JPS60120192A - Heat pipe device - Google Patents

Heat pipe device

Info

Publication number
JPS60120192A
JPS60120192A JP22535383A JP22535383A JPS60120192A JP S60120192 A JPS60120192 A JP S60120192A JP 22535383 A JP22535383 A JP 22535383A JP 22535383 A JP22535383 A JP 22535383A JP S60120192 A JPS60120192 A JP S60120192A
Authority
JP
Japan
Prior art keywords
heat
pipe
heating
fluid
working fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22535383A
Other languages
Japanese (ja)
Inventor
Mutsumi Suzuki
鈴木 睦
Ikuo Shishido
宍戸 郁郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP22535383A priority Critical patent/JPS60120192A/en
Publication of JPS60120192A publication Critical patent/JPS60120192A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0275Arrangements for coupling heat-pipes together or with other structures, e.g. with base blocks; Heat pipe cores

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Central Heating Systems (AREA)

Abstract

PURPOSE:To switch heating and heat retrieving automatically without operating a valve or the like and accompanying heat loss accompanied by the switching when a temperature turns into preset range by a method wherein two pieces of thermo-siphon type heat pipes are connected through a double tube to make heat exchange surfaces for heat retrieving and heating. CONSTITUTION:Two pieces of thermo-siphon type heat pipes 1, 2 are connected through a double tube structure 3A to utilize the lower part thereof for heating and the upper part thereof for heat retrieving while the inside thereof are evacuated and operating liquid is sealed therein. Absorbing agent 3, necessary for heating and heat retrieving, is loaded around the double tube structure 3A. The lower part of the heat pipe 1 is provided with a heat exchanging vessel 6 capable of effecting heat exchange between fluid 4 for heating while the upper part of the same is provided with the heat exchanging vessel 7 capable of effecting heat exchange between the fluid 5 for heat retrieving. Respective heat pipes have structures well known as thermo-siphon type.

Description

【発明の詳細な説明】 本発明は、ヒートパイプ装置に関し、さらに詳しくはザ
ーモサイフォン型ヒートバ・イブおよび該ヒートパイプ
と吸着剤を利用して昇611.用ヒートポンプを構成し
またヒートパイプ装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a heat pipe device, and more particularly, to a heat pipe device, and more particularly to a thermosiphon type heat valve and a heat pipe using the heat pipe and an adsorbent. The present invention relates to a heat pipe device that constitutes a heat pump for use.

一般にヒートポンプの動作は2つのモートに分りられる
。ずなわら、吸着剤に作動流体の蒸気が吸着して発り;
ハし、吸着剤の温度が−上昇し、この温度のい6い状態
で熱を回収する昇温(または吸着)’F−−1・と、吸
着剤を加熱して再生ずる再生(または脱着)モー)゛で
ある。
Generally, the operation of a heat pump can be divided into two modes. Naturally, the vapor of the working fluid is adsorbed onto the adsorbent.
Then, the temperature of the adsorbent rises, and heat is recovered at this temperature (temperature raising (or adsorption)), and regeneration (or desorption) is performed in which the adsorbent is heated and regenerated. )Mo)゛.

一般に昇/11(、(吸着)モーl−では、太陽熱など
の比較的イ1(/11..11度の熱源で加!I外され
でいる蒸発器と吸着剤を用人U7だ吸着16が連結され
、蒸発器で蒸発し7た蒸気が吸着剤に吸着し、放出され
ろ吸着熱により吸着1ゼ、の?ll!L度が蒸発器の温
度よりもI口iくなることを利用して蒸発器から吸着塔
の除熱用流体へ熱を汲のにげる。一方、再生(脱着)モ
ードでは吸着塔と凝縮器を連結し、吸着1名を太陽熱な
どの比較的低温度の熱源で加熱するごとにより作動流体
を脱着させ、それよりも低い温度の凝縮器に凝縮させて
回収する。
In general, when the temperature rises to /11 (, (adsorption)), the evaporator and adsorbent that are heated with a relatively high heat source such as solar heat (/11.. The vapor evaporated in the evaporator is adsorbed by the adsorbent, and is released due to the heat of adsorption. In the regeneration (desorption) mode, the adsorption tower and condenser are connected, and one adsorbent is heated by a relatively low-temperature heat source such as solar heat. The working fluid is desorbed and recovered by condensation in a condenser at a lower temperature.

このように、ヒートポンプに用いる吸着剤は、吸着モー
ドでは高温度の熱回収用流体と熱交換を行い、脱着モー
ドではより低温度の再竹用熱源と熱交換を行う必要があ
る。
In this way, the adsorbent used in the heat pump needs to exchange heat with the high-temperature heat recovery fluid in the adsorption mode, and with the lower-temperature heat source for re-bamboo regeneration in the desorption mode.

上述のように、場合に応じて加熱および除外の2つの操
作を施す必要のある装置におい−(は、従来、2つの熱
交換器を設けて場合に応して使い分けたり、1つの熱交
換器を設けてその中を流れる流体を加熱用および除熱用
に切換えたりする方法がとられている。
As mentioned above, in equipment where it is necessary to perform two operations, heating and removing, depending on the case, conventionally, two heat exchangers are installed and used separately depending on the case, or one heat exchanger is used. A method has been adopted in which the fluid flowing therethrough is switched between heating and heat removal purposes.

しかし、この方法では、(1)切換えの時期をを決定す
るために常に装置の状態、例えば温度を監視する必要が
ある、(2)切換えに際して熱交換器を流れる流体の通
路に取り付りられた弁の開閉などの操作を行う必要があ
る、(3)特にヒートポンプのように熱の回収を目的と
する場合には、切換えに伴う熱交換器とその内部流体の
温度変化による顕りLl?の損失が装置全体の効率を低
下させる、(4)特に固体吸着剤の充填層の場合にはそ
の混合が不可能なので、加熱と除熱を伝だシ面を介して
行う必要があるが、この場合には加熱用流体と除熱川流
体の切換えに伴う混合が避けられず、ピー1−ポンプに
応用する場合には著しい効率の低下をもたらす、などの
問題がある。
However, with this method, (1) it is necessary to constantly monitor the condition of the equipment, such as temperature, in order to determine when to switch over, and (2) there is a need to constantly monitor the condition of the equipment, e.g. (3) In particular, when the purpose is to recover heat, such as in a heat pump, there is a risk of temperature change in the heat exchanger and its internal fluid caused by switching. (4) In particular, in the case of a packed bed of solid adsorbent, mixing is impossible, so heating and heat removal must be performed through a conductive surface. In this case, mixing of the heating fluid and the heat removal fluid due to switching is unavoidable, and when applied to a P1-pump, there are problems such as a significant drop in efficiency.

本発明の目的は、に記従来技術の欠点をなくし、?KA
度がある範1111に入ると弁などの操作を行うごとな
しに、しかも切換えに伴う熱損失を伴うことなく、自動
的に加熱と除熱が切換わる加熱と除熱両用の単一伝熱面
を有するヒートパイプを提供すること、およびこのヒー
トパイプを利用することにより、動力を使用せずに弁の
開閉だりで比較的低温度の熱源からJ、り高温度の流体
・\熱を汲み」二げることができるピー1−ポンプを提
供することにある。
The purpose of the present invention is to eliminate the drawbacks of the prior art as described in the following. K.A.
A single heat transfer surface for both heating and heat removal that automatically switches between heating and heat removal when the temperature reaches a certain range 1111 without operating a valve or the like and without any heat loss associated with switching. By providing a heat pipe having a heat pipe and using this heat pipe, high temperature fluid/heat can be pumped from a relatively low temperature heat source by opening and closing a valve without using power. The object of the present invention is to provide a P1-pump that can be pumped up and down.

本発明の第1は、ナーモサイフォン型ヒートパイプの上
部凝縮部を内管とし、その」−に設りられたもう一つの
サーモサイフオン型ヒートパイプの下部の蒸発部を外管
とするように二重管で連結し、前記外管の内面および前
記内管の外面にウィックを設りてそれぞれ熱回収用とお
よび加熱用の熱交換面とした1組のサーモサイフオン型
ヒートパイプを有することを特徴する。
The first aspect of the present invention is that the upper condensing part of a thermosiphon type heat pipe is an inner pipe, and the lower evaporating part of another thermosiphon type heat pipe installed in the inner pipe is an outer pipe. A set of thermosiphon heat pipes connected by a double pipe, with wicks provided on the inner surface of the outer tube and the outer surface of the inner tube to serve as heat exchange surfaces for heat recovery and heating, respectively. It is characterized by

本発明の第2は、上述のピー1−パ1′プを利用したヒ
ートポンプに関するもので、前述のし−トパイプと、該
ピー1−パイプの二l■管部が吸着剤の用人部分に挿入
された吸着塔と、作動流体の蒸発器および凝縮器と、該
蒸発器で蒸発された作動流体を前記吸着塔−\供給する
通路および開閉弁と、1):1記吸着塔で脱着された作
動流体を前記凝縮1名に供給する通路および開閉弁と、
前記蒸発器と凝t3’ri器を連結する作動流体の通路
および開閉弁とを自することを特徴とする。
The second aspect of the present invention relates to a heat pump using the above-mentioned P1-pipe, in which the above-mentioned top pipe and the two-liter pipe section of the P1-pipe are inserted into the user part of the adsorbent. an adsorption tower, an evaporator and a condenser for the working fluid, a passage and an on-off valve for supplying the working fluid evaporated in the evaporator to the adsorption tower; 1): the working fluid desorbed in the adsorption tower; a passageway and an on-off valve for supplying working fluid to the condenser;
It is characterized by comprising a working fluid passage and an on-off valve that connect the evaporator and the condenser.

以下、本発明を図面によって詳細に説明する。Hereinafter, the present invention will be explained in detail with reference to the drawings.

第1図は、本発明に係るし−1−パイプの説明図である
。図において、ヒートパイプ ーモザイフAン型ヒートパイプ1、2が二重管構造部3
Aを介して連結されたもので、下部のヒートパイプ1は
九蒔:ハ用、上部ののピー1−パイプ2は#.熱川用あ
る。該ヒーI・パイプ1、2の熱交換部分の外周にはフ
ィン11が取りトiげられ、またその内部は真空に脱気
されて作動液が1・1人されている。置市管構造部分3
Aの周囲には加熱または除熱を必要とする吸着剤3が充
填されている。ヒートパイプ1の下部は加熱用流体4と
熱交換できるように、加熱用流体4の入口および出[」
を有−4−る熱交換容器6が設L−1られている。同様
にヒートパイプ2の上部は除熱川流体5と熱交換できる
ように、除熱用流体5の入1−」および出に1を有する
熱交換容器7か設りられている。それぞ狛のヒートパ・
イブはザーモザイフオン型として公知の構造になってい
る。ずなわら、ヒートパイプ1については、−1: 7
71〜の蒸発部1Δの内面にのめウィック12が取す付
りられており、該ウィック12に作動流体がベニめ込め
、蒸発部をあまねく濡らすようになっているが、−に部
の凝縮部IBの内面にはウィックは取り付けられ−(い
ない。したがってこの形式のヒートポンプをほぼ垂直に
立てて使用する際には、ウィックのある下部の蒸発部I
Aから上部の凝縮部IAに向かう熱の流れは起こるが、
その逆の流れは起こらない、いわゆる熱の一方通行が実
現される。またヒートパイプ2についても、蒸発部2B
の内面にのみウィック12が取り(=Jりられており、
上部の凝縮部2Aの内面には取り(=Jりられていない
ので、同様に熱の一方通行が実現される。
FIG. 1 is an explanatory diagram of a pipe according to the present invention. In the figure, the heat pipe mosaic type A heat pipes 1 and 2 are connected to the double pipe structure part 3.
The heat pipe 1 at the bottom is for 9mm, and the heat pipe 2 at the top is for 9mm. For Atagawa. A fin 11 is provided on the outer periphery of the heat exchange portion of the heat I pipes 1 and 2, and the inside thereof is evacuated to a vacuum and a working fluid is poured into it. City pipe structure part 3
The area around A is filled with an adsorbent 3 that requires heating or heat removal. The lower part of the heat pipe 1 has an inlet and an outlet for the heating fluid 4 so that heat can be exchanged with the heating fluid 4.
A heat exchange vessel 6 having a heat exchanger L-1 is provided. Similarly, a heat exchange container 7 having an inlet 1 and an outlet 1 for the heat removal fluid 5 is provided at the upper part of the heat pipe 2 so that heat can be exchanged with the heat removal fluid 5. That's Koma's Heatpa.
Eve has a structure known as a thermozaiphon type. However, for heat pipe 1, -1: 7
A wick 12 is attached to the inner surface of the evaporator section 1Δ of 71~, and the working fluid is inserted into the wick 12 so as to wet the evaporator section all over, but there is no condensation on the part. A wick is not attached to the inner surface of section IB. Therefore, when using this type of heat pump in an almost vertical position, the lower evaporation section I with the wick
Heat flows from A to the upper condensing section IA, but
The opposite flow does not occur, so-called one-way flow of heat is realized. Also, regarding the heat pipe 2, the evaporation section 2B
The wick 12 is removed only on the inner surface of the
Since there is no groove on the inner surface of the upper condensing section 2A, one-way flow of heat is similarly achieved.

次に上記ヒートパイプの動作について説明する。Next, the operation of the heat pipe will be explained.

加熱用流体4の温度をTI、除熱用流体5の温度T2と
し、吸着剤の温度をT3とする。このヒートパイプはヒ
ートポンプのように高温度における熱の回収を目的とす
る場合に好適に用いられるので、一般にT1 < T 
2と考えて差支えなシへ〇今、吸着剤の温度が低く、T
3<TIの場合には下のヒートパイプ1のみが作動する
。すなわち下方の萩発部IAのウィック部12で作動流
体が蒸発し、上部彪縮部(二重管の内管部)IBで凝縮
、落下することにより、ヒートパイプ1の下部から二重
管内管部IBへ熱が伝えられる。また、この二重管の内
管部IBから外管部2Bへは公知のウイソクイ・Jヒー
トパイプのIM理、ずなわlシ内管外面のウィックから
作動流体が蒸発し、外管内部2B内面のウィックで凝縮
し、再び内管外面のウィックへ毛細管現象により還流す
ることが繰り返されることにより熱が伝えられるごとに
なる。結局、熱は加熱用流体4からヒートパイプlおよ
び二重管部3Aを経て吸着剤3・・、流れる。このとき
、上のし−トパイプ2はサーモサイフオンの原理により
作動しない。また、この熱の流れは、T 3 > T1
となると自動的に停止する。
Let the temperature of the heating fluid 4 be TI, the temperature of the heat removal fluid 5 be T2, and the temperature of the adsorbent be T3. This heat pipe is suitably used in cases where the purpose is to recover heat at high temperatures, such as in a heat pump, so generally T1 < T.
2. Now, the temperature of the adsorbent is low and T
If 3<TI, only the lower heat pipe 1 operates. In other words, the working fluid evaporates in the wick part 12 of the lower Hagi originating part IA, condenses in the upper condensation part (inner pipe part of the double pipe) IB, and falls, so that the working fluid flows from the lower part of the heat pipe 1 to the inner pipe of the double pipe. Heat is transferred to part IB. In addition, from the inner tube part IB of this double tube to the outer tube part 2B, the working fluid evaporates from the wick on the outer surface of the inner tube, and the working fluid evaporates from the wick on the outer surface of the inner tube. The heat is transferred each time the heat is condensed in the wick and then refluxed again to the wick on the outer surface of the inner tube due to capillary action. In the end, heat flows from the heating fluid 4 to the adsorbent 3 through the heat pipe 1 and the double pipe section 3A. At this time, the upper top pipe 2 does not operate due to the thermosiphon principle. Moreover, this heat flow is T 3 > T1
It will stop automatically.

吸着剤3の温度かT1とT2の中間、4−なわらT 1
 < T 3 < T2の間はサーモサイフオンの原理
により何も起こらないが、吸着剤の温度が」−昇してT
 2 < 1’ 3となると、今度は−1−のヒートパ
イプ2が作動して熱は吸着剤3から除熱用流体5へ回収
される。すZ(わち、ヒートパイプ2の下部蒸発部2 
H0)ウィック12で作動流体が蒸発し、−L郡代T縮
部2Δで凝縮、落下することにより、ヒートパイプ2の
下部3Aから−F部2Aへ熱が伝達され、熱交換容器の
内の除熱川流体5へ回収される。このとき、下のヒート
パイプ1はサーモサイフオンの原理により作動しないか
ら、熱は選択的に除熱用流体5へ回収されることになる
。吸着剤の温度が下降してT3<72となると、この熱
回収は自動的に停+hする。
Temperature of adsorbent 3 is between T1 and T2, 4- is T1
< T 3 < T2 Nothing happens due to the principle of thermosiphon, but the temperature of the adsorbent rises to T
When 2 <1' 3, the -1- heat pipe 2 is activated, and heat is recovered from the adsorbent 3 to the heat removal fluid 5. Z (i.e., the lower evaporation part 2 of the heat pipe 2
H0) The working fluid evaporates in the wick 12, condenses and falls in the -L group T condensation part 2Δ, and heat is transferred from the lower part 3A of the heat pipe 2 to the -F part 2A, and the inside of the heat exchange container is The heat is recovered to the heat removal river fluid 5. At this time, since the lower heat pipe 1 does not operate according to the thermosiphon principle, heat is selectively recovered to the heat removal fluid 5. When the temperature of the adsorbent falls such that T3<72, this heat recovery is automatically stopped +h.

上記のように本発明によるヒーI・パイプは、重力式に
よるヒートパイプ】および2を、ウィック式の二重管ヒ
ートパイプと組み合わせて用いたごとにより、加熱と除
熱が温度゛r1とT2の値に応じて自動的に行われ、加
熱は温度の低い熱源(例えば太陽熱)により、また熱回
収はより高温の流体により選択的に行うことができ、し
かも回収する熱が低温部に逆流しないため、ヒートポン
プ用熱交換器として好適に使用ずろことができる。
As mentioned above, the heat pipe according to the present invention uses gravity type heat pipes and 2 in combination with a wick type double pipe heat pipe, so that heating and heat removal can be achieved at temperatures r1 and T2. Heating can be carried out automatically depending on the value, heating can be carried out selectively by a low temperature heat source (e.g. solar heat), and heat recovery can be carried out selectively by a hotter fluid, since the recovered heat does not flow back into the cold part. , it can be suitably used as a heat exchanger for heat pumps.

第1図において、し−ドパイブ1.2の外周に設けられ
たフィン11は任意的なもので必要に応して設ければよ
い。またピーl−パイプ1.2を連結する二重管部3A
は、ヒートパイプ1の−L部が内管、ヒートパイプ2の
下部が外管を形成し、二重管部の下端は閉端された形状
となっているが、ライ、り12を介して内管図113か
ら外管部2Bまたはその外側の吸収剤3に熱を伝えるこ
とができれば、変形したものでもよい。さらに連結され
たヒートパイプの」1下の加熱および除熱用の熱交換手
段は、;%交換可能なものであれば図面の間接式のもの
に限定されない。
In FIG. 1, the fins 11 provided on the outer periphery of the shield pipe 1.2 are optional and may be provided as necessary. Also, the double pipe section 3A connecting the peel l-pipe 1.2
In this case, the -L section of the heat pipe 1 forms the inner pipe, the lower part of the heat pipe 2 forms the outer pipe, and the lower end of the double pipe part is closed. A modified version may be used as long as heat can be transferred from the inner tube part 113 to the outer tube part 2B or the absorbent 3 outside thereof. Furthermore, the heat exchange means for heating and heat removal below ``1'' of the connected heat pipes is not limited to the indirect type shown in the drawings as long as it can be exchanged.

本発明のヒーI・パイプは、後述する吸着剤利用のピー
1−ポンプへの適用のめに限定されるわりでεJなく、
広<−L+’iに低温時の力吋科と高温時の除熱を行う
必要のある装置に適用することができる。
Although the H-I pipe of the present invention is limited to application to the P-1 pump using an adsorbent, which will be described later, there is no εJ,
It can be applied to equipment that needs to perform power removal at low temperatures and heat removal at high temperatures in a range <-L+'i.

次に第2図は、本発明のヒートパイプを利用したヒート
ポンプの一実施例を示す説明図である。
Next, FIG. 2 is an explanatory diagram showing an embodiment of a heat pump using the heat pipe of the present invention.

このヒートポンプシステムの基本構成は吸着剤を封入し
た吸着1菩20.蒸発器21、凝縮器22、ネタよびそ
れらを連結する作動流体の通路とそのそれぞれを開閉で
きろ弁23.24.25から構成されている。このシス
テム内はすべて脱気されており、作動流体17(この場
合は水)が封入されている。吸着塔20内には、−1−
記両ヒートバイブの連結部である二重管部3Aが伝熱面
となるように連結されたヒートパイプl、2が創設され
ており、そのヒートパイプ1.2の上部2△および下部
IAは前述のようにそれぞれ除熱川流体5および加熱用
流体4と熱交換が可能な構造になっている。吸着塔20
内には例えば活性炭などの吸着剤3が封入されている。
The basic configuration of this heat pump system is 1 adsorption system containing 20 adsorbents. It consists of an evaporator 21, a condenser 22, a working fluid passage connecting them, and valves 23, 24, and 25 that can open and close each of them. Everything in this system is evacuated and filled with working fluid 17 (water in this case). Inside the adsorption tower 20, -1-
Heat pipes 1 and 2 are created in which the double pipe part 3A, which is the connecting part of both heat vibrators, is connected as a heat transfer surface, and the upper part 2△ and lower part IA of the heat pipe 1.2 are as follows. As described above, the structure allows heat exchange with the heat removal fluid 5 and the heating fluid 4, respectively. Adsorption tower 20
An adsorbent 3 such as activated carbon is sealed inside.

蒸発器21ば密閉容器がらなり、比較的低温度の熱源1
3と熱交換が可能な構造になっており、また上記の吸着
剤に対し吸着、脱着を起こす作動流体17が封入されて
いる。この作動流体17は前記ピー1−パイプに使用さ
れる作動流体と一般に異なっていても差支えない。熱#
13と熱交換の可能な構造として、この場合は熱源用流
体13が内部を流れるコイル14が示されているが、熱
源流体が内部を流れるジャケットを蒸発器21の周囲に
設けてもよい。なお熱源用流体13はヒートパイプ下部
IAを加熱する加熱用流体4と同一でも、異なるもので
もよい。
The evaporator 21 consists of a closed container and has a relatively low temperature heat source 1.
3, and a working fluid 17 that adsorbs and desorbs the above-mentioned adsorbent is sealed therein. This working fluid 17 may generally be different from the working fluid used in the pipe 1. heat#
In this case, a coil 14 through which the heat source fluid 13 flows is shown as a structure capable of exchanging heat with the evaporator 13, but a jacket through which the heat source fluid flows may be provided around the evaporator 21. Note that the heat source fluid 13 may be the same as or different from the heating fluid 4 that heats the heat pipe lower portion IA.

次に凝縮器22も密閉容器からなり、蒸発器21と同様
に外部流体15がその中を流れるコイル16が内部に設
けられている。ごの場合も、コイル16のかわりに凝縮
器の周囲に冷却用ジャケソ1〜を設置しノこ構造として
もよい。
Next, the condenser 22 also consists of a closed container, and like the evaporator 21, a coil 16 through which the external fluid 15 flows is provided inside. In the case of a vacuum cleaner, a cooling jacket 1 to 1 may be installed around the condenser instead of the coil 16 to provide a saw structure.

吸着塔20、蒸発器21および凝縮器22は、それぞれ
作動流体を通ず通路で連結されており、各通路には前述
のように作4すj流体の流通を制御するだめの開閉弁2
3.24および25が設けられている。
The adsorption tower 20, the evaporator 21, and the condenser 22 are connected to each other by a passage through which the working fluid passes, and each passage is provided with an on-off valve 2 for controlling the flow of the fluid as described above.
3.24 and 25 are provided.

このように構成したし−1−ポンプの操作方法を以下に
説明する。
A method of operating the pump constructed in this manner will be described below.

操作1 (昇温モード) 今、弁24.25を閉した状態で弁23を開けると、蒸
発器21で発/ニドした作動流体の蒸気が吸着塔20へ
流れ、そこで吸着剤に吸着されるが、そのとき放出され
る吸着熱のために吸着剤の温度は上昇する。ごのとき、
蒸発器21の温度]゛4を適当に選ぶごとによって吸着
剤の温度T3が除熱用流体5の温度T2より大、ずなわ
らT2≦T3となるように設定することができる。この
ようにすると、前記ヒートパイプの動作の項で説明した
ように、熱が吸着塔20から除熱川流体5へ流れ、高温
度における熱回収が行われる。
Operation 1 (temperature increase mode) Now, when valve 23 is opened with valves 24 and 25 closed, the vapor of the working fluid generated/nidized in the evaporator 21 flows to the adsorption tower 20, where it is adsorbed by the adsorbent. However, the temperature of the adsorbent rises due to the heat of adsorption released at that time. When you
By appropriately selecting the temperature of the evaporator 21 (4), the temperature T3 of the adsorbent can be set to be higher than the temperature T2 of the heat removal fluid 5, and T2≦T3. In this way, as explained in the section on the operation of the heat pipe, heat flows from the adsorption tower 20 to the heat removal river fluid 5, and heat recovery at high temperatures is performed.

操作2 (再生モード) ある時間の開操作1を続げたならば、弁23を閉じて弁
24を開くと、吸着塔20は低〆都度の凝縮器22へ連
結され、吸箔剤から作動流体が脱着し、生成した蒸気が
凝縮器22に入って凝縮する。
Operation 2 (Regeneration mode) After opening operation 1 continues for a certain period of time, when the valve 23 is closed and the valve 24 is opened, the adsorption tower 20 is connected to the low-resolution condenser 22, and the working fluid is removed from the foil absorbing agent. is desorbed and the generated vapor enters the condenser 22 and is condensed.

このとき、吸着剤ば脱着熱を吸収するため温度が降下す
る。6i紺を器22の61d1度゛1゛5を適当に選ふ
ことにより、吸着剤の温度T 3が加熱用流体4の温度
T1より小、ずなわちT 3≦T1となるまうに設定す
ることができる。このようにすると、前記ヒートパイプ
の動作で説明したように、熱力稍旧:ハ用流体4から吸
着塔20へ流れ、脱着用の熱が供給され続けるので吸着
剤から作動流体が脱着ざ拉、吸着剤が再生される。
At this time, the temperature decreases because the adsorbent absorbs the heat of desorption. By appropriately selecting 61d1 degrees 15 of the 61d navy blue of the vessel 22, the temperature T3 of the adsorbent is set to be lower than the temperature T1 of the heating fluid 4, that is, T3≦T1. be able to. In this way, as explained in the operation of the heat pipe, the thermal fluid 4 flows to the adsorption tower 20 and heat for desorption continues to be supplied, so that the working fluid is desorbed from the adsorbent. The adsorbent is regenerated.

操作3(作動流体の調整) 操作■および操作2を行うことにより蒸発器21内の作
動流体17が減少し、凝縮器22の作動流体が増加する
。そこで、凝縮器22の作動流体がある程度のレベルに
なった時点で弁25を開り、凝縮器22の作動流体を蒸
発器21に戻してレベルの8周整を行う。
Operation 3 (Adjustment of Working Fluid) By performing operation (1) and operation 2, the working fluid 17 in the evaporator 21 decreases and the working fluid in the condenser 22 increases. Therefore, when the working fluid in the condenser 22 reaches a certain level, the valve 25 is opened, the working fluid in the condenser 22 is returned to the evaporator 21, and the level is adjusted eight times.

以上の一連の操作を繰り返すごとにより、加熱用流体4
から凝縮器22へ熱が流れ、それと同時に蒸発器21か
ら除熱川流体5へ多;ハを汲め上げることができる。し
たがってこのヒートポンプは、動力を一切使用すること
なく、蒸発器21を加熱する熱源(温度T4)からそれ
よりも高い温度T2の流体5へ熱を汲み」二げるごとが
できる。ずなわら、通常のヒートポンプでは熱を汲み上
げるにはコンブレノザーなどの動力を必要とするが、本
発明ではこのような動力は不要となる。なおその理由を
熱力学的に説明すれば、この動力に相当する部分を本発
明では再生モートにおける加熱用流体4から凝縮器22
への熱の流れでまかなっていると解釈することができる
By repeating the above series of operations, the heating fluid 4
Heat flows from the evaporator 21 to the condenser 22, and at the same time, heat can be pumped up from the evaporator 21 to the heat removal stream 5. Therefore, this heat pump can pump heat from the heat source (temperature T4) that heats the evaporator 21 to the fluid 5 at a higher temperature T2 without using any power. Of course, ordinary heat pumps require power from a combination generator or the like to pump up heat, but the present invention does not require such power. To explain the reason thermodynamically, in the present invention, the portion corresponding to this power is transferred from the heating fluid 4 in the regeneration mote to the condenser 22.
This can be interpreted as being covered by the flow of heat to.

本発明に用いる吸着剤としては、例えば活性炭、モレギ
ュラーシーブスのようなゼオライト、シリカリール、4
11性アルミナ、骨炭、ヘン1−ナイト、酸性白土、水
素吸蔵金属などのいわゆる固体吸着剤のほかに、有機物
 無機物の溶液などの液体吸収剤も使用可能である。作
動流体もこれら吸着剤や吸収剤に吸着・脱着または吸収
・放散される際に発熱・吸熱を示すものであればよく、
例えば水、有機溶媒またはその混合物などが使用可能で
ある。
Examples of the adsorbent used in the present invention include activated carbon, zeolite such as monoregular sieves, silica reel,
In addition to so-called solid adsorbents such as 11-alumina, bone char, hennite, acid clay, and hydrogen-absorbing metals, liquid absorbents such as solutions of organic and inorganic substances can also be used. The working fluid may also exhibit heat generation/endotherm when adsorbed/desorbed or absorbed/dissipated by these adsorbents or absorbents.
For example, water, an organic solvent or a mixture thereof can be used.

前記の操作1.2において、41発明のヒートパイプが
有効に作動するための温度T4、T5の設定の仕方に・
ついては、吸着剤として活性炭を使用した場合について
以下に説明ずろ。
In the above operation 1.2, how to set the temperatures T4 and T5 for the heat pipe of the 41 invention to operate effectively.
Therefore, the case where activated carbon is used as an adsorbent will be explained below.

第3図は、典型的な活性炭の吸着等添線である。FIG. 3 is a typical activated carbon adsorption contour.

縦軸は吸着HkqCg/g〕、横軸は相λ1圧p/P(
T)〔〜〕である。ここでpは吸盾量qなろ吸着剤が温
度Tにおいて示す作動流体の分圧、P(T)は純粋の作
動流体が温度Tにおいて示す飽和圧力である。今、操作
1において、吸着剤に作動流体が吸着するためには、p
/P(T3)の値が図の(イ)の領域にあればよく、p
=P(T4)でT3とT2はほぼ等しいから、蒸発器の
塩度T4ばP (T4)/P (T2)>Aとなるよう
に定めればよい。ここでAは吸着等温線の立ち一1二か
り部の相対圧である。また操作2において、吸着剤が脱
着するためにばp/P(T3)か図の(ロ)の領域にあ
ればよく、p=P(T5)でT3とT1ばほぼ等しいか
ら、凝縮器の温度T5はP’(T5) /P (T゛l
) <八となるように定めればよい。
The vertical axis is the adsorption HkqCg/g], and the horizontal axis is the phase λ1 pressure p/P (
T) [~]. Here, p is the partial pressure of the working fluid that the adsorbent exhibits at temperature T with the shield amount q, and P(T) is the saturation pressure that the pure working fluid exhibits at temperature T. Now, in operation 1, in order for the working fluid to be adsorbed on the adsorbent, p
It is sufficient if the value of /P(T3) is in the region (a) in the figure, and p
=P(T4), and since T3 and T2 are approximately equal, the salinity of the evaporator T4 may be determined so that P (T4)/P (T2)>A. Here, A is the relative pressure at the 112 points of the adsorption isotherm. In addition, in step 2, in order for the adsorbent to desorb, it is sufficient that it is in the region of p/P (T3) or (b) in the figure, and since p = P (T5) and T3 and T1 are almost equal, the condenser The temperature T5 is P'(T5) /P (T゛l
) <8.

次に本発明を実施例によってさらにii′1′:細に説
明する。
Next, the present invention will be further explained in detail with reference to Examples.

実施例1 使用したヒートパイプの諸元を下に示す。Example 1 The specifications of the heat pipe used are shown below.

パイプ 月狛−i円 直径 20部 肉jV l順 全長 55部mm 二重管部の長さ 150mm 二重管の内管直径 10IIIWl ウイツク 材料 ステンレススチール金網 層数 3層 固定方法 スプリングにて固定 長さ 下部ヒートパイプ 100工 上部ヒートパイプ 150 mm フィン(二重管部のみ) 材質 アルミニウム 直径 45 mm ピッチ 3醋 長さ 250龍 作動流体 水 作動流体の量 各20cc このヒートパイプの一1=、中、下の三部分を直i¥2
00龍の黄銅型円筒容器に密閉し、各容器に温度の異な
る水を流し、各々の水の流量および入口と出口の温度を
測定した。温度の組み合わせの一例を下に示す。
Pipe Tsukikoma-i Circular diameter 20 parts Thickness JV l Total length 55 parts mm Length of double pipe part 150 mm Inner pipe diameter of double pipe 10IIIWl Width material Stainless steel Number of wire mesh layers 3 layers Fixing method Length fixed with spring Lower heat pipe 100 mm Upper heat pipe 150 mm Fin (double tube section only) Material Aluminum Diameter 45 mm Pitch 3 Length 250 Dragon Working fluid Water Amount of working fluid 20 cc each This heat pipe 1 =, middle, bottom Directly cut the three parts for ¥2
Each container was sealed in a brass cylindrical container made of 00 Dragon, and water at different temperatures was poured into each container, and the flow rate of each water and the temperature at the inlet and outlet were measured. An example of temperature combinations is shown below.

ツ下余白 各々のjふ1合C1二ついて水の流量と出入口の温度差
から、ヒートパイプ1および2を流れる熱流を計算によ
りめた結果を下61;示す。
The results of calculating the heat flow flowing through heat pipes 1 and 2 from the flow rate of water and the temperature difference between the inlet and outlet are shown below.

この結果から、実験番号1の’rI < T 3 < 
T 2のときはどちらのヒートパイプも作動せず、実験
番号2のT 3 < i’ I < T 2のときば下
部ヒートパイプ1のみが選択的に作動し、実験番号3の
T ]< T” 2 < T 3のときは」二部ヒート
パイプ“2のみが選択的に作動し、良好な結果を得るこ
とができた。
From this result, 'rI < T 3 < of experiment number 1.
When T 2, neither heat pipe operates, and when T 3 <i' I < T 2 of Experiment No. 2, only the lower heat pipe 1 selectively operates, and when T ] < T of Experiment No. 3. When ``2 < T 3'', only the two-part heat pipe ``2'' operated selectively, and good results could be obtained.

実施例2 前記の実施例1で使用したピー1−パイプの中間部のフ
ィンの間隙に粒状活性炭を充填し、その周囲を金網でお
おい固定した。このようなヒーIパイプ3本を1組とし
て、前記実施例と同様に、上、中、下の3ケの黄銅製円
筒容器に密閉した。」一部および下部の円筒容器には前
記実施例と同様に水を流し、その流量と温度を測定した
。中間の円筒容器にはガラス製の蒸発器と凝縮器をガラ
スコックを介して接続した。
Example 2 Granular activated carbon was filled into the gap between the fins in the middle of the P1-pipe used in Example 1, and the surrounding area was covered and fixed with a wire mesh. A set of three such H-I pipes was sealed in three brass cylindrical containers, the upper, middle, and lower, in the same manner as in the previous example. Water was allowed to flow through the lower part of the cylindrical container in the same manner as in the previous example, and the flow rate and temperature were measured. A glass evaporator and condenser were connected to the intermediate cylindrical container via a glass cock.

蒸発器は、直径40關、長さ150 mmの円筒状で、
周囲にシャケノ1−を取り付け、温水を流して加熱でき
るような構造であり、水平に設置されている。
The evaporator has a cylindrical shape with a diameter of 40 mm and a length of 150 mm.
It has a structure that allows it to be heated by attaching Shakeno 1- to the surrounding area and pouring hot water over it, and it is installed horizontally.

また凝縮器は、直径40m@’、長さ150 mmの円
筒状で、冷水中にほぼ垂直に設置されており、凝縮水量
を液面の高さより目視により測定できる構造になってい
る。
The condenser has a cylindrical shape with a diameter of 40 m@' and a length of 150 mm, and is installed almost vertically in the cold water, so that the amount of condensed water can be visually measured from the height of the liquid level.

加q%>用熱源として40°Cの温水を蒸発器およびヒ
ーI・パイプ下部容器に流し、低温熱源として20°C
の冷水を凝縮器の周囲に流した。ビー1−パ411部容
器に流す熱回収用流体の温度を種々変更しながら前記操
作1.2の運転を繰り返したとごろ、熱回収用流体の塩
度が約50°C以]の場合に熱を汲メ」二げるごとがで
きた。特に熱回収用流体の温度が47℃辺下であれば、
前記の一連の操作により、活性炭1g当たり約240c
alの熱を汲め」−げることができ、本発明の有効性が
確認された。
q% > 40°C hot water is poured into the evaporator and the lower container of the Hee I pipe as a heat source, and 20°C is used as a low-temperature heat source.
of cold water was flowed around the condenser. After repeating operation 1.2 above while varying the temperature of the heat recovery fluid flowing into the Bee 1-Pa 411 container, it was found that the heat I was able to find a second answer. Especially if the temperature of the heat recovery fluid is around 47℃,
By the above series of operations, about 240 c/g of activated carbon
The effectiveness of the present invention was confirmed by being able to absorb the heat of al.

辺土、本発明によれば、2本のヒートパイプを二重管部
を介して連結した構造とすることにより、二j13的部
の温度条件を設置するのみで、弁その他、制御手段を必
要とするごとなく、いずれかのピー1−パイプを選択的
に作動させることができ、またこのようなし−トパイプ
を吸着塔、蒸発器および凝縮器と組め合わせるごとによ
り、圧縮器などの動力手段を要することなく、簡単な構
造で、しかも操作性、メンテナンス等に優れたヒートポ
ンプをiVlることができる。
According to the present invention, by using a structure in which two heat pipes are connected through a double pipe section, it is possible to set the temperature conditions of two heat pipes only, and no valves or other control means are required. It is possible to selectively operate any one of the pipes without any effort, and the combination of such pipes with adsorption towers, evaporators, and condensers requires power means such as compressors. It is possible to create a heat pump that has a simple structure and is excellent in operability, maintenance, etc., without any problems.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図6よ、本発明のヒートパイプの一実施例を示す説
明図、第2図は、本発明にょるピー1−ポンプシステム
の説明図、第3図は、活性炭の吸着等添線図である。 1・・・下部ヒートパイプ、2・・・上部ヒートパイプ
、3・・・吸着剤、3A・・・二重管部、4・・・加熱
用流体、5・・・除熱用流体、11・・・フィン、]7
・・・作動流体、20・・・吸着塔、21・・・蒸発器
、22・・・凝縮器、23.24.25・・・弁。 代理人 弁理士 川 北 武 長
Fig. 1 is an explanatory diagram showing an embodiment of the heat pipe of the present invention, Fig. 2 is an explanatory diagram of the P1-pump system according to the present invention, and Fig. 3 is an adsorption contour diagram of activated carbon. It is. DESCRIPTION OF SYMBOLS 1... Lower heat pipe, 2... Upper heat pipe, 3... Adsorbent, 3A... Double pipe part, 4... Fluid for heating, 5... Fluid for heat removal, 11 ...Finn, ]7
... Working fluid, 20 ... Adsorption tower, 21 ... Evaporator, 22 ... Condenser, 23.24.25 ... Valve. Agent Patent Attorney Takenaga Kawakita

Claims (2)

【特許請求の範囲】[Claims] (1)ザーモサイフォン型ヒートパイプの上部凝縮部を
内管とし、その上に設けられたもう一つのサーモサイフ
オン型ヒートパイプの下部の蒸発部を外管とするように
二重管で連結し、ト記凝縮部および蒸発部をそれぞれ熱
回収用および加熱用の熱交換面とした一組のザーモザイ
フォン型ヒー1〜パイプを有するヒートパイプ装置。
(1) The upper condensing part of the thermosiphon type heat pipe is the inner tube, and the lower evaporating part of another thermosiphon type heat pipe installed above it is connected by a double tube. A heat pipe device having a set of thermozyphon type heat pipes 1 to 1 with the condensing section and the evaporating section serving as heat exchange surfaces for heat recovery and heating, respectively.
(2)ザーモザイフオン型ヒートパイプと、該ピー1−
パイプの二重管部が吸着剤の封入部に挿入された吸着塔
と、作動流体の蒸発器および凝縮器と、該蒸発器で蒸発
された作動流体を前記吸着塔に供給する通路および開閉
弁と、前記吸着塔で脱着された作動流体を前記凝縮器に
供給する通路および開閉弁と、前記蒸発器と凝縮器を連
結する作動流体の通路および開閉弁とを有することを特
徴とするヒートパイプ装置。
(2) Thermal mosaic-on type heat pipe and the P1-
An adsorption tower in which a double pipe section of a pipe is inserted into an adsorbent enclosure part, an evaporator and a condenser for a working fluid, a passageway and an on-off valve for supplying the working fluid evaporated in the evaporator to the adsorption tower. A heat pipe characterized by having a passage and an on-off valve for supplying the working fluid desorbed in the adsorption tower to the condenser, and a working fluid passage and an on-off valve that connect the evaporator and the condenser. Device.
JP22535383A 1983-12-01 1983-12-01 Heat pipe device Pending JPS60120192A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22535383A JPS60120192A (en) 1983-12-01 1983-12-01 Heat pipe device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22535383A JPS60120192A (en) 1983-12-01 1983-12-01 Heat pipe device

Publications (1)

Publication Number Publication Date
JPS60120192A true JPS60120192A (en) 1985-06-27

Family

ID=16828005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22535383A Pending JPS60120192A (en) 1983-12-01 1983-12-01 Heat pipe device

Country Status (1)

Country Link
JP (1) JPS60120192A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000004326A1 (en) * 1998-07-16 2000-01-27 Stephen Mongan Heat exchange method and apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000004326A1 (en) * 1998-07-16 2000-01-27 Stephen Mongan Heat exchange method and apparatus

Similar Documents

Publication Publication Date Title
JP4347066B2 (en) Solid adsorption heat pump
KR930008821B1 (en) Refrigerating system
JPS6036852A (en) Thermodynamical device for cooling or for heating by adsorption of solid adsorber and method of executing said device
JP3440250B2 (en) Heat exchange metal tube and adsorption heat pump
JPS60120192A (en) Heat pipe device
JP2881593B2 (en) Absorption heat pump
JP2023500920A (en) Adsorption chiller or heat pump with distribution of refrigerant in the liquid phase and method for operating the adsorption chiller or heat pump
JPH07301469A (en) Adsorption type refrigerator
JP3695026B2 (en) Adsorption core of adsorption refrigeration equipment
US4686836A (en) Thermal energy collector and system including a collector of this kind
JP2021196129A (en) Adsorption type heat pump system and cold heat generation method
JPH0765819B2 (en) Adsorption refrigerator with circulation of adsorbent
JPH06272989A (en) Refrigerator
JP2015527560A (en) Recovery container and method for recovering working medium in sorption device
JP6365016B2 (en) HEAT PUMP AND CRYSTAL GENERATION METHOD
RU2183310C1 (en) Heat setting device
JP4407479B2 (en) Water heater
JPH0416695B2 (en)
JPS62123001A (en) Method for purifying hydrogen
JPH0760032B2 (en) Adsorption-type heat storage method, adsorption-type heat storage device, and cooling / heating and hot water supply system using the adsorption-type heat storage device
JP3882242B2 (en) Adsorption refrigeration system
JPH0712420A (en) Adsorption type refrigerating device
RU1815541C (en) Adsorptive heat storage device
JPH02263064A (en) Device for refrigeration cycle
JPH0517563Y2 (en)