JPS60120403A - Detection for origin - Google Patents

Detection for origin

Info

Publication number
JPS60120403A
JPS60120403A JP22737983A JP22737983A JPS60120403A JP S60120403 A JPS60120403 A JP S60120403A JP 22737983 A JP22737983 A JP 22737983A JP 22737983 A JP22737983 A JP 22737983A JP S60120403 A JPS60120403 A JP S60120403A
Authority
JP
Japan
Prior art keywords
origin
motion system
output
low
speed motion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22737983A
Other languages
Japanese (ja)
Other versions
JPH0570163B2 (en
Inventor
Tadashi Akita
正 秋田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP22737983A priority Critical patent/JPS60120403A/en
Publication of JPS60120403A publication Critical patent/JPS60120403A/en
Publication of JPH0570163B2 publication Critical patent/JPH0570163B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/401Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control arrangements for measuring, e.g. calibration and initialisation, measuring workpiece for machining purposes
    • G05B19/4015Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control arrangements for measuring, e.g. calibration and initialisation, measuring workpiece for machining purposes going to a reference at the beginning of machine cycle, e.g. for calibration
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/50Machine tool, machine tool null till machine tool work handling
    • G05B2219/50025Go to reference, switches and dog detect origin, combine with pulse from encoder

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Position Or Direction (AREA)

Abstract

PURPOSE:To detect an origin position in a high speed with a high precision inexpensively by performing the adjustment for origin positioning electrically with software. CONSTITUTION:A length L between a changeover point between the high level and the low level of an edge signal P4 and an encoder origin pulse P2 is measured. For the purpose of measuring this length L, a table 16 is driven in the direction determined by the high level or the low level of said signal P4, and counting of encoder output pulses P5 is started by a counter when an edge 30 is detected. This table 16 is driven by a motor 10 through a ball screw 12, and said counting is continued until the encoder origin pulse P2 is generated. This counted value of the counter indicates the length L and is stored in a non- volatile memory. When the origin is positioned after power is supplied, an edge signal is searched by said method, and a window is set with software on a basis of the value of the stored length L.

Description

【発明の詳細な説明】 発明の技術分野 本発明は、ロボットや数値制御装置などにおいて必要な
原点位置の検知法に関する。
DETAILED DESCRIPTION OF THE INVENTION Technical Field of the Invention The present invention relates to a method for detecting the origin position required in robots, numerical control devices, and the like.

従来技術と問題点 数値制御(NC)装置などでは第1図に示すようにモー
タ10の回転運動をボールネジ12とナツト14で直線
運動に変換し、テーブル16を左右に駆動する装置がよ
く使用される。そしてこの種の装置ではテーブル16の
位置制御をするため該テーブルの原点位置を定めておく
が、この原点位置の検出に最も簡単かつ直接的な方法は
テーブル16に位置検出装置を取付けることである。位
置検出装置には機械的なリミットスイッチがあるが、非
接触検出手段としては図示のようなスリット18と投受
光器20.22が広く用いられている。
Prior Art and Problems In numerical control (NC) devices, as shown in FIG. 1, a device that converts the rotational motion of a motor 10 into linear motion using a ball screw 12 and a nut 14 to drive a table 16 left and right is often used. Ru. In this type of device, the origin position of the table 16 is determined in order to control its position, but the simplest and most direct method for detecting this origin position is to attach a position detection device to the table 16. . The position detection device includes a mechanical limit switch, but as a non-contact detection means, a slit 18 and a light emitter/receiver 20, 22 as shown are widely used.

即ちテーブルの一端にスリット板を取付け、投光器20
及び受光器22をこのスリット板の上方及び下方にかつ
テーブル16の横行方向所望位置に取付け、テーブル1
6が横行してきて投光器20からの光がスリット板のス
リット18を通って受光器22に入射することでテーブ
ル位置を検出する。投受光器を、テーブル16が原点に
あるとき投光器からの光がスリットを通って受光器に入
射するように位置決めすれば、該受光器の出力でテーブ
ル原点位置を検出することができる。
That is, a slit plate is attached to one end of the table, and a floodlight 20 is installed.
The light receivers 22 are mounted above and below this slit plate and at desired positions in the transverse direction of the table 16.
The table position is detected by the light from the light emitter 20 passing through the slit 18 of the slit plate and entering the light receiver 22. If the light emitter and receiver are positioned so that the light from the light emitter passes through the slit and enters the light receiver when the table 16 is at the origin, the table origin position can be detected from the output of the light receiver.

しかしスリット18はある幅を持っており、このため受
光器出力パルスは第2図+C)に示すように幅Wを持つ
。これでは精度が不足するというシステムではボールネ
ジ12にロークリエンコーダ24を取付け、その原点パ
ルスを利用することが行なわれている。周知のようにロ
ータリエンコーダは360”をn等分したスリットを有
して1回転当りn箇のパルスを発生するものであるが、
回転方向も検出可能とするためA、B2相パルス列とし
、また1回転に1個の原点パルスも発生する。
However, the slit 18 has a certain width, so that the receiver output pulse has a width W as shown in FIG. 2+C). In systems where this is insufficient in accuracy, a low-return encoder 24 is attached to the ball screw 12 and its origin pulse is utilized. As is well known, a rotary encoder has slits that divide 360" into n equal parts and generates n pulses per rotation.
In order to be able to detect the direction of rotation, a two-phase A and B pulse train is used, and one origin pulse is also generated per rotation.

第2図(alは該A、B2相パルスのうちの1相を、f
b)は原点パルスを示す。そこで受光器22の出力パル
スP1とエンコータ原点パルスP 2 (!: (’)
 論理積をとると第2図1dlの出力パルスP3が得ら
れ、これにより原点位置合せを高精度に行なうことがで
きる。即ち第2図(0)の出力パルスP3がテーブル1
6の原点で得られるように初期設定すれば、以後、極め
て高精度なテーブル原点位置検出が可能になる。
Figure 2 (al is one phase of the A and B two-phase pulses, f
b) shows the origin pulse. Therefore, the output pulse P1 of the optical receiver 22 and the encoder origin pulse P2 (!: (')
By calculating the logical product, the output pulse P3 shown in FIG. 2 1dl is obtained, which allows the origin position to be aligned with high precision. That is, the output pulse P3 in FIG. 2 (0) is
If the initial setting is made so as to obtain the origin at No. 6, it becomes possible to detect the table origin position with extremely high accuracy from then on.

しかしこの方式は調整が厄介である。即ちテーブル16
の原点位置が精密に指定される場合は、該原点位置で第
2図1dlの出力パルスP3が得られるようにスリット
18の位置およびエンコーダ原点パルス出力位置を設定
しなければならない。これに対し、テーブル16の原点
位置はスリット18で設定するが、その再現性をよくす
るという方式では、受光器22の出力パルス幅内でエン
コーダ原点パルスが発生するようにすればよい。しかし
、この場合の調整も容易ではない。即ち受光器22の出
力パルスPIには第3図(b)に示すようにジッターが
ある(斜線で示す)のでエンコーダ原点パルスP2はジ
ッターを除いた部分の中央にくるように調整するのがよ
く、第3図(alのように原点パルスP2が該中央より
δだけずれていると、δの大きさによっては受光器出力
パルス外となり第2図(dlの高精度原点パルスP3は
得られない(発生しない)事態が生じる。
However, this method is difficult to adjust. That is, table 16
If the origin position is precisely specified, the position of the slit 18 and the encoder origin pulse output position must be set so that the output pulse P3 of FIG. 2 1dl is obtained at the origin position. On the other hand, in a method in which the origin position of the table 16 is set by the slit 18 and its reproducibility is improved, the encoder origin pulse may be generated within the output pulse width of the light receiver 22. However, adjustment in this case is also not easy. That is, since the output pulse PI of the photoreceiver 22 has jitter (indicated by diagonal lines) as shown in FIG. , If the origin pulse P2 is shifted by δ from the center as shown in Figure 3 (al), depending on the size of δ, it will be outside the receiver output pulse, and the high precision origin pulse P3 in Figure 2 (dl) cannot be obtained. A situation (that does not occur) occurs.

なお受光器22の出力に含まれるジッターは次の如き理
由で生じる。即ち受光器22の出力は、スリン)18に
は幅があり、投光器20からの光線にも幅があることか
ら、光線がスリットを通り始めると立上り、やがて飽和
し、以後立下るという経過を辿る。これを増幅し、閾値
で矩形化したものが第2図(C1であるが、この矩形化
処理(整形)を行なう回路の利得変動、閾値変動、ノイ
ズ混入などにより矩形パルスの立上り立下りタイミング
に若干の変動、つまりジッターが生じる。第3図(b)
のjはジッターの振幅を示す。
Note that jitter included in the output of the light receiver 22 occurs for the following reasons. That is, since the output of the light receiver 22 has a width in the slit 18 and the light beam from the emitter 20 also has a width, the output rises when the light beam begins to pass through the slit, saturates eventually, and then falls. . This is amplified and rectangularized using a threshold value, as shown in Figure 2 (C1), but the rise and fall timings of the rectangular pulse may vary due to gain fluctuations, threshold fluctuations, noise contamination, etc. of the circuit that performs this rectangularization processing (shaping). Some fluctuations, or jitters, occur.Figure 3(b)
j indicates the amplitude of jitter.

受光器出力パルスP1の幅Wを拡げるとエンコーダ原点
パルスP2が線幅Wから外れにく−なり、正確に前記中
央に位置合せする必要はなくなるが、勿論線幅Wは原点
パルスP2の周期より大であってはならない(大なら次
の原点パルスP2が原点パルスP3を生じてしまう)。
If the width W of the receiver output pulse P1 is increased, the encoder origin pulse P2 will be less likely to deviate from the line width W, and there will be no need to accurately align it to the center, but of course the line width W will be larger than the period of the origin pulse P2. It must not be large (if it is large, the next origin pulse P2 will generate the origin pulse P3).

従って従来方法ではテーブル原点を示すスリットの位置
調整をエンコーダ原点パルスを見ながら行なわねばなら
ず、厄介であり、経年変化や部品の交換時、または何ら
かのトラブルでスリット位置及び又はエンコーダの原点
位置がずれたときは同様な調整をしなければならないと
いう問題がある。
Therefore, in the conventional method, the position of the slit indicating the table origin must be adjusted while watching the encoder origin pulse, which is troublesome, and the slit position and/or the encoder origin position may shift due to aging, parts replacement, or some other trouble. The problem is that similar adjustments must be made when

発明の目的 本発明は、従来法のようにテーブルのスリット位置とエ
ンコーダ原点パルス発生位置を機能的に調整するのでは
大変な工数を要し、しかも最善には調整し切れないとい
う点に鑑み、機械的な方法での調整は行なわず、調整を
電気的、ソフトウェア的に行なうことにより最良に、高
速に、従って安価に原点検出できる方法を提供しようと
するものである。
Purpose of the Invention The present invention has been developed in view of the fact that functionally adjusting the table slit position and the encoder origin pulse generation position as in the conventional method requires a large amount of man-hours and cannot be adjusted to the best of its ability. The purpose of this invention is to provide a method that can optimally detect the origin at high speed and at low cost by performing adjustment electrically and by software without using mechanical methods.

発明の構成 本発明は高速回転運動系により減速機構を介して低速の
回転又は直進運動系を駆動する装置の該低速運動系にそ
の原点位置を検出する装置を設け、また高速運動系にも
周期的に原点位置信号を出力する検出装置を設け、これ
らの検出装置の出力により低速運動系の正確な原点位置
を検出する方法において、初期設定の段階で、低速運動
系の前記検出装置に原点位置を出力させ、これより一定
方向に運動させて高速運動系の前記検出装置が出力を生
じる迄の距離をめ、これをメモリに記憶させ、運用段階
では、この記憶した距離と、高、低速運動系の出力を用
いて、低速運動系の正確な原点位置を検出することを特
徴とするが、次に実施例を参照しながらこれを説明する
Structure of the Invention The present invention provides a device for driving a low-speed rotational or linear motion system by a high-speed rotational motion system via a deceleration mechanism. In a method for detecting an accurate origin position of a low-speed motion system by providing a detection device that outputs an origin position signal automatically, and using the output of these detection devices, the origin position is determined by the detection device of the low-speed motion system at an initial setting stage. output, move in a certain direction from this, calculate the distance until the detection device of the high-speed motion system generates an output, store this in memory, and in the operation stage, combine this memorized distance with the high-speed and low-speed motion The present invention is characterized in that the accurate origin position of the low-speed motion system is detected using the output of the system, and this will be explained next with reference to examples.

発明の実施例 第4図は本発明の実施例を示す。第1図とは一同様であ
り、全図を通してそうであるが同じ部分には同じ符号が
付しである。26.28はポールネジ12を支える軸受
である。30は第1図のスリット18に対応するもので
あるが、本実施例では単なるエツジ(エツジとして作用
する舌片)である。投光器20からの光線がエツジ30
により遮ぎられると受光器22の出力はL(ロー)また
はオフ、遮ぎられないとH(ハイ)またはオンとなり、
該出力P4は第5図telの如くなる。エツジでよいと
、スリットのようにその幅Wに注意する必要がなく、ス
リットにするより安価になる。また出力が図示の如<H
,Lであると、原点(H,L切換り点)に近ずくにはど
ちらの方向に動けばよいかが明らかである(Lなら左方
へ後退、Hなら右方へ前進)からこの出力は極性をも示
している。
Embodiment of the invention FIG. 4 shows an embodiment of the invention. It is identical to FIG. 1, and like parts are given the same reference numerals throughout the figures. 26 and 28 are bearings that support the pole screw 12. Reference numeral 30 corresponds to the slit 18 in FIG. 1, but in this embodiment it is simply an edge (a tongue piece that acts as an edge). The light beam from the projector 20 reaches the edge 30
When the light is blocked, the output of the light receiver 22 becomes L (low) or off, and when it is not blocked, the output becomes H (high) or on.
The output P4 is as shown in FIG. If an edge is used, there is no need to pay attention to the width W as with a slit, and it is cheaper than using a slit. Also, the output is as shown in the figure <H
, L, it is clear which direction to move in order to approach the origin (H, L switching point) (if L, move backward to the left; if H, move forward to the right), so this output is It also shows polarity.

第1図のスリットでは極性はなく、一致、不一致が分る
だけであるから、第1図では図示しなかっだがこの方式
では他に極性を示す第5図(C)の如き出力を生じるも
のが必要である。
The slit in Figure 1 has no polarity and only detects coincidence or mismatch, so although it is not shown in Figure 1, this method also produces an output that shows polarity as shown in Figure 5 (C). is necessary.

本発明では先ず第5図(C)に示すエツジ信号P4のH
,L転1点とエンコーダ原点パルスP2との距離りを計
測する。これにはカウンタでエンコーダの出力パルスP
5を計測するという方法を用いる。具体的にはエツジを
検出する即ち第5図tc+のH,L転換点までエツジ信
号P4のH,Lにより定めた方向でテーブル16を駆動
し、エツジが検出されたらカウンタによるエンコーダ出
力パルスP5の計数を開始し、右又は左に(この方向は
決めでおく)テーブル16を進めながら、従ってその向
きにモーター0を、ボールネジ12を回転させながら、
エンコーダ原点パルスP2が発生するまで上記計数を続
けさせる。このようにするとパルスP2が発生したとき
のカウンタ計数値は距離りを示している。この計数値は
不揮発性メモリ例えばバブルメモリ、フロッピーディス
クなどに記憶しておく。
In the present invention, first, the H level of the edge signal P4 shown in FIG. 5(C) is
, the distance between one point of L rotation and the encoder origin pulse P2 is measured. For this, a counter is used to generate the encoder output pulse P.
A method of measuring 5 is used. Specifically, to detect an edge, that is, to drive the table 16 in the direction determined by the H and L of the edge signal P4 until the H and L turning point of tc+ in FIG. Start counting, advance the table 16 to the right or left (this direction is fixed), and therefore rotate the motor 0 and the ball screw 12 in that direction.
The above counting is continued until the encoder origin pulse P2 is generated. In this way, the counter count value when the pulse P2 is generated indicates the distance. This count value is stored in a non-volatile memory such as a bubble memory or a floppy disk.

この操作は、NC装置、ロボット等の組立て後に一度行
なう必要があるが、従来の機械的な調整作業に比べると
殆んど自動的にかつ短時間で行なうことができ、しかも
精度よく距11tLを測定することができる。
This operation needs to be performed once after assembling the NC device, robot, etc., but compared to conventional mechanical adjustment work, it can be performed almost automatically and in a shorter time, and moreover, the distance of 11 tL can be adjusted with high precision. can be measured.

運用時には、電源投入後の原点位置合せの際、上記と同
様な方法でエツジ信号を捜す。エツジを検出したら、記
憶しておいた前記りの値を基にして第6図(diに示す
如きL±ΔLのウィンドうP6をソフトウェア的に設定
する。即ちこのウィンドウP6はその窓幅内で原点パル
スP2が発生すればそれを受付ける(取込む)というも
のであるが、これにエンコーダ出力パルスP5の計数を
エツジ検出で開始し、(L−ΔL)まで計数したとき上
記受付けを許可し、これを計数値が(L十ΔL)になる
退行なう。本例では計数値がLに近付いた0 時点で原点パルスP2が発生し、これが正確な原点パル
スP3となる。
During operation, when aligning the origin after power is turned on, edge signals are searched for using the same method as above. When an edge is detected, a window P6 of L±ΔL as shown in FIG. When the origin pulse P2 is generated, it is accepted (taken in), and the counting of the encoder output pulse P5 is started by edge detection, and when the count reaches (L-ΔL), the above acceptance is permitted, This is regressed until the count value becomes (L + ΔL). In this example, the origin pulse P2 is generated at time 0 when the count value approaches L, and this becomes the accurate origin pulse P3.

原点位置の再現精度だけが必要な場合又は装置ではパル
スP3発生点をテーブル原点としてよい。
If only the reproducibility accuracy of the origin position is required or in a device, the pulse P3 generation point may be used as the table origin.

またエツジ30で定めたテーブル原点が重要な意味を持
つ場合は、パルスP3の発生位置からパルスP5を計数
しながら距離りだけ戻し、その点Pをテーブル原点とす
ればよい。この点Pはエツジ検出点近傍にあるが、エツ
ジ信号でこの点Pをめるより、ジッターが含まれていな
くて高精度であるという特徴がある。
Further, if the table origin determined by the edge 30 has an important meaning, it is sufficient to move back by a distance from the generation position of the pulse P3 while counting the pulse P5, and set the point P as the table origin. Although this point P is near the edge detection point, it is characterized in that it contains no jitter and is more accurate than when determining this point P using an edge signal.

エツジ信号P4にもノイズなどによるジッターがあり、
また経年変化などで第5図(01つまり最初の位置から
多少ずれることが予想されるが、ウィンドウP6の幅2
ΔI、を適切にとってこのウィンドウで確実にエツジ検
出後の第1パルスが捕捉できるようにすればテーブル原
点はエンコーダ24により定まり極めて高精度になる。
Edge signal P4 also has jitter due to noise etc.
Also, due to changes over time, it is expected that the window P6 will be slightly shifted from the initial position (01),
If ΔI is set appropriately so that the first pulse after edge detection can be reliably captured within this window, the table origin will be determined by the encoder 24 and extremely high accuracy will be achieved.

ウィンドウ幅2ΔLは、エツジ信号P4の不確かさとエ
ンコーダ原点パルスP2の周期から定める。これは、従
量 来方法の機械的なスリット幅で固定されるより、柔軟に
対応できかつ正確である。またエツジにより、組立て時
に精度よく設定されたテーブル原点を、長年に亘って再
現できる。
The window width 2ΔL is determined from the uncertainty of the edge signal P4 and the period of the encoder origin pulse P2. This is more flexible and accurate than conventional methods of fixing the mechanical slit width. Additionally, the edge allows the table origin, which is precisely set during assembly, to be reproduced for many years.

発明の詳細 な説明したように本発明によれば、原点検知系の調整作
業工数を大幅に削減できる、モータ及び又はエンコーダ
等の故障による部品交換などのトラブルがあってもその
復旧作業が速やかにできる、ウィンドウセンター位置と
幅が従来のスリット幅および位置の機械的調整作業に比
べて正確に設定できテーブル原点信号P4の不確かさに
対してマージンを最大にとれる、絶対的な原点位置精度
を半永久的に保証できる、等の利点が得られる。
As described in detail, according to the present invention, the number of man-hours required for adjusting the origin detection system can be significantly reduced, and even if there is trouble such as parts replacement due to failure of the motor and/or encoder, the recovery work can be carried out quickly. The window center position and width can be set more accurately than the conventional mechanical adjustment of slit width and position, and the absolute origin position accuracy can be maintained semi-permanently, maximizing the margin against the uncertainty of the table origin signal P4. This provides advantages such as guaranteed performance.

なお実施例では回転運動を直線運動に変換して利用する
システムを挙げたが、本発明は減速機により高速回転を
低速回転にして利用する等のシステムにも利用できる。
In the embodiment, a system that converts rotational motion into linear motion is used, but the present invention can also be used in a system that converts high-speed rotation into low-speed rotation using a speed reducer.

即ち実施例のモータ10、ポールネジ12を高速回転系
、ナツト14、テーブル16を低速直進又は回転系、そ
してボールネ2 ジ12及びナツト14はこれらの間を結合する減速機構
として、本発明はか−るシステム又は機構に適用できる
That is, the motor 10 and pole screw 12 of the embodiment are used as a high-speed rotation system, the nut 14 and the table 16 are used as a low-speed linear or rotation system, and the ball screw 12 and nut 14 are used as a deceleration mechanism that connects these. Applicable to systems or mechanisms that

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第3図は従来の原点位置検知法の説明図、第4
図〜第6図は本発明の原点検知法の説明図である。 図面で、10.12は高速回転運動系、24その原点位
置信号を出力する検出装置、12.14は減速機構、1
4.16は低速の直進運動系、18.20,22.30
はその原点位置検出装置、Lはメモリに記憶させる距離
である。 出願人 富士通株式会社 代理人弁理士 青 柳 稔 3 8−
Figures 1 to 3 are explanatory diagrams of the conventional origin position detection method;
6 to 6 are explanatory diagrams of the origin detection method of the present invention. In the drawing, 10.12 is a high-speed rotational motion system, 24 is a detection device that outputs its origin position signal, 12.14 is a deceleration mechanism, 1
4.16 is a low-speed linear motion system, 18.20, 22.30
is the origin position detection device, and L is the distance to be stored in the memory. Applicant Fujitsu Ltd. Representative Patent Attorney Minoru Aoyagi 3 8-

Claims (3)

【特許請求の範囲】[Claims] (1)高速回転運動系により減速機構を介して低速の回
転又は直進運動系を駆動する装置の該低速運動系にその
原点位置を検出する装置を設け、また高速運動系にも周
期的に原点位置信号を出力する検出装置を設け、これら
の検出装置の出力により低速運動系の正確な原点位置を
検出する方法において、 初期設定の段階で、低速運動系の前記検出装置に原点位
置を出力させ、これより一定方向に運動させて高速運動
系の前記検出装置が出力を生じる迄の距離をめ、これを
メモリに記す、aさせ、運用段階では、この記憶した距
離と、高、低速運動系の検出装置の出力を用いて、低速
運動系の正確な原点位置を検出することを特徴とする原
点検知方法。
(1) In a device that drives a low-speed rotational or linear motion system by a high-speed rotational motion system via a deceleration mechanism, the low-speed motion system is provided with a device that detects its origin position, and the high-speed motion system also periodically points to the origin. In a method of providing a detection device that outputs a position signal and detecting an accurate origin position of a low-speed motion system using the outputs of these detection devices, the detection device of the low-speed motion system is made to output the origin position at an initial setting stage. , calculate the distance until the detection device of the high-speed motion system generates an output by moving in a certain direction from this, and record this in the memory. 1. An origin detection method comprising detecting an accurate origin position of a low-speed motion system using the output of a detection device.
(2)運用段階では、低速運動系をその検出装置が原点
検出出力を生じた位置から初期設定の時と同し一定方向
に、メモリが記憶している距離に所定値を加算及び減算
してめた範囲に亘って運動させ、この範囲内で高速運動
系の検出装置の出力をめ、その出力位置を低速運動系の
正確な原点位置とすることを特徴とする特許請求の範囲
第1項記載の原点検知法。
(2) At the operation stage, the low-speed motion system is moved in the same direction as the initial setting from the position where the detection device generated the origin detection output, and a predetermined value is added to and subtracted from the distance stored in the memory. Claim 1, characterized in that the output position of the detection device of the high-speed motion system is determined within this range, and the output position is set as the accurate origin position of the low-speed motion system. Origin detection method described.
(3)運用段階では、低速運動系をその検出装置が原点
検出装置を生じた位置から初期設定の時と同じ一定方向
に、メモリが記憶している距離に所定値を加算及び減算
してめた範囲に亘って運動させ、この範囲内で高速運動
系の検出装置の出力をめ、その出力位置から前記距離だ
け戻してその位置を低速運動系の正確な原点位置とする
ことを特徴とする特許請求の範囲第1項記載の原点検知
法゛。
(3) At the operation stage, move the low-speed motion system from the position where the detection device generated the origin detection device in the same direction as the initial setting by adding and subtracting a predetermined value to the distance stored in the memory. The apparatus is characterized in that the output of the detection device of the high-speed motion system is measured within this range, and the output position is returned by the distance described above to make that position the accurate origin position of the low-speed motion system. An origin detection method according to claim 1.
JP22737983A 1983-12-01 1983-12-01 Detection for origin Granted JPS60120403A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22737983A JPS60120403A (en) 1983-12-01 1983-12-01 Detection for origin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22737983A JPS60120403A (en) 1983-12-01 1983-12-01 Detection for origin

Publications (2)

Publication Number Publication Date
JPS60120403A true JPS60120403A (en) 1985-06-27
JPH0570163B2 JPH0570163B2 (en) 1993-10-04

Family

ID=16859882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22737983A Granted JPS60120403A (en) 1983-12-01 1983-12-01 Detection for origin

Country Status (1)

Country Link
JP (1) JPS60120403A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6349906A (en) * 1986-08-20 1988-03-02 Sumitomo Heavy Ind Ltd Position detecting circuit for injection molding machine
JPH0276011A (en) * 1988-09-13 1990-03-15 Fanuc Ltd Spindle controller

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57187708A (en) * 1981-05-14 1982-11-18 Fanuc Ltd Numeric control system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57187708A (en) * 1981-05-14 1982-11-18 Fanuc Ltd Numeric control system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6349906A (en) * 1986-08-20 1988-03-02 Sumitomo Heavy Ind Ltd Position detecting circuit for injection molding machine
JPH0276011A (en) * 1988-09-13 1990-03-15 Fanuc Ltd Spindle controller

Also Published As

Publication number Publication date
JPH0570163B2 (en) 1993-10-04

Similar Documents

Publication Publication Date Title
US4412737A (en) Position detecting device for a zoom lens of a copying machine
JPS5596406A (en) Device for determining roughness of surface
US4595294A (en) Position detecting device
US4751383A (en) Method and apparatus for detection of position with correction of errors caused by errors in scale pitch
JPS60120403A (en) Detection for origin
US5982492A (en) Method of and apparatus for determining the center of a generally circular workpiece relative to a rotation axis of the workpiece
US5164896A (en) Positioning system
US6381205B1 (en) Method and device for adjusting an optical axis angle in an optical disk device
JPH0637180A (en) Method for measuring backlash of narrow groove making machine and narrow groove making machine having backlash correcting function
JPH04507473A (en) How to adjust the positioning device
JPH0778411B2 (en) Plate dimension measuring device
US4367952A (en) Centering device for the manufacture of a center hole in disks
JPS6262363B2 (en)
KR940003552B1 (en) Processor for rotating body
JPH0740209B2 (en) Robot arm origin search method
JPS598865B2 (en) Reading head control device in coordinate reader
JP2653560B2 (en) Hole position detector
JPH0679659A (en) Position adjusting method for origin and moving end in straight motion locating device and motor therefor with ball screw
JP2829141B2 (en) Variable element adjustment device
KR930001361B1 (en) Optical express search method and apparatus of laser disc
JPS5946004B2 (en) Positioning control method
JPS62104135A (en) Positioning apparatus of semiconductor wafer carrier
JPH0235612B2 (en)
JPH03168813A (en) Positioning device
JPH03281151A (en) Method and device for detecting table moving straightness error