JPS60117783A - Non-volatile semiconductor memory device - Google Patents

Non-volatile semiconductor memory device

Info

Publication number
JPS60117783A
JPS60117783A JP58225763A JP22576383A JPS60117783A JP S60117783 A JPS60117783 A JP S60117783A JP 58225763 A JP58225763 A JP 58225763A JP 22576383 A JP22576383 A JP 22576383A JP S60117783 A JPS60117783 A JP S60117783A
Authority
JP
Japan
Prior art keywords
control
floating
dirt
gate
semiconductor memory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58225763A
Other languages
Japanese (ja)
Inventor
Katsuhiko Hieda
克彦 稗田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58225763A priority Critical patent/JPS60117783A/en
Publication of JPS60117783A publication Critical patent/JPS60117783A/en
Pending legal-status Critical Current

Links

Landscapes

  • Read Only Memory (AREA)
  • Non-Volatile Memory (AREA)

Abstract

PURPOSE:To make it possible to rewrite electrically and selectively and to improve reliability, by setting the magnitudes of capacity couplings, so that 0.8 <=C2/C1<=1.2 is satisfied, when the coupling capacities between the first and second control gates and a floating gate are C1 and C2, respectively. CONSTITUTION:When the coupling capacities between the first and second control gates and a floating gate are C1 and C2, the value of C2/C1 is set so that the facing area of the first control gate CG1 and the floating gate FG is made to be constant 30mum<2> and the facing area of the second control gate CG2 and the floating gate FG is changed. It is a matter of course that the coupling capacity between the side wall part of the floating gate and each control gate should be considered, when the side of each control gate of an element is determined in order to set the value of C2/C1. When the element is miniaturized, the rate of the coupling capacity between the side wall part of the floating gate and each control gate in the capacities of C1 and C2 becomes large. Therefore, it is possible to form C1 and C2 only by the coupling capacity between the side wall part and each control gate.

Description

【発明の詳細な説明】 本発明は、浮遊グー、トを有し二つの制御グー蹄1 一部と書替え電球を用いて電気的書替えを可能とした不
揮発性半導体メモリ装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a non-volatile semiconductor memory device which has a floating memory and can be electrically rewritten using two control memory 1 parts and a rewritable light bulb.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

従来、電気的書替え可能とした不揮発性半導体メモリの
メモリセルとして第1図書二足すものが知られている。
2. Description of the Related Art Hitherto, a memory cell of a non-volatile semiconductor memory which is electrically rewritable is known as a memory cell of a non-volatile semiconductor memory.

P形S1基板II=ソース、ドレインとなる高濃度N層
3,4が形成され、この上にダート絶縁膜を介して浮遊
ダート6汐;形成されている。2はフィールド絶縁膜で
ある。
P-type S1 substrate II = high concentration N layers 3 and 4 which become sources and drains are formed, and floating dirt 6 is formed thereon via a dirt insulating film. 2 is a field insulating film.

浮遊c−トsの上には、更にダート絶縁膜を介して浮遊
f−) 5と容量結合する第1の和IJ御ダート6と第
2の制御f−) 7が積層されている08はソースとな
る8層3と連続的に形成された書替え電極となる高濃度
N層であって、この8層8に前記浮遊ゲート5がトンネ
ル効果を生じる程度の薄いダート絶縁膜を介して対向し
ている。
On top of the floating c-t s, a first sum IJ control dart 6 and a second control f-) 7 which are capacitively coupled with the floating f-) 5 via a dirt insulating film are laminated. A high-concentration N layer that serves as a rewriting electrode is formed continuously with the eight layers 3 that serve as the source, and the floating gate 5 faces the eight layers 8 through a dirt insulating film that is thin enough to cause a tunnel effect. ing.

このメモリセルの動作は次の通りである。書N118.
即ちソースであるN層3を接地電位とする。これによシ
、8層8からトンネル効果により電子が浮遊r −ト5
に注入される。消去は、第1及び第2の制御ゲート6.
7を接地電位とし、8層8に高電位を与えて浮遊ゲート
5の電子をN層Bに放出させることにょシ行なう。
The operation of this memory cell is as follows. Book N118.
That is, the N layer 3, which is the source, is set to the ground potential. As a result, electrons float from the 8th layer 8 due to the tunnel effect.
is injected into. Erasing is performed by the first and second control gates 6.
7 is set to the ground potential, and a high potential is applied to the 8 layer 8 to cause the electrons in the floating gate 5 to be released to the N layer B.

また読出しは、第1の制御ダート6とドレイン4に適当
な電位を与え、浮遊ゲートへの電子の注入の有無によっ
てチャネルに電流が流れるか否かによって行なう。
Further, reading is performed by applying appropriate potentials to the first control dart 6 and the drain 4, and determining whether or not a current flows through the channel depending on whether or not electrons are injected into the floating gate.

このメモリセルの動作は、次の様に説明できる。メモリ
セルには外部からドレイン電圧VD。
The operation of this memory cell can be explained as follows. A drain voltage VD is applied to the memory cell from the outside.

ソース電圧Vs 、基板電圧Vsub、第1の制御ダー
ト電圧V a o 0.第2の制御ケ9−ト電圧woo
Source voltage Vs, substrate voltage Vsub, first control dart voltage V a o 0. Second control gate voltage woo
.

が印加される。又、このメモリセルは等測的に第2図(
、)のように表わすことができ、電気的等価回路は、同
図(b)のように示されるから、浮遊ダートの電位V’
lPGは次式で表わされる。
is applied. Also, this memory cell is isometrically shown in Figure 2 (
, ), and the electrical equivalent circuit is shown as shown in (b) of the same figure, so the potential of the floating dart V'
lPG is expressed by the following formula.

ここでC,、C2はそれぞれ第1・、第2の制御ダート
CG1 、CG、と浮遊ダートFGとの間の結合容量で
ある。また、Cg、C5ubはそれぞれソースS、基板
と浮遊ゲートFGとの間の結合容量でおる。(1)式か
ら基板電位Vsub とソース電位Vs を固定すると
、記1の制御ダートCG、と第2の制御グー)CG、を
用いて浮遊ダートFGの電位レベルに対して、次の3つ
の状態をとシうる。すなわち (1)第1の制御ダートCG、 と第2の制御ダートC
G2が共に高電位の場合、 (11)第jの制御ゲートCO,と第2の制御ダートC
G、のどちらかが高電位で他が低電位の場合、 仙)第1の制御ダートCG、と第2の制御ダートCG、
が共に低電位の場合、 である。従って、第1図のN層8上の薄い酸化膜領域の
酸化膜厚を、(1)の場合あるいは010の場合にのみ
トンネル電流が流れ、他の状態では流れないように、選
ぶことによりセルに選択的に書き込み、消去を行なうこ
とが可能となる。、実際には、第1図のメモリセルがオ
;板上にマトリックス状に配置されている。例えば、第
3図に示すように、上記メモリセルがM、からへ14捷
で配置された4ビツトのメモリセノしマトリックスを考
メーる。ソースSは全て共通である。第1の制御ゲート
CGII、CGI、は行方向に共通接続され、第2の制
御ダートCG21.CG22は別方向に共通接続される
Here, C, C2 are coupling capacitances between the first and second control darts CG1, CG, and the floating dart FG, respectively. Further, Cg and C5ub are coupling capacitances between the source S, the substrate and the floating gate FG, respectively. From equation (1), when the substrate potential Vsub and the source potential Vs are fixed, the following three states can be created for the potential level of the floating dirt FG using the control dirt CG described in 1 and the second control dirt CG. I can use it. That is, (1) the first control dart CG, and the second control dart C
When G2 are both at high potential, (11) j-th control gate CO, and second control gate C
When one of G is at a high potential and the other is at a low potential, the first control dart CG and the second control dart CG,
When both are low potentials, then . Therefore, by selecting the oxide film thickness of the thin oxide film region on the N layer 8 in FIG. It becomes possible to selectively write and erase. In reality, the memory cells shown in FIG. 1 are arranged in a matrix on a board. For example, as shown in FIG. 3, consider a 4-bit memory cell matrix in which the memory cells are arranged in 14 rows from M. The source S is common to all. The first control gates CGII, CGI are commonly connected in the row direction, and the second control gates CG21 . The CGs 22 are commonly connected in different directions.

初期状態では、各メモリセルの浮遊ケ゛−トに電荷の蓄
積がないとすると、例えば、メモリセルM、にデータを
轡き込む(浮遊ダートへ電子を注入する)場合には、ソ
ースSを0■とする。
Assuming that there is no charge accumulated in the floating gate of each memory cell in the initial state, for example, when data is injected into memory cell M (electrons are injected into the floating gate), the source S is set to 0. ■.

又、第1、第2の制御グーF CGII + CGII
に+2 (I Vを印加する。そして、残シの制御ダー
トを0■とする。このようにすると、M、の浮遊ダート
は高電位となシ、薄い酸化膜を通してトンネル電流によ
って電子が浮遊ダートに注入され、蕾き込み状pl(こ
れを′0”とする)となる。メモリセルM、、Ms 、
M4にも同時に書き込むには、それぞれの1ltll 
ll141ダートCG、、。
In addition, the first and second control groups F CGII + CGII
+2 (IV) is applied to M, and the control dart of the remaining part is set to 0. In this way, the floating dirt of M is at a high potential, and the electrons are transferred to the floating dirt by the tunnel current through the thin oxide film. is injected into the bud-like pl (this is defined as '0').Memory cells M, , Ms ,
To write to M4 at the same time, each 1ltll
ll141 dart CG,.

CG、2にも+20vを印加すればよい。次に、八り、
〜M4のすべてのセルに0”が書き込まれた状態で、M
lの内容のみを消去する場合を考える。この場合には、
ソースSに+20V、第1S第2の制御ダートCG、1
.CG2Iに0■を印加し、残シの制御ケ中−トを+2
0Vに保つとM、のみ浮遊ダートが低電位となり、トン
ネル電流によりソースに電子が放出され、消去状態(こ
れを61″とする)となる。
+20v may also be applied to CG and 2. Next, eight,
~ With 0'' written in all cells of M4, M
Consider the case where only the contents of l are deleted. In this case,
+20V to source S, 1st S 2nd control dart CG, 1
.. Apply 0■ to CG2I and set the remaining control point to +2.
When kept at 0V, the floating dart only at M has a low potential, and electrons are emitted to the source by a tunnel current, resulting in an erased state (this is assumed to be 61'').

しかし、この場合、各メモリセルのCI+C2の値がア
ンバランスである場合、例えばC0zO,5C,であっ
たとすると、この1−8のメモリセルのみの消去をくり
返していくうちに、半選択状態のセルMm1Msのうち
M、のメモリセルの記憶内容がM、よシ大きく変化して
いき、ついには、書き込み状態であるのか、消去状態で
あるのか判定できなくなっていく。この様子を示したも
のが第4図である。最初はM、 、M2、M3、M4共
に書き込み状態″0”であったが、M、の消去を〈シ返
すうちに、例えば約100回くシ返すと0”、”1”の
判定がむずかしい状態までしきい値が下がってくる。こ
こでは、4ビツトセルで考えているが、実際のメモリセ
ルマトリックスで考えると、この様に制御ダートの片方
だけが選択されて高電位、又は低電位となる半選択の場
合が焼目となく連続して存在する。そしてこの場合、C
1と02がアンバランスであると、メモリセルの記憶内
容の変化にばらつきが生じ、あるメモリセルでは記憶内
容が大きく変化してしまうという信頼性上非常に重大な
問題が生じる。
However, in this case, if the values of CI+C2 of each memory cell are unbalanced, for example, C0zO, 5C, as the erasure of only memory cells 1-8 is repeated, the half-selected state The storage contents of the memory cell M out of the cells Mm1Ms change greatly by M, and eventually it becomes impossible to determine whether it is in a written state or an erased state. FIG. 4 shows this situation. At first, M, , M2, M3, and M4 were all in the write state of "0", but while erasing M, it becomes difficult to determine whether they are "0" or "1" after repeating the process, for example, about 100 times. Here, we are considering a 4-bit cell, but if we consider an actual memory cell matrix, only one of the control darts will be selected to have a high potential or a low potential. There are consecutive half-selected cases without any burn marks.In this case, C
If 1 and 02 are unbalanced, variations will occur in the changes in the storage contents of the memory cells, causing a very serious problem in terms of reliability in that the storage contents of a certain memory cell will change significantly.

〔発明の目的〕[Purpose of the invention]

本発明は上記の点に鑑みてなされたもので、電気的にか
つ選択的に書き換え可能でかつ信頼性の高い不揮発性半
導体メモリを提供する事を目的としている。
The present invention has been made in view of the above points, and an object of the present invention is to provide a highly reliable nonvolatile semiconductor memory that is electrically and selectively rewritable.

〔発明の概要〕[Summary of the invention]

本発明は、前述のように浮遊ダートを有し、これと容量
結合する第1および第2の制御グー“トと書替え電極を
もつ書替え可能な不揮発性半導体メモリにおいて、前記
第1、第2の制御ダートと浮遊ダート間の結合容量をそ
れぞれClIC2としたとき、0.8≦”t/C+≦1
.2 となるように容量結合の大きさを設定したことを
特徴としている。
The present invention provides a rewritable non-volatile semiconductor memory having floating darts and having first and second control gates and rewriting electrodes capacitively coupled with the floating darts, as described above. When the coupling capacitance between the control dart and the floating dart is ClIC2, 0.8≦”t/C+≦1
.. It is characterized in that the magnitude of capacitive coupling is set so that it becomes 2.

〔発明の効果〕〔Effect of the invention〕

本発明では、各セルの2つの制御ダートと浮遊ダート間
の結合容量を上述のように設定することにより、信頼性
の高い、不揮発性半導体メモリ装置を提供できる。すな
わち、C1、C!を上述のように設定すれば、半選択状
態での記憶内容の劣化において、各素子間でのバラツキ
がなくなり、最も劣化した素子で決まっていた書き換え
回数の制限値が著しく向上し、実用上問題のない不揮発
性記憶装置を提供できる。
In the present invention, by setting the coupling capacitance between the two control darts and the floating darts of each cell as described above, a highly reliable nonvolatile semiconductor memory device can be provided. That is, C1, C! By setting as described above, there will be no variation between each element in the deterioration of memory contents in a half-selected state, and the limit value of the number of rewrites that was determined by the most deteriorated element will be significantly improved, which will cause no practical problems. It is possible to provide a non-volatile storage device without

〔発明の実施例〕[Embodiments of the invention]

以下本発明の詳細な説明する。メモ1ノセルの構成およ
びセルアレイの構成は、基本的(二第1図〜第3図で説
明したものと変らない。本実施例では、各セルの第1、
第2のflt制御ダートと第5図は、本実施例による不
揮発性メモリ:二ついて、その4ビットメモリセルの選
択特性を示すものである。これは、まず、4つのセルM
8、M 2 、M B 、M4 を書き込み状態″′0
”;二して−おき、第4図の場合と同じよう;二、M、
のメモリセルのみの消去をくり返したときの他のメモリ
セルのしきい信愛化を測定したものである0第5図に示
すように、半選択のM、、M3のメモリ内容は、そろっ
て変化し、10s回程度くり返しても、記憶内容″0”
に変化は起こらない。このようにC1とC8の値をtl
は同じにすることが2つの制御ダートを使って、選択的
(二番き込み、消去を行なうタイプのメモリセル(ニお
いては重要なことであるO 86図は、4ビツトセルにおいて、それぞれ −のメモ
リセルに約5v程度にしきい値電圧がなるように書き込
み(′0”)を行なった後、M。
The present invention will be explained in detail below. Note 1: The configuration of the cell and the configuration of the cell array are basically the same as those explained in Figs.
The second flt control diagram and FIG. 5 show the selection characteristics of two 4-bit memory cells in the nonvolatile memory according to this embodiment. This first consists of four cells M
8. Write M 2 , M B , M4 to state ″'0
”; 2nd, then the same as in Figure 4; 2nd, M,
As shown in Figure 5, the memory contents of half-selected memory cells M, , and M3 change all at the same time. However, even if it is repeated for about 10 seconds, the memory content remains ``0''.
no change occurs. In this way, the values of C1 and C8 are tl
It is important in a type of memory cell (2) that uses two control darts to perform selective programming and erasing. After writing ('0'') to the memory cell of M so that the threshold voltage becomes approximately 5V.

−のみを消去(1”)したとき、半選択状態:二あるM
、、M、のメモリセルの半選択回数103回後のしきい
僅差1Δvtl をCt / Cl をノ母うメータに
してプロットしたものである。Ct/C0の値は、第1
の制御’r’ )CG+ の浮遊グー)FGとの対向面
積を30μm!一定とし、第2の制御グー)CG、の浮
遊グー)FGとの対向面積を変化させることにより設定
した。酸化膜厚は1000X一定である。図より明らか
なように、半選択を10”回くり返した後でも、C,/
C,を0.8〜1.2の範囲に設定すること(二よj)
、M、、M、のバラツキが小さくなり、半選択回数に対
するマージンが実用上十分な大きさまで向上する。
When only - is deleted (1”), half-selected state: 2 M
, , M, the threshold difference 1Δvtl after 103 half-selections is plotted using Ct/Cl as a meter. The value of Ct/C0 is the first
Control 'r') CG+ floating goo) Opposing area with FG is 30 μm! It was set by changing the opposing area of the second control goo (CG) and the floating goo (FG). The oxide film thickness is constant at 1000X. As is clear from the figure, even after repeating half-selection 10" times, C,/
Set C, in the range of 0.8 to 1.2 (2yoj)
The variation in ,M,,M, is reduced, and the margin for the half-selection frequency is improved to a practically sufficient size.

へお、Ct/C1の値を設定するために素子の各制御ダ
ートの寸法を決める際に、第1図(C)より明らかなよ
うに、浮遊ダートの側壁部と各制御ケ゛−ト間の結合容
量も考慮する必要があることはいうまでもない。素子が
微細化してくると、浮遊ダートの側壁部と各制御r−1
間の結合容量がC,、C2における容量中に占める割合
が大きくなる。このことから、C,、C2を前記側壁部
と各制御ダート間の結合容量のみで形成することも可能
である。
When determining the dimensions of each control dart of the element in order to set the value of Ct/C1, as is clear from Fig. 1(C), the distance between the side wall of the floating dart and each control case is It goes without saying that the coupling capacity must also be taken into account. As the device becomes finer, the side wall of the floating dart and each control r-1
The coupling capacitance between C and C2 occupies a large proportion of the capacitance at C2. From this, it is also possible to form C, , C2 only by the coupling capacitance between the side wall portion and each control dart.

以上述べたごとく、本発明によれば、電気的、かつ選択
的に記憶内容の)4き換えが可能で、かつ選択書き換え
時の素子特性の信頼性が著しく向上した不揮発性半導体
メモリを実現することができた。
As described above, according to the present invention, it is possible to realize a nonvolatile semiconductor memory in which the memory contents can be electrically and selectively rewritten, and the reliability of the element characteristics during selective rewriting is significantly improved. I was able to do that.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(c)は不揮発性半導体メモリセルの一
例の構成を示す図、第2図(−)はそのシンデル図、同
図(b)は同じく等価回路図、第3図は4ビツトメモリ
セルアレイの構成を示す図、第4図は従来のセルでの半
選択による特性変化を示す図、第5図および第6図は本
発明の一実施例のセルでの半選択による特性変化を示す
図である。 1・・・S+基板、3,4・・・高濃度N層(ソース。 ドレイン)、8・・・高濃度N層(書替え電極)、5・
・・浮遊ダート、6・・・第1の制御ダート間7・・・
”第2の制御ダート。 出願人代理人 弁理士 鈴 江 武 彦第4図 泊 5 図 +′蜜状回敷 第 6 図 時合容量比 0/。
Figures 1 (a) to (c) are diagrams showing the configuration of an example of a nonvolatile semiconductor memory cell, Figure 2 (-) is its Schindel diagram, Figure 3 (b) is an equivalent circuit diagram, and Figure 3 is A diagram showing the configuration of a 4-bit memory cell array. FIG. 4 is a diagram showing characteristic changes due to half selection in a conventional cell. FIGS. 5 and 6 are diagrams showing characteristics due to half selection in a cell according to an embodiment of the present invention. It is a figure showing a change. 1... S+ substrate, 3, 4... Highly doped N layer (source, drain), 8... Highly doped N layer (rewriting electrode), 5...
...Floating dart, 6... Between the first control darts 7...
``Second Control Dirt. Applicant's Representative Patent Attorney Takehiko Suzue Figure 4 Night 5 Figure + 'Nectarium Circulation Figure 6 Combined Capacity Ratio 0/.

Claims (1)

【特許請求の範囲】[Claims] 半導体基板に、電気的に絶縁された浮遊ダートと、この
浮遊ダートに容量結合する第1.第2の制御ダートと、
トンネル効果によシ前記浮遊ff−)との間で電荷の授
受を行なう書替え電極とを有するメモリセルをマトリク
ス配列し、前記第1、第2の制御r−1・を互いに直交
する方向に共通接続すると共に、前記書替え電極を共通
接続して構成され、選択セルの第1及び第2の制御ダー
トに高電位、残シの制御ダートに低電位、書替え電極に
低電位を与えて書込みを行ない、選択セルの第1及び第
2の制御y−トに低電位、残シの制御ダートに高電位、
書替え電極に高電位を与えて消去を行なうようにした不
揮発性半導体メモリ装置において、前記第1、第2の制
御ダートと浮遊ダートとの間の結合容量をそれぞれC1
−tC! とじたとき、0.8≦ctl Ct≦1.2
を満たすように構成したことを特徴とする不揮発性半導
体メモリ装置。
A semiconductor substrate has a floating dirt electrically insulated therein, and a first dirt that is capacitively coupled to the floating dirt. a second control dart;
Memory cells each having a rewrite electrode that transfers charge to and from the floating ff-) by a tunnel effect are arranged in a matrix, and the first and second controls r-1 are common in mutually orthogonal directions. At the same time, the rewriting electrodes are connected in common, and writing is performed by applying a high potential to the first and second control darts of the selected cell, a low potential to the control darts of the remaining cells, and a low potential to the rewriting electrode. , a low potential to the first and second control points of the selected cell, a high potential to the remaining control points,
In a nonvolatile semiconductor memory device in which erasing is performed by applying a high potential to a rewrite electrode, the coupling capacitance between the first and second control dirts and the floating dirt is expressed as C1.
-tC! When closed, 0.8≦ctl Ct≦1.2
What is claimed is: 1. A nonvolatile semiconductor memory device characterized in that it is configured to satisfy the following conditions.
JP58225763A 1983-11-30 1983-11-30 Non-volatile semiconductor memory device Pending JPS60117783A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58225763A JPS60117783A (en) 1983-11-30 1983-11-30 Non-volatile semiconductor memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58225763A JPS60117783A (en) 1983-11-30 1983-11-30 Non-volatile semiconductor memory device

Publications (1)

Publication Number Publication Date
JPS60117783A true JPS60117783A (en) 1985-06-25

Family

ID=16834424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58225763A Pending JPS60117783A (en) 1983-11-30 1983-11-30 Non-volatile semiconductor memory device

Country Status (1)

Country Link
JP (1) JPS60117783A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0739041A2 (en) * 1989-06-02 1996-10-23 SHIBATA, Tadashi Floating gate transistor with a plurality of control gates
US7303956B2 (en) 2002-10-28 2007-12-04 Sandisk Corporation Flash memory cell arrays having dual control gates per memory cell charge storage element
US7951669B2 (en) 2006-04-13 2011-05-31 Sandisk Corporation Methods of making flash memory cell arrays having dual control gates per memory cell charge storage element

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0739041A2 (en) * 1989-06-02 1996-10-23 SHIBATA, Tadashi Floating gate transistor with a plurality of control gates
EP0739041A3 (en) * 1989-06-02 1996-11-06 SHIBATA, Tadashi Floating gate transistor with a plurality of control gates
US7303956B2 (en) 2002-10-28 2007-12-04 Sandisk Corporation Flash memory cell arrays having dual control gates per memory cell charge storage element
US7486555B2 (en) * 2002-10-28 2009-02-03 Sandisk Corporation Flash memory cell arrays having dual control gates per memory cell charge storage element
US7502261B2 (en) * 2002-10-28 2009-03-10 Sandisk Corporation Flash memory cell arrays having dual control gates per memory cell charge storage element
US7638834B2 (en) 2002-10-28 2009-12-29 Sandisk Corporation Flash memory cell arrays having dual control gates per memory cell charge storage element
US7994004B2 (en) 2002-10-28 2011-08-09 Sandisk Technologies Inc. Flash memory cell arrays having dual control gates per memory cell charge storage element
US8334180B2 (en) 2002-10-28 2012-12-18 Sandisk Technologies Inc Flash memory cell arrays having dual control gates per memory cell charge storage element
US7951669B2 (en) 2006-04-13 2011-05-31 Sandisk Corporation Methods of making flash memory cell arrays having dual control gates per memory cell charge storage element

Similar Documents

Publication Publication Date Title
KR100292361B1 (en) How to Write Data in Semiconductor Nonvolatile Memory
US8711635B2 (en) Nonvolatile semiconductor memory device
KR920011000B1 (en) Non-erasible semiconductor memory circuit
US5638327A (en) Flash-EEPROM memory array and method for biasing the same
US4336603A (en) Three terminal electrically erasable programmable read only memory
JPS58115691A (en) Programmable read only memory cell electrically erasable with single transistor
JPS58143494A (en) Memory array
JP2728679B2 (en) Nonvolatile semiconductor memory device
JPS6074577A (en) Nonvolatile semiconductor memory device
US4442447A (en) Electrically alterable nonvolatile floating gate memory device
JPS61222093A (en) Nonvolatile semiconductor memory device
KR100459628B1 (en) Nonvolatile semiconductor memory device
JPS60117783A (en) Non-volatile semiconductor memory device
JPS63226966A (en) Nonvolatile semiconductor memory device
JPS62154786A (en) Nonvolatile semiconductor memory
JPH0342703B2 (en)
JPS58209165A (en) Nonvolatile semiconductor memory storage
JP2020149989A (en) Voltage-variable memory element and semiconductor storage device having the same
JPH10144807A (en) Nonvolatile semiconductor memory
JP3095918B2 (en) Non-volatile semiconductor memory
JP2557257B2 (en) Semiconductor memory device
JP2885412B2 (en) Nonvolatile semiconductor memory device
JPH0414871A (en) Non-volatile semiconductor memory storage
JPH11177069A (en) Nonvolatile semiconductor storage device and its rewriting method
JPS5827370A (en) Non-volatile semiconductor memory