JPS6012121A - Removal of arsenic component in gaseous phase - Google Patents

Removal of arsenic component in gaseous phase

Info

Publication number
JPS6012121A
JPS6012121A JP58121192A JP12119283A JPS6012121A JP S6012121 A JPS6012121 A JP S6012121A JP 58121192 A JP58121192 A JP 58121192A JP 12119283 A JP12119283 A JP 12119283A JP S6012121 A JPS6012121 A JP S6012121A
Authority
JP
Japan
Prior art keywords
arsenic
oxidizing agent
layer
solution
removal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58121192A
Other languages
Japanese (ja)
Other versions
JPH0432690B2 (en
Inventor
Yasuo Takenaka
竹中 安夫
Shuichi Sugimori
杉森 修一
Tomihiko Kawamura
川村 富彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP58121192A priority Critical patent/JPS6012121A/en
Publication of JPS6012121A publication Critical patent/JPS6012121A/en
Publication of JPH0432690B2 publication Critical patent/JPH0432690B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)

Abstract

PURPOSE:To effectively perform the removal or recovery of the arsenic component in a gaseous phase generated in various industries, by bringing gas containing arsenic or an arsenic compound into contact with a solution layer containing an oxidizing agent while introducing the same into said solution layer. CONSTITUTION:Manganese peroxide or bichromate is used as an oxidizing agent to be dissolved in water or a solvent in a concn. of about 3.0% or more while the resulting solution is supported by iron, silicon or activated carbon to form an oxidizing layer and aresenic or an arsenic compound is brought into contact with the oxidizing layer while introduced into said layer. In this case, the holding amount of the oxidizing agent solution to the carrier is set to about 0.01- 0.5cm<3> per 1cm<3> of the layer. By this method, the arsenic component in a gaseous phase is effectively removed. Further, the carrier used in the removal of arsenic can be regenerated through the contact with water or an alkali solution and, in this case, the arsenic component can be recovered as a concn. liquid.

Description

【発明の詳細な説明】 本発明は、気相中の砒素成分除去方法に関する。[Detailed description of the invention] The present invention relates to a method for removing arsenic components in a gas phase.

従来砒素を含有する混合ガスの処理方法としては、硫酸
銅の溶液中に混合ガスを通じて砒素を砒化銅として沈殿
させる方法、高熱を加えた石英管内に混合ガスを通じた
のち、冷却して金属砒素として固化させる方法、混合ガ
スを加熱された銅、鉄、ニッケル又はコバルト上に導き
砒素をこ朴らQ金属と反応させるとともに反応生成物を
その金属内部に拡散させる方法等が知られ、ている。し
かしこれらの方法はいずれも砒素の除去方法としては不
完全なものであり、処理ガス中の砒隼濃度を十分低下さ
せるためには憚雑かつ大型の装置が必要になるばか9で
なく数百度もの高熱下での反応であり、処理操作上も危
険で多大のエネルギーを消費する方法であや。また、砒
素との反応生成物から砒素を再分離するこくが困難であ
るので1反応生成物のまま処理系から除去して廃棄せね
ばならず、再使用が不可能であった。
Conventional methods for treating mixed gases containing arsenic include passing the mixed gas into a solution of copper sulfate to precipitate the arsenic as copper arsenide, or passing the mixed gas through a quartz tube heated to high temperatures, then cooling it to form metallic arsenic. A method of solidifying the arsenic, a method of introducing a mixed gas onto heated copper, iron, nickel, or cobalt, causing the arsenic to react with the metal, and diffusing the reaction product into the metal are known. However, all of these methods are incomplete as methods for removing arsenic, and in order to sufficiently reduce the arsenic concentration in the processing gas, complicated and large equipment is required. The reaction is carried out under extremely high heat, and the process is dangerous and consumes a large amount of energy. Furthermore, since it is difficult to re-separate arsenic from the reaction product with arsenic, the reaction product must be removed from the treatment system and disposed of, making it impossible to reuse it.

本発明省等は上記の如き現状に鑑み、既に特願昭57−
3876号及びlIf!f願昭58−27014号にg
%sてチタン酸粒状物と酸化剤溶液との組み合せを特徴
とする気相中の砒素成分除去法を提案し不いるが、更に
検討を進めることによって、この千法が酸化剤溶液単独
あるいは他の担体に酸化剤溶液を含有せしめた系及び酸
化剤溶液単独系にも適用可能であることを見い出し本発
明に到達したものである。
In view of the above-mentioned current situation, the Ministry of Invention and others has already filed a patent application
No. 3876 and lIf! fG in Application No. 58-27014
Although we have not yet proposed a method for removing arsenic components in the gas phase that is characterized by the combination of titanic acid particles and an oxidizing agent solution, we believe that further studies will show that this method can be applied to the oxidizing agent solution alone or other methods. The present invention was achieved based on the discovery that the present invention is applicable to a system in which an oxidizing agent solution is contained in the carrier and a system in which an oxidizing agent solution is used alone.

即ち本発明は、砒素又は砒素化合物を含有する気体を酸
化剤溶液層に導き、接触せしめることを特徴とする気相
中の砒素成分除去法に関する。
That is, the present invention relates to a method for removing arsenic components in a gas phase, which is characterized by introducing a gas containing arsenic or an arsenic compound into an oxidizing agent solution layer and bringing it into contact with the oxidizing agent solution layer.

本発明において、酸化剤としては任意の公知物質、たと
えば過マンガン酸及びその塩類2重クロム酸及びその塩
類、硫酸及び過酸化物な用いることができる。酸化剤溶
液の溶媒としては通常水が用いられるが、酸化剤と反応
しない有機溶媒を使用することも可能である。
In the present invention, any known substance can be used as the oxidizing agent, such as permanganic acid and its salts, dichromic acid and its salts, sulfuric acid and peroxide. Water is usually used as the solvent for the oxidizing agent solution, but it is also possible to use an organic solvent that does not react with the oxidizing agent.

酸化剤溶液中の酸化剤濃度は0.1%以上であれば気相
中の砒素成分の除去に有効であるが。
If the oxidizing agent concentration in the oxidizing agent solution is 0.1% or more, it is effective for removing arsenic components in the gas phase.

3.0チ以上であることが除去能向上のために好ましい
It is preferable that it is 3.0 inches or more in order to improve removal ability.

気体の酸化剤溶液との接触時間は5秒以上であり、接触
効率が低い場合はより接触時間を長くとる必要がある。
The contact time of the gas with the oxidizing agent solution is 5 seconds or more, and if the contact efficiency is low, the contact time needs to be longer.

本発明において、酸化剤溶液層としては酸化剤溶液のみ
からなる層であってもよいが、酸化剤溶液な担体に保持
せしめてなる層(以下充填層という)を用いることが接
触効率の点から好ましいり 充填層の場合9例えば光填層長を10cm、通気速度を
10−100の7分とすると6秒〜1分の接触時間とな
る。
In the present invention, the oxidizing agent solution layer may be a layer consisting only of the oxidizing agent solution, but from the viewpoint of contact efficiency, it is preferable to use a layer formed by holding the oxidizing agent solution on a carrier (hereinafter referred to as a packed layer). In the case of a preferred filling layer9, for example, if the optical filling layer length is 10 cm and the ventilation rate is 7 minutes at 10-100, the contact time will be 6 seconds to 1 minute.

本発明において充填層を形成する担体として独で砒素化
合物の吸着能を有していればより好ましいが、必ずしも
吸着能を有するものに限定されない。むしろ、砒素成分
の酸化を助ける触ルミニウム、チタン、ジルコニウム、
 鉛、カルシウム、マグネシウム等の酸化物や含水酸化
物を主成分とする物質、活性炭、陰イオ/交換樹トデン
ド状、フレーク状: シート状ヤハエカム状等の形態と
して充填層を形成することができる。特に操作性の観点
からは粒状物がiましく多孔性軽石、多孔性ガラス等の
粒状物が好適モ。
In the present invention, it is more preferable that the carrier forming the packed bed has the ability to adsorb arsenic compounds by itself, but it is not necessarily limited to having the ability to adsorb the arsenic compound. Rather, catalytic aluminum, titanium, zirconium, which helps oxidize arsenic components,
The packed bed can be formed in the form of a substance whose main component is an oxide or hydrated oxide of lead, calcium, magnesium, etc., activated carbon, anion/exchange resin, flake, sheet, etc. Particularly from the viewpoint of operability, granular materials are desirable, and granular materials such as porous pumice and porous glass are preferred.

ある。be.

担体への酸化剤溶液の保持量は充填層1crIL8当9
0、01〜0.5cm”である。0.01 an”以下
では除去効果に乏しくeO,5an”以上では通気抵抗
が増剤溶液を保持させる方法としては、充填層全体を酸
化剤溶液中に一時的に浸漬する方法や充填層に対して酸
化剤溶液を噴霧する方法等任意の方法を採用することが
できる。又、該充填層によって砒素成分の除去が進行す
るにつれて!酸化剤か消費されたり、あるいは酸化剤溶
液が蒸発したりするので、長時間にわたる使用の場合は
、適当な方法によって連続的又は間けつ的にそれらを補
充することが必要となる。
The amount of oxidant solution retained on the carrier is 1crIL8/9
0.01 to 0.5 cm". If the removal effect is less than 0.01 an", the removal effect is poor, and if it is more than eO,5 an", the ventilation resistance increases. As a method for retaining the additive solution, the entire packed bed is immersed in the oxidizing agent solution. Any method can be used, such as a temporary immersion method or a method of spraying an oxidizing agent solution onto the packed bed.Also, as the arsenic component is removed by the packed bed, the oxidizing agent is consumed. Otherwise, the oxidant solution evaporates, so that in the case of long-term use, it is necessary to replenish it continuously or intermittently by suitable methods.

本発明においては、酸化剤溶液層は酸化剤溶液のみを用
いて砒素成分を除去する方法では。
In the present invention, the oxidizing agent solution layer is a method for removing arsenic components using only an oxidizing agent solution.

砒素成分は該溶液中に吸収されて除去され、砒素成分の
除去に有効であるが、この場合はガス成分との接触効率
を高める工夫が必要であり。
The arsenic component is absorbed into the solution and removed, which is effective in removing the arsenic component, but in this case, it is necessary to take measures to increase the efficiency of contact with the gas component.

充填層を用いる場合と比較すると概して除去効率は劣る
傾向にある。
Generally speaking, the removal efficiency tends to be lower than when using a packed bed.

本発明において、除去の対象となる気相中の主な砒素成
分としては砒素単体や砒化水素等の被酸化性の物質をあ
けることができるが、これらの物質以外に酸化砒素等が
共存している系にも適用することが可能である。
In the present invention, the main arsenic component in the gas phase to be removed can be simple arsenic or oxidizable substances such as hydrogen arsenide, but in addition to these substances, arsenic oxide etc. may coexist. It can also be applied to systems with

本発明において砒素除去に用いられた充填層は、水又は
アルカリ溶液等と接触させることによ:り再生すること
かでき、その際砒素成分は濃縮液として回収される。
The packed bed used for arsenic removal in the present invention can be regenerated by contacting it with water, an alkaline solution, etc., and in this case, the arsenic component is recovered as a concentrated liquid.

本発明iま半導体、感光剤や触媒等の製造工程をはじめ
とする種々の産業において発生する気相中の砒素成分の
除去又は回収に有効である。
The present invention is effective for removing or recovering arsenic components in the gas phase generated in various industries including manufacturing processes of semiconductors, photosensitive agents, catalysts, etc.

以下実施例により説明する。This will be explained below using examples.

実施例1−4 第1表に示した種々の粒状の組成−62,OJ’。Example 1-4 Various granular compositions shown in Table 1-62, OJ'.

を(過マンガン酸カリウム5.0/十濃硝酸3.0ゴ+
水100mJ)からなる酸化剤溶液中に24時間浸漬し
たのち取り出し、JIS−KOIOI−1979に示さ
れた砒素分析法に準じた装置(第1図)にgFfる導管
内に充填し9両端をグラスウールで抑えた。
(Potassium permanganate 5.0/10 concentrated nitric acid 3.0+
After soaking in an oxidizing agent solution consisting of 100 mJ of water for 24 hours, it was taken out and filled into a gFf conduit into an apparatus (Fig. 1) according to the arsenic analysis method shown in JIS-KOIOI-1979. I suppressed it.

ガス導入側のグラスウールには予じめ酢酸鉛を含浸させ
たものを用いた。三角フラスコ(100−用)中には、
砒酸溶液40m1.塩酸、よう化カリウム、塩化錫(I
I)及び亜鉛を入れ砒化水素(AsHl ) を発生さ
せた。発生した砒化水素を含trガスは充填層を通過し
た後、ジエチルジチオカルバミン酸銀の吸収液中に導か
れた。
The glass wool on the gas introduction side was previously impregnated with lead acetate. In the Erlenmeyer flask (for 100-),
Arsenic acid solution 40ml 1. Hydrochloric acid, potassium iodide, tin chloride (I
I) and zinc were added to generate hydrogen arsenide (AsHl). The generated tr gas containing hydrogen arsenide passed through the packed bed and was then introduced into the absorption liquid of silver diethyldithiocarbamate.

充填層で除去されなかった砒化水素は該吸収液に吸収さ
れるので、該吸収液の吸光度を測定することにより砒素
吸収量をめ、これから砒素の除去量を算出した。砒化水
素の発生量は砒素として0.19を1バツチとし、これ
を繰り返した。各組成物に対し℃吸収液がわずかに色づ
(までの砒素除去量をめたところ、第1表右欄の値が得
られた。この表より砒素成分が効率良(除去されている
ことがわかる。
Since hydrogen arsenide that was not removed in the packed bed was absorbed by the absorption liquid, the amount of arsenic absorbed was determined by measuring the absorbance of the absorption liquid, and the amount of arsenic removed was calculated from this. The amount of hydrogen arsenide generated was set at 0.19 arsenic per batch, and this process was repeated. For each composition, we calculated the amount of arsenic removed until the temperature-absorbing liquid slightly changed color, and the values shown in the right column of Table 1 were obtained. I understand.

比較例1〜4 実施例1〜4で用いた組成物を酸化剤溶液を保持させな
い状態で、実施例1と同様にして導管内に充填し、砒化
水素除去量をめたところ第2表に示す様に砒素成分が殆
んど除去されない結果が得られた。
Comparative Examples 1 to 4 The compositions used in Examples 1 to 4 were filled into a conduit in the same manner as in Example 1 without retaining the oxidizing agent solution, and the amount of hydrogen arsenide removed was calculated, and the results are shown in Table 2. As shown, results were obtained in which almost no arsenic component was removed.

第 1 表 第 2 表 実施例5 第2□図に示した様に(過マンガン酸カリウム2.51
斗濃硝酸1.5ゴ+水50d)からなる酸化剤溶液を入
れた試験管(100m用)中にガラス管の先端が多孔性
のガス噴射管を設置し。
Table 1 Table 2 Example 5 As shown in Figure 2 (potassium permanganate 2.51
A gas injection tube with a porous glass tube tip was placed in a test tube (for 100 m) containing an oxidizing agent solution consisting of 1.5 g of Tono nitric acid + 50 g of water.

実施例1と同一条件で発生させた砒化水素含有ガスを該
酸化剤溶液中を通過させ、ついでジエチルジチオカルバ
ミン酸銀の吸収液中に導いた。
A hydrogen arsenide-containing gas generated under the same conditions as in Example 1 was passed through the oxidant solution and then introduced into the silver diethyldithiocarbamate absorption solution.

砒化水素の発生量は砒素として0.1■を1バツチとし
てこれを5回繰り返したところ、各バッチ毎の砒素除去
量は第3表の値を示した。実施例1〜4と比較すると各
バッチ毎の除去率は劣るが、除去率は約90%であり、
砒素の除去に有効であることがわかる。
As for the amount of hydrogen arsenide generated, each batch was made to contain 0.1 square meters of arsenic, and when this process was repeated five times, the amount of arsenic removed for each batch showed the values shown in Table 3. Although the removal rate for each batch is inferior compared to Examples 1 to 4, the removal rate is about 90%,
It can be seen that it is effective in removing arsenic.

比較例5 試験管中に酸化剤溶液の代わりに水50ゴを入れ、そ□
の他の条件は実施例5と同一にして1バツチ分を実験し
たところ、砒素成分は全く除去されなかった。
Comparative Example 5 Put 50 g of water in place of the oxidizing agent solution in a test tube, and
When one batch was tested under the same conditions as in Example 5, the arsenic component was not removed at all.

第 3 表Table 3

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本発明の方法を実施するため圧用い
る気相中砒素成分除去法の一例を示したものである。 l 砒化水素発生液 2 グラスクール 3 酸化剤溶液含浸粒状物 4 ガラス導管 5 砒化水素吸収液 7 ガス噴射管 8 酸化剤溶液
FIGS. 1 and 2 show an example of a method for removing arsenic components in a gas phase using pressure to carry out the method of the present invention. l Hydrogen arsenide generating liquid 2 Glass school 3 Oxidizing agent solution impregnated granules 4 Glass conduit 5 Hydrogen arsenide absorbing liquid 7 Gas injection pipe 8 Oxidizing agent solution

Claims (1)

【特許請求の範囲】 1、砒素又は砒素化合物を含有する気体を酸化剤溶液層
に導き、接触せしめることを特徴とする気相中の砒素成
分除去法 2、酸化剤溶液層が酸化剤溶液な担体に保持せしめてな
る層であることを特徴とする特許請求の範囲第1項記載
の気相中の砒素成分、除去法
[Claims] 1. A method for removing arsenic components in a gas phase, which is characterized by introducing a gas containing arsenic or an arsenic compound into an oxidizing agent solution layer and bringing the gas into contact with the oxidizing agent solution layer. The method for removing arsenic components in a gas phase according to claim 1, characterized in that the layer is held on a carrier.
JP58121192A 1983-07-04 1983-07-04 Removal of arsenic component in gaseous phase Granted JPS6012121A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58121192A JPS6012121A (en) 1983-07-04 1983-07-04 Removal of arsenic component in gaseous phase

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58121192A JPS6012121A (en) 1983-07-04 1983-07-04 Removal of arsenic component in gaseous phase

Publications (2)

Publication Number Publication Date
JPS6012121A true JPS6012121A (en) 1985-01-22
JPH0432690B2 JPH0432690B2 (en) 1992-06-01

Family

ID=14805135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58121192A Granted JPS6012121A (en) 1983-07-04 1983-07-04 Removal of arsenic component in gaseous phase

Country Status (1)

Country Link
JP (1) JPS6012121A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008093489A (en) * 2006-06-28 2008-04-24 National Institute For Minamata Disease Ministry Of The Environment Mercury adsorbing method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59154126A (en) * 1983-02-22 1984-09-03 Mitsubishi Rayon Co Ltd Removing method of arsenic in gas
JPS6447217A (en) * 1987-08-11 1989-02-21 Toshiba Corp Uninterruptible power source equipment

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59154126A (en) * 1983-02-22 1984-09-03 Mitsubishi Rayon Co Ltd Removing method of arsenic in gas
JPS6447217A (en) * 1987-08-11 1989-02-21 Toshiba Corp Uninterruptible power source equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008093489A (en) * 2006-06-28 2008-04-24 National Institute For Minamata Disease Ministry Of The Environment Mercury adsorbing method

Also Published As

Publication number Publication date
JPH0432690B2 (en) 1992-06-01

Similar Documents

Publication Publication Date Title
JPH0454917B2 (en)
JPS63158497A (en) Decomposing processing method of radioactive ion exchange resin
JPH01111701A (en) Separation of oxygen from oxygen-containing gas
JPS6012121A (en) Removal of arsenic component in gaseous phase
US11232878B2 (en) Chemical decontamination method
JP4125953B2 (en) Surface treatment agent and method for metal waste generated in a nuclear power plant and chemical grinding apparatus
KR100764904B1 (en) METHOD FOR RECOVERING OF THE SPENT ION EXCHANGE MATERIALS SELECTIVE FOR THE Cs AND Sr ION SORPTION
JP2001140026A (en) Method for recovering mercury from mercury-containing waste
JPS61157539A (en) Decomposition treatment of ion exchange resin
JP2000271575A (en) Method for treating water containing nitrate nitrogen
JPS6380831A (en) Removal of iodine in gas
GB2056420A (en) Removal of nitrogen oxides
JP2005169370A (en) Dehydrosulfurization treatment agent of gas containing hydrogen sulfide, treatment method and treatment apparatus
JPH05254828A (en) Recovery of cesium from aqueous solution
JP2728335B2 (en) Decomposition method of organic matter in radioactive liquid waste
Karhu Gas phase chemistry and removal of CH 3 I during a severe accident
US3383164A (en) Removal of carbon monoxide
JPS5834196B2 (en) Hiendatsuriyuuhaisuinoshiyorihouhou
JP2002267798A (en) Dissolving and decomtamination method
JP2001162277A (en) Method for removing ammoniacal nitrogen
JPS583639A (en) Fluorine disposing agent
JPH062213B2 (en) Halogen-based waste gas dry treatment agent
JPH03118898A (en) Treatment of ammonia-containing water
JP3269176B2 (en) Method of treating ammonium fluoride-containing water
JPH0147217B2 (en)