ける必要があっ
た。それ故、現在製品となって市販されているカメラに
は、画面の中央にない被写体にピントの合った構図の撮
影をするためにプリフォーカスと称する機構を内蔵し、
最初に該被写体をほぼ画面中央に置くようカメラを向け
てピント合せを行なった後、カメラを向は直して構図を
決め、撮影するようにしたものがある。しかし、(9) これは撮影の操作が面倒であ如、又、誤操作によシピン
トの合わない写真を撮ってしまうことがある。
Conventionally, with this type of automatic focus detection device that measures and adjusts distance, it has been necessary to orient the camera so that the subject is placed approximately in the center of the screen. Therefore, cameras that are currently commercially available have a built-in mechanism called prefocus to take pictures with a composition that focuses on subjects that are not in the center of the screen.
There is a method in which the camera is first pointed so that the subject is placed approximately in the center of the screen, the focus is adjusted, and then the camera is turned again, the composition is decided, and the photograph is taken. However, (9) this makes the photographing operation cumbersome, and an erroneous operation may result in taking an out-of-focus photograph.

その解決策として複数の測距装置を用いて画面の多数個
所を測距するものが提案されているが、コストが高い等
の欠点があった。
As a solution to this problem, it has been proposed to use a plurality of distance measuring devices to measure distances at many points on the screen, but this method has drawbacks such as high cost.

よって本発明の目的は、合焦すべき被写体を画面中央に
置くこと、又は一旦そうした後にカメラを所望構図に適
うよう向は直すことを要せずに、所望構図でカメラを構
えたま\、合焦すべき被写体の測距を可能ならしめる測
距装置を提供するにある。
Therefore, it is an object of the present invention to make it possible to focus while holding the camera in a desired composition without having to place the subject to be focused on in the center of the screen, or without having to change the direction of the camera to match the desired composition. To provide a distance measuring device capable of measuring the distance of a subject to be focused on.

本発明は、測距用光源から発する光束を被写界を走査す
るよう収束投光する投光用光学部材と、該投光用光学部
材とは所定間隔を置いて配置され、上記投光光束の被写
外内物体による反射光束ヲ腋投光光束と同じ走査関係に
おいて受光して光電変換受光素子上に収束する受光用光
学部材とを備え、該受光素子への上記収束された反射光
の入射位置から被写界内物体嶌\の距離信号を得る測距
装置において、上記投光用光学部材および受光用光学部
材は、夫々の回転中心線からレンズ光軸が偏心しておシ
、且つその偏心の方向を等しく保って夫々の該回転中心
線の周シに互に同期的に回転せしめられる投光用レンズ
および受光用レンズであることを特徴とする。
The present invention provides a light projecting optical member that projects a convergent light beam emitted from a distance measuring light source so as to scan a field, and the light projecting optical member is arranged at a predetermined interval, and the light projecting light beam is arranged at a predetermined interval. a light-receiving optical member that receives the reflected light beam from an object inside and outside the object in the same scanning relationship as the axillary projected light beam and converges it on a photoelectric conversion light-receiving element, In a distance measuring device that obtains a distance signal of an object in the field from an incident position, the light emitting optical member and the light receiving optical member have lens optical axes eccentric from their respective rotation centers, and The present invention is characterized in that the light projecting lens and the light receiving lens are rotated synchronously around the respective rotation center lines while maintaining the same direction of eccentricity.

以下、本発明の実施例を図面を参照して説明する。まず
、その概念を第1図により説明する。1は赤外光の如き
測距用の光を発する赤外発光ダイオード等の発光素子、
2は発光素子1からの光束を被写界3に向って投光する
投光レンズ、4は投光された光束が被写界内の物体によ
り反射された反射光を受光素子5の受光面上に集束する
受光レンズである。投光レンズ2および受光レンズ4は
図示矢印の如く同方向に回転されるように設けられてい
る。各レンズ2,4は、夫々のレンズ光軸が夫々の回転
中心軸線に対して偏心している。その偏心量は両レンズ
2,4共に同一であり、且つ夫々の回転中心軸線に対す
る偏心方向を同一に保って両レンズ2,4は同期して回
転されるようになっている。
Embodiments of the present invention will be described below with reference to the drawings. First, the concept will be explained with reference to FIG. 1 is a light emitting element such as an infrared light emitting diode that emits distance measuring light such as infrared light;
2 is a light projecting lens that projects the light beam from the light emitting element 1 toward the field of view 3; 4 is the light receiving surface of the light receiving element 5, which receives the reflected light of the projected light beam reflected by an object in the field of view; This is a light receiving lens that focuses the light upward. The light projecting lens 2 and the light receiving lens 4 are provided so as to be rotated in the same direction as shown by arrows in the figure. In each of the lenses 2 and 4, the respective lens optical axes are eccentric with respect to the respective rotation center axes. The amount of eccentricity is the same for both lenses 2 and 4, and both lenses 2 and 4 are rotated synchronously by maintaining the same eccentric direction with respect to the respective rotational center axes.

発光素子1からの光束は投光レンズ2を通って投光され
、被写界3内の物体にスポットとして当り、該物体から
のその反射光は受光レンズ4によシ受光素子5の受光面
上に集束されるが、受光素子5の受光面上の該反射光の
入射位置は、第2図に示すように、物体Oの距離によっ
て異る。ここで、受光素子5は半導体装置検出器と言わ
れるものであって、二つの出力端子を持ち、入射する光
がその受光面のどの位置に当るかによって夫々の端子か
らの電気出力の割合が変わるものである。
The light flux from the light-emitting element 1 is projected through the light-emitting lens 2 and strikes an object in the field 3 as a spot, and the reflected light from the object is transmitted to the light-receiving lens 4 and onto the light-receiving surface of the light-receiving element 5. However, the incident position of the reflected light on the light-receiving surface of the light-receiving element 5 varies depending on the distance to the object O, as shown in FIG. Here, the light-receiving element 5 is what is called a semiconductor device detector, and has two output terminals, and the ratio of electrical output from each terminal depends on where on the light-receiving surface the incident light hits. It changes.

従って、その出力から物体距離を測定し得る。Therefore, the object distance can be measured from the output.

さて、投光レンズ2および受光レンズ4は前記の如く偏
心し前記の如く回転するようになっておシ、その回転と
共にその投光・受光の光路は第1図の矢印で示したよう
に被写界3′ft走査し、それにつれて被写界内に存在
する諸物体が順次測距されることになる。そして本実施
例においては、この走査中に得られた測距結果のうち最
も近い距離を示す信号に基づいて、走査完了後に、撮影
レン(5) ズのピント合せが行われるのである。
Now, the light emitting lens 2 and the light receiving lens 4 are decentered as described above and rotated as described above, and as they rotate, the light emitting and receiving optical paths are covered as shown by the arrows in FIG. The field of view is scanned 3'ft, and various objects existing within the field of view are successively measured. In this embodiment, the photographic lens (5) is focused after the scanning is completed based on the signal indicating the closest distance among the distance measurement results obtained during the scanning.

上記の走査は被写界を円弧状に走査することになる。被
写界におけるその走査の方向および位置は適宜所望に従
い定めることができるが、一般的には、カメラを縦に構
えたp横に構えたシして撮影することを考慮すると、被
写界を斜めに走査することが望ましい。
The above scanning scans the object field in an arc shape. The direction and position of scanning in the field of view can be determined as desired, but in general, considering that the camera is held vertically or horizontally, It is desirable to scan diagonally.

第3図は第1図に対応する具体的な機構の例を示す斜視
図で、図中、1〜5は第1図中のそれと同様であシ、6
は図示しないシャッターボタンに連動するレリーズレバ
−であって、オートフォーカス(AF)ユニット台7に
植設されたピン8a+8bで摺動可能にガイドされ、バ
ネ9によ構図の上方に付勢されている。10はセクター
ギヤであって、APユニット台7に固定した軸11によ
p回動可能に軸支され、一端がレリーズレバ−6と保合
可能に形成しである。12は二段ギヤであって、AFユ
ニット台7と図示しないギヤ押えとで回動可能に支持さ
れ、その小ギヤはセクタギヤ10と噛み合い、大ギヤは
投光レンズ2のホルダー13の(6) 外周に形成したギヤと噛み合っている。投光レンズホル
ダー13はAFユニット台7に回動可能に嵌合し、その
外周ギヤの他の部分は連結ラック14のラックギヤと噛
み合っている。連結ラック14はAPユニット台7に植
設されたピン15a、15bにて摺動可能にガイドされ
、そのラックギヤの他の部分は受光レンズ4のホルダー
16の外周に形成したギヤと噛み合っている。受光レン
ズホルダー16はiユニット台7に回動可能に嵌合し、
その外周よ)突出した部分に設けたビン16mに掛った
バネ17によシ図の右旋方向に付勢されている。バネ1
7は各々のギヤのバックラッシュを片寄せするもので、
投光レンズ2と受光レンズ40回動を完全に同期させる
ものである。
FIG. 3 is a perspective view showing an example of a specific mechanism corresponding to FIG. 1, and in the figure, 1 to 5 are similar to those in FIG.
A release lever is linked to a shutter button (not shown), and is slidably guided by pins 8a+8b installed in an autofocus (AF) unit base 7, and is biased upward in the composition by a spring 9. . Reference numeral 10 denotes a sector gear, which is rotatably supported by a shaft 11 fixed to the AP unit base 7, and has one end formed so as to be engageable with the release lever 6. Reference numeral 12 denotes a two-stage gear, which is rotatably supported by the AF unit base 7 and a gear holder (not shown), the small gear of which meshes with the sector gear 10, and the large gear (6) of the holder 13 of the projection lens 2. It meshes with a gear formed on the outer periphery. The light projecting lens holder 13 is rotatably fitted into the AF unit base 7, and the other part of its outer gear meshes with the rack gear of the connection rack 14. The connecting rack 14 is slidably guided by pins 15a and 15b implanted in the AP unit base 7, and the other part of the rack gear meshes with a gear formed on the outer periphery of the holder 16 of the light receiving lens 4. The light receiving lens holder 16 is rotatably fitted to the i-unit base 7,
It is biased in the clockwise direction in the figure by a spring 17 hooked on a bottle 16m provided on the protruding portion (the outer periphery). Spring 1
7 is to offset the backlash of each gear,
The rotations of the light emitting lens 2 and the light receiving lens 40 are completely synchronized.

第3図の機構の作動を説明すれば、まず、図示しないシ
ャッターボタンをわずかに押し込むと図示しないスイッ
チがON L、後述の回路に給電される。さらにシャッ
ターボタンを押し込んで行くと、それに連動しているレ
リーズレバ−6がバネ9に抗して押し込まれ、該レリー
ズレバ−6の曲げ部がセクターギヤ10の一端を押して
該セクターギヤが図の反時計方向に回動し、それに噛み
合う二段ギヤ12が図の時計方向に回動し、ひいては投
光レンズホルダー13が図の反時計方向に回動して投光
レンズ2が回動し、これにより前述したように投光光束
が円弧状に移動する。また同時に連結ラック14が図示
A方向に移動し、これによシ受光レンズホルダー16ひ
いては受光レンズ4も図の反時計方向に回動し、これに
より、前述したように投光光束と同期して受光光束も円
弧状に移動する。上記段、受光レンズの回動中、前述の
ように連続的に被写界諸物体の測距が行なわれ、その走
査中に得られた測距信号のうち最も近い距離に対応する
信号を検知してこれをレンズ制御信号とし、さらにシャ
ッターボタンを押し込んだ時に図示しないスイッチ等で
上記レンズ制御信号に基づいて撮影レンズを移動させる
ことによシ最至近物体にピン1合せ、その後露光動作を
完了させる。
To explain the operation of the mechanism shown in FIG. 3, first, when a shutter button (not shown) is slightly pressed, a switch (not shown) is turned ON and power is supplied to a circuit to be described later. When the shutter button is pressed further, the release lever 6 that is linked to it is pushed in against the spring 9, and the bent part of the release lever 6 pushes one end of the sector gear 10, causing the sector gear to move counterclockwise in the figure. The two-stage gear 12 that engages with it rotates clockwise in the figure, and the light projection lens holder 13 rotates counterclockwise in the figure, causing the light projection lens 2 to rotate. As described above, the projected light flux moves in an arc shape. At the same time, the connecting rack 14 moves in the direction A in the figure, and as a result, the light receiving lens holder 16 and eventually the light receiving lens 4 also rotate counterclockwise in the figure, thereby synchronizing with the projected light beam as described above. The received light flux also moves in an arc. In the above stage, while the light-receiving lens is rotating, distance measurement of various objects in the object is performed continuously as described above, and the signal corresponding to the closest distance is detected among the distance measurement signals obtained during the scanning. This is used as a lens control signal, and when the shutter button is pressed, a switch (not shown) moves the photographic lens based on the lens control signal to focus on the nearest object, and then completes the exposure operation. let

第3図において、各々のレンズ2.4の回転中心に対す
る各々のレンズ2,4の光軸の偏心量及び各々の回転軸
に対する偏心方向を同一にして両レンズを完全に同期的
に回転せしめるように図示の機構が構成されていること
は言うまでもない。
In FIG. 3, the eccentricity of the optical axis of each lens 2, 4 with respect to the rotation center of each lens 2.4 and the eccentric direction with respect to each rotation axis are made the same so that both lenses are rotated completely synchronously. It goes without saying that the mechanism shown in the figure is constructed.

各偏心レンズ2,4はプラスチック成形によシ容易に作
ることができる。
Each eccentric lens 2, 4 can be easily made by plastic molding.

第3図では投光レンズ及び受光レンズの回転を同期させ
るのに歯車を用いたが、レンズの回転角が小さければ、
投光レンズ及び受光レンズのホルダー13.16の外周
部に図示16aと同様なピンを設け、これらのビンに嵌
合する二つの孔を持ったレバーで連結することによシ両
レンズの回転を同期させることも可能である。
In Figure 3, gears were used to synchronize the rotation of the light emitting and receiving lenses, but if the rotation angle of the lenses is small,
The rotation of both lenses is achieved by providing pins similar to those shown in Fig. 16a on the outer peripheries of the holders 13 and 16 for the light emitting and receiving lenses, and connecting them with levers having two holes that fit into these pins. It is also possible to synchronize.

投光・受光の光束を被写界に関し斜めに走査させること
は機構の複雑化や所要スペース、精度等の問題点なしに
実現するのはかなり難しいことであるが、第1図及び第
3図に記載した構成によればこれを容易に実現すること
ができる。
It is quite difficult to scan the emitted and received light beam diagonally across the field without problems such as complicating the mechanism, space required, accuracy, etc., but as shown in Figures 1 and 3. According to the configuration described in , this can be easily achieved.

次に本発明実施例に用いる電気回路の例を第4図によシ
説明する。カメラのシャッターボタンの(9) 第1ストロークによシカメラのメインスイッチ102が
閉成し、前記したように投光レンズ及び受光レンズが走
査を開始すると共に、電源電池101から各回路に給電
がなされ、コンデンサ103及び105とチョークコイ
ル104とによ)構成される電源フィルター回路からは
プラス電源Vaeが供給される。又、基準電圧発生回路
106からは温度に依存しない基準電圧KVCが出力さ
れると共に、連続パルス発生回路107からは10 k
Hz位のクロック信号が発生する。
Next, an example of an electric circuit used in an embodiment of the present invention will be explained with reference to FIG. During the first stroke (9) of the shutter button of the camera, the main switch 102 of the camera is closed, the light emitting lens and light receiving lens start scanning as described above, and power is supplied from the power supply battery 101 to each circuit. A positive power supply Vae is supplied from a power supply filter circuit constituted by capacitors 103 and 105 and choke coil 104). Further, the reference voltage generation circuit 106 outputs a reference voltage KVC that does not depend on temperature, and the continuous pulse generation circuit 107 outputs a reference voltage KVC of 10 k.
A clock signal of about Hz is generated.

抵抗192.コンデンサー193及びバッファ194で
構成される時定回路はその時定数が、前記投光レンズ及
び受光レンズの走査の開始から終了までにはソ相当する
時間に設定されている・よってメインスイッチ102閉
成後暫くの間はバッファ194の出力は低レベルなので
、ORゲート195からはクロック信号が出力し、それ
に応じてスイッチングトランジスタ197はオンオフす
る。それに応じてドライブトランジスタ189はオンオ
フし、赤外発光ダイオード(以下I RED と(10
) 略称する)1にはOPアンプ186およびフィードバッ
ク抵抗191の働きによる定電流が流れ点滅動作を繰返
す。
Resistance 192. The time constant of the time constant circuit composed of a capacitor 193 and a buffer 194 is set to a time corresponding to 0 from the start to the end of scanning of the light emitting lens and the light receiving lens.Therefore, after the main switch 102 is closed, Since the output of the buffer 194 is at a low level for a while, a clock signal is output from the OR gate 195, and the switching transistor 197 is turned on and off accordingly. Accordingly, the drive transistor 189 is turned on and off, and the infrared light emitting diode (hereinafter referred to as I RED and (10
) 1 for short, a constant current flows through it due to the action of the OP amplifier 186 and the feedback resistor 191, and the blinking operation is repeated.

1RKD1からの投光の反射光を受光した半導体装置検
出器(以下PSDという)50両出力A、BからはPS
D 5への入射光位置に応じた出力が表われる。その両
出力電流は、各々、次段のアクティブバイパスフィルタ
ーを構成するOPアンプ109(130)および抵抗・
コンデンサーのネットワーク110〜113 (131
〜134)で電圧変換され、そのうちの10 kHz信
号分だけが重点的に増巾される。その出力は更に次段の
非反転増巾のプリアンプを構成するOPアンプi i 
4 (135)及び抵抗115〜117 (136〜1
38)で更に増巾される。この増巾信号は、クロック信
号に応じて開閉するアナログスイッチ118 (139
)に人力し、その増巾された交流信号はコンデンサ12
0(141)にザンブル・アンド・ホールドされて行く
と共に、積分回路119 、120 (140,141
)の働きによシ若干平滑化される。この二出力は、バッ
ファアンプを構成するOPアンプ121(142)を介
して、OPアンプ143および抵抗144〜147よ多
構成される加算回路及びOPアンプ148および抵抗1
49〜151よυ構成される減算回路に入力する。
1 Semiconductor device detector (hereinafter referred to as PSD) which received the reflected light from RKD1 50 outputs A and B are PS
An output is displayed depending on the position of the incident light on D5. Both output currents are connected to the OP amplifier 109 (130) and the resistor, which constitute the next-stage active bypass filter, respectively.
Capacitor network 110-113 (131
~134), and only the 10 kHz signal is intensively amplified. Its output is further fed to the OP amplifier i which constitutes the next stage non-inverting amplification preamp
4 (135) and resistance 115 to 117 (136 to 1
38) is further expanded. This amplified signal is transmitted to the analog switch 118 (139
), and the amplified AC signal is sent to the capacitor 12.
0 (141), and the integration circuits 119 and 120 (140, 141
) is slightly smoothed out. These two outputs are connected via an OP amplifier 121 (142) constituting a buffer amplifier to an adder circuit composed of an OP amplifier 143 and resistors 144 to 147, an OP amplifier 148, and a resistor 1.
49 to 151 are input to a subtraction circuit configured as υ.

上記加算回路のOPアンプ143の出力は、OPアンプ
180及び抵抗181,182よ)構成される反転回路
に入力して反転増巾され、若干の遅延時間を与える抵抗
184及びコンデンサ185を介して、前記IRED 
1駆動用のOPアンプ186の■入力に入力する。よっ
て加算回路のOPアンプ143の出力が増大すると、反
転回路のOPアンプ180の出力は減少し、OPアンプ
186の出力も減少し、1RED1の出力は減少する。
The output of the OP amplifier 143 of the adder circuit is input to an inverting circuit composed of an OP amplifier 180 and resistors 181 and 182, where it is inverted and amplified, and then passed through a resistor 184 and a capacitor 185 that provide a slight delay time. Said IRED
1 drive OP amplifier 186. Therefore, when the output of the OP amplifier 143 of the adder circuit increases, the output of the OP amplifier 180 of the inverting circuit decreases, the output of the OP amplifier 186 also decreases, and the output of 1RED1 decreases.

又、加算回路のOPアンプ143の出力が減少した時は
これとは逆の動作によυ1RFJD 1の出力は増大す
る。このような動作によp、前記投光レンズ及び受光レ
ンズの走査動作中、物体距離、物体の反射率に依存せず
に常に加算回路の出力が一定になる様に、IREDIの
出力はフィードバック制御される。なお、遅延回路18
4,185は発振防止用であり、その時定数は前記投光
レンズ及び受光レンズの走査時間に比べて無視できうる
楊短く設定されている。
Furthermore, when the output of the OP amplifier 143 of the adder circuit decreases, the output of υ1RFJD1 increases by the opposite operation. Due to this operation, during the scanning operation of the light emitting lens and the light receiving lens, the output of IREDI is feedback controlled so that the output of the adder circuit is always constant regardless of the object distance or the reflectance of the object. be done. Note that the delay circuit 18
Reference numeral 4,185 is for preventing oscillation, and its time constant is set so short that it can be ignored compared to the scanning time of the light projecting lens and the light receiving lens.

加算回路のOPアンプ143の出力(VA +VB )
が上記の如く一定の状態では、減算回路のOPアンプ1
48の出力(■ムーvB)は距離に応じて変化する。
Output of OP amplifier 143 of adder circuit (VA + VB)
is constant as described above, the OP amplifier 1 of the subtraction circuit
The output of 48 (■mu vB) changes depending on the distance.

本実施例では物体距離が近いほど該減算回路の出力が高
くなるように前記光学系とPSDが配置されている。
In this embodiment, the optical system and PSD are arranged so that the closer the object distance is, the higher the output of the subtraction circuit becomes.

物体距離情報たる減算回路のopアンプ148の出力は
被写界中の走査による物体距離の変化に応じて変化する
が、そのピーク出力は次段のOPアンプ152、NPN
)ランジスタ153及びコンデンサー154によう構成
されるピーク検出回路によシビークホールドされる。つ
まシ一番近距離の物体に対応した出力がコンデンサー1
54に保持されることになる。その保持されるピークの
アナログ信号は次段のい変換器155によシ3ビットの
バイナリ−コードに変換される。
The output of the OP amplifier 148 of the subtraction circuit, which is object distance information, changes depending on the change in object distance due to scanning in the field, but its peak output is output from the OP amplifier 152 of the next stage, NPN.
) is strongly held by a peak detection circuit configured with a transistor 153 and a capacitor 154. The output corresponding to the closest object is capacitor 1.
It will be held at 54. The retained peak analog signal is converted into a 3-bit binary code by a converter 155 at the next stage.

前記投光レンズと受光レンズの走査動作が終了(13) した頃、前記時定回路192,193の時定数が経過し
てバッファ194の出力が高レベルに反転する。よって
ORゲート195の出力も高レベルに反転し、スイッチ
ングトランジスタ197がオンとなり、IREDIドラ
イブ用のトランジスタ189はオフし、IREDIは消
灯する。又、該バッファ194の出力はANDゲート1
56〜158に入力するので、ANDゲート156〜1
58の出力からはい変換器155の出力が現われ、その
バイナリ−出力は次段のデコーダー/ドライバー159
でデシマルコードに変換され、LED(発光ダイオード
)列161〜167のうち測距信号に対応したLEDが
点灯して距離表示を行うものである。
When the scanning operation of the light projecting lens and the light receiving lens is completed (13), the time constants of the time setting circuits 192 and 193 elapse and the output of the buffer 194 is inverted to a high level. Therefore, the output of the OR gate 195 is also inverted to a high level, the switching transistor 197 is turned on, the IREDI drive transistor 189 is turned off, and the IREDI is turned off. Also, the output of the buffer 194 is connected to the AND gate 1
56 to 158, so AND gates 156 to 1
The output of the converter 155 appears from the output of 58, and its binary output is sent to the next stage decoder/driver 159.
The signal is converted into a decimal code, and among the LED (light emitting diode) arrays 161 to 167, the LED corresponding to the distance measurement signal lights up to display the distance.

更に、前記の変換器155の出力t−撮影レンズ駆動制
御用の信号として用い、例えば撮影レンズの移動と連動
してパルスを発生させ、そのパルスのカウント値と比較
する等のディジタルフィードバックサーボ機構によシ撮
影レンズの繰出繰込み位置制御を行なって被写界中の最
も近い物体にピントの合った撮影をすることができる。
Furthermore, the output t of the converter 155 is used as a signal for controlling the driving of the photographic lens, and is used in a digital feedback servo mechanism, for example, to generate a pulse in conjunction with the movement of the photographic lens and compare it with a count value of the pulse. By controlling the position of the photographic lens, the closest object in the field can be photographed in focus.

(14) 以上の実施例では受光素子5として半導体装置センサー
(PSD)を用いたが、その代りに、従来の測距装置に
用いられている複数の受光部を有するフォトダイオード
等を用匹てもよい。この場合には処理回路が多少複雑で
はあるが、被写界を一走査するうちにくり返してデジタ
ルの測距信号を得、その最近距離の信号を回路的にホー
ルド(例えば−担り/A変換すれば本実施例と同様の処
理で可能となる)すればよい。
(14) In the above embodiment, a semiconductor device sensor (PSD) was used as the light-receiving element 5, but instead, a photodiode or the like having a plurality of light-receiving parts used in conventional distance measuring devices may be used. Good too. In this case, although the processing circuit is somewhat complicated, it repeatedly obtains a digital distance measurement signal while scanning the subject, and the circuit holds the signal at the nearest distance (for example, -carrier/A conversion). (This can be done using the same processing as in this embodiment).

また以上の実施例では走査される被写界中の最近距離被
写体を優先するような測距並びに合焦の沈埋をしている
が、その処理演算の回路構成を適当に変更することによ
シ遠距離被写体優先あるいは中間距離被写体優先にする
ことは当業者であれば容易である。
Furthermore, in the above embodiment, distance measurement and focusing are performed so as to give priority to the closest object in the scanned object field, but this can be achieved by appropriately changing the circuit configuration of the processing calculation. A person skilled in the art can easily give priority to a long-distance subject or to a medium-distance subject.

本発明によれば、合焦すべき被写体を画面中央に置いた
シ、または、画面中央に置いた後に所望の構図に適うよ
うカメラを向は直したシする必要なしに、所望の構図に
てカメラを構えたま\で合焦すべき被写体の測距ができ
、しかもこれを比較的簡単小型な機構によシ達成し得る
ものである。
According to the present invention, the desired composition can be achieved without having to place the subject to be focused on in the center of the screen, or without having to reorient the camera to achieve the desired composition after placing the subject in the center of the screen. It is possible to measure the distance to the subject to be focused on while holding the camera, and this can be accomplished using a relatively simple and compact mechanism.

更に走査の方向を画面に対して斜めにすることが容易に
可能となるので、カメラの水平又は垂直の構えに依らず
有効に機能せしめることができる。
Furthermore, since the direction of scanning can be easily made diagonal to the screen, the camera can function effectively regardless of whether it is held horizontally or vertically.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例の概念図、第2図はその測距原
理を示す図、第3図は同実施例の測距系の具体的機構を
示す胴視図、第4図は上記の実施例に使用可能な電気回
路図である。 1・・・発光素子、 2・・・投光レンズ、3・・・被
写界、 4・・・受光レンズ、5・・・受光素子、 6
・・・レリーズレバ−17・・・AFユニット台、 13・・・投光レンズホルダー、 14・・・連結ラック、 16・・・受光レンズホルダー、
Fig. 1 is a conceptual diagram of an embodiment of the present invention, Fig. 2 is a diagram showing its distance measurement principle, Fig. 3 is a torso view showing the specific mechanism of the range measurement system of the embodiment, and Fig. 4 is a diagram showing the distance measurement principle of the embodiment. FIG. 4 is an electrical circuit diagram that can be used in the embodiment described above. DESCRIPTION OF SYMBOLS 1... Light emitting element, 2... Light emitting lens, 3... Field of view, 4... Light receiving lens, 5... Light receiving element, 6
...Release lever 17...AF unit stand, 13...Emitting lens holder, 14...Connection rack, 16...Light receiving lens holder,

Claims (1)

【特許請求の範囲】 1 測距用光源から発する光束を被写界を走査するよう
収束投光する投光用光学部材と、該投光用光学部材とは
所定間隔を置いて配置され、上記投光光束の被写弁内物
体による反射光束を該投光光束と同じ走査関係において
受光して光電変換受光素子上に収束する受光用光学部材
とを備え、該受光素子への上記収束された反射光の入射
位置から被写弁内物体\\の距離信号金得る測距装置に
おいて、上記投光用光学部材および受光用光学部材は、
夫々の回転中心線からレンズ光軸が偏心しておシ、且つ
その偏心の方向を等しく保って夫々の該回転中心線の周
シに互に同期的に回転せしめられる投光用レンズおよび
受光用レンズであることを特徴とする測距装置。 2 上記投光レンズおよび受光レンズはそれによる投光
および受光の走査を被写界を斜によぎる(1) 円弧とする回転範囲において回転せしめられる特許請求
の範囲第1項記載の測距装置。 3 上記得られた距離信号のうち最近又は最遠の物体に
対応する距離情報に応動して撮影レンズを当該物体に合
焦させる操作機構を備えた特許請求の範囲第1項又は第
2項記載の測距装置。
[Scope of Claims] 1. A light projecting optical member that converges and projects the luminous flux emitted from the distance measuring light source so as to scan the object field, and the light projecting optical member is arranged at a predetermined interval, and a light-receiving optical member that receives a reflected light beam of the projected light beam by an object within the subject valve in the same scanning relationship as the projected light beam and converges it onto a photoelectric conversion light-receiving element; In a distance measuring device that obtains a distance signal of an object in a subject valve from the incident position of reflected light, the light emitting optical member and the light receiving optical member are:
A light projecting lens and a light receiving lens whose optical axes are eccentric from their respective rotation center lines, and which are rotated synchronously around the respective rotation center lines while maintaining the same direction of eccentricity. A distance measuring device characterized by: 2. The distance measuring device according to claim 1, wherein the light projecting lens and the light receiving lens are rotated in a rotation range that is an arc (1) so that scanning of light projecting and receiving light obliquely crosses the field of view. 3. Claims 1 or 2 include an operation mechanism for focusing the photographing lens on the object in response to distance information corresponding to the nearest or farthest object among the distance signals obtained above. distance measuring device.
JP22967983A 1983-12-05 1983-12-05 Distance measuring device Pending JPS60121408A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22967983A JPS60121408A (en) 1983-12-05 1983-12-05 Distance measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22967983A JPS60121408A (en) 1983-12-05 1983-12-05 Distance measuring device

Publications (1)

Publication Number Publication Date
JPS60121408A true JPS60121408A (en) 1985-06-28

Family

ID=16895988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22967983A Pending JPS60121408A (en) 1983-12-05 1983-12-05 Distance measuring device

Country Status (1)

Country Link
JP (1) JPS60121408A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2653909A1 (en) * 1989-10-27 1991-05-03 Asahi Optical Co Ltd DEVICE FOR MEASURING OBJECT DISTANCE IN A CAMERA.
US8654194B2 (en) 2009-03-06 2014-02-18 Panasonic Corporation Distance measuring device and method for manufacturing same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2653909A1 (en) * 1989-10-27 1991-05-03 Asahi Optical Co Ltd DEVICE FOR MEASURING OBJECT DISTANCE IN A CAMERA.
US8654194B2 (en) 2009-03-06 2014-02-18 Panasonic Corporation Distance measuring device and method for manufacturing same

Similar Documents

Publication Publication Date Title
JPH0411844B2 (en)
US20030021600A1 (en) Autofocus sensor
JPH0380290B2 (en)
JPH01259313A (en) Range finder for camera
JPH0151819B2 (en)
JPS5952362B2 (en) distance detection device
JPS60121408A (en) Distance measuring device
USRE35963E (en) Automatic focusing camera
JPH0581007B2 (en)
JP3402690B2 (en) Camera with ranging device
JPS61246725A (en) Range finder for camera
JP3431200B2 (en) camera
JPS60184235A (en) Auto-focus camera
JPH0625814B2 (en) Camera system
JPS634184Y2 (en)
JPS59178312A (en) Distance measuring apparatus
JPS6248202B2 (en)
JPS59222804A (en) Automatic focus detector
JPH02118558A (en) Overhead type slide projector
JPS6350681B2 (en)
JPH052128A (en) Range-finding device for camera
JPH03139620A (en) Image input device
JPH052129A (en) Range-finding device for electronic still camera
JPH01109329A (en) Camera
JPH04261507A (en) Camera with active type distance measuring device