JPS60117682A - Amorphous si solar battery - Google Patents

Amorphous si solar battery

Info

Publication number
JPS60117682A
JPS60117682A JP58224109A JP22410983A JPS60117682A JP S60117682 A JPS60117682 A JP S60117682A JP 58224109 A JP58224109 A JP 58224109A JP 22410983 A JP22410983 A JP 22410983A JP S60117682 A JPS60117682 A JP S60117682A
Authority
JP
Japan
Prior art keywords
film
substrate
amorphous silicon
electrodes
amorphous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58224109A
Other languages
Japanese (ja)
Inventor
Hiroshi Kawasaki
浩 川崎
Seiji Kumada
熊田 政治
Hideo Tanabe
英夫 田辺
Katsuo Yuhara
克夫 湯原
Akira Misumi
三角 明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Consumer Electronics Co Ltd
Japan Display Inc
Original Assignee
Hitachi Device Engineering Co Ltd
Hitachi Ltd
Hitachi Consumer Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Device Engineering Co Ltd, Hitachi Ltd, Hitachi Consumer Electronics Co Ltd filed Critical Hitachi Device Engineering Co Ltd
Priority to JP58224109A priority Critical patent/JPS60117682A/en
Publication of JPS60117682A publication Critical patent/JPS60117682A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03921Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate including only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Power Engineering (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To prevent electrodes from oxidation and separation, and thereby to control deterioration with time of electric characteristics, by a method wherein an insulating film composed of Si and C is formed on a flexible and heat-resisting substrate and, on said insulating film, electrodes and an amorphous Si film is formed. CONSTITUTION:An SiC film 3 with high electric resistance is formed by sputtering on a resin film 2 deposited on a stainless steel substrate 1. Stainless steel is sputtered onto the SiC film 3 for the formation of lower electrodes 4a, 4b, 4c, 4d, 4e with a prescribed separation between them. Next, by means of plasma CVD, an amorphous Si film 5 for photoelectric conversion in the order of P, I, N or N, I, P. Above the lower electrodes 4a, 4b, 4c, 4d, 4e, light-transmitting upper electrodes 6a, 6b, 6c, 6d, 6e are built by sputtering In2O3-SnO2, with the amorphous Si film 5 lying between the two groups of lower and upper electrodes. Finally, a passivation SiO2 film 7 is formed by sputtering to cover the upper electrodes 6a, 6b, 6c, 6d, 6e for the completion of five amorphous Si solar cells combined in series.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は非晶質シリコン太陽電池、特に可撓性基板を用
いた非晶質シリコン太陽電池に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to an amorphous silicon solar cell, particularly an amorphous silicon solar cell using a flexible substrate.

〔発明の背景〕[Background of the invention]

一般に、非晶質シリコンからなる太陽電池の基板として
は、透光性ガラス板もしくはステンレス板材が、多くの
優れた特徴を有していることから近年ではその主流とな
っている。一方、非晶質シリコンを用いた太陽電池祉セ
ル1個当シで螢光打丁で得られる開放電圧が約0.7v
前後であシ、この太陽電池を例えば電卓等の電源として
用いた場合、少なくとも3個以上のセルを直列接続する
必要がある。通常、基板としてガラス板を用いた場合は
、表面が平滑であシ、かつ十分な絶縁性を有しているた
め、仁のガラス基板上に直列接続構造の太陽電池を形成
することは極めて容易である。
In general, as substrates for solar cells made of amorphous silicon, translucent glass plates or stainless steel plates have become mainstream in recent years because they have many excellent features. On the other hand, the open-circuit voltage obtained with a fluorescent knife for one solar cell using amorphous silicon is about 0.7V.
If this solar cell is used as a power source for a calculator or the like, it is necessary to connect at least three or more cells in series. Normally, when a glass plate is used as a substrate, the surface is smooth and has sufficient insulation properties, so it is extremely easy to form a solar cell with a series connection structure on a solid glass substrate. It is.

しかしながら、最近では可撓性基板を用いた太陽電池の
要求が高まシ、この場合、上述したガラス基板の使用は
不可能である。そこで、可撓性基板としてステンレスフ
ィルムや耐熱性樹脂膜を用いた非晶質シリフン太陽電池
が提案されているが、両者とも良好な太陽電池の特性を
得るのに十分な表面平滑度を得ることは難かしく、ステ
ンレスフィルムの場合は、さらに基板表面の絶縁が必要
となる。
However, recently there has been an increasing demand for solar cells using flexible substrates, and in this case it is impossible to use the above-mentioned glass substrate. Therefore, amorphous silicon solar cells using stainless steel films or heat-resistant resin films as flexible substrates have been proposed, but both require sufficient surface smoothness to obtain good solar cell characteristics. This is difficult, and in the case of stainless steel film, additional insulation of the substrate surface is required.

この対策として、既に発明者らは、可撓性かつ耐熱性を
有する基板上に高分子樹脂膜を形成し、この樹脂膜上に
電極および非晶質シリコン膜を形成することによって、
表面平滑度および絶縁性を向上させた非晶質シリコン太
陽電池を提案している0 しかしながら、このような構成による非晶質シリコン太
陽電池において、基板上に形成される高分子樹脂膜は、
一般に信頼性に乏しく、特に耐湿性に問題があった。す
なわち前記処理を施した基板上に電極および非晶質シリ
コン膜のみを形成しただけでは、長時間の経過によシ、
高分子樹脂膜が吸湿して電極裏面を酸化させたり、電極
を剥離させたシして太陽電池の電気的特性が劣化すると
いう欠点があった。
As a countermeasure for this, the inventors have already formed a polymer resin film on a flexible and heat-resistant substrate, and formed electrodes and an amorphous silicon film on this resin film.
We have proposed an amorphous silicon solar cell with improved surface smoothness and insulation.0 However, in an amorphous silicon solar cell with such a configuration, the polymer resin film formed on the substrate is
Generally, reliability was poor, and moisture resistance was particularly problematic. In other words, if only the electrodes and amorphous silicon film are formed on the substrate that has been subjected to the above-mentioned treatment, it will not work over time.
This method has the disadvantage that the polymer resin film absorbs moisture and oxidizes the back surface of the electrode, or the electrode peels off, resulting in deterioration of the electrical characteristics of the solar cell.

〔発明の目的〕[Purpose of the invention]

本発明は、このような事情に鑑みてなされたものであシ
、その目的は、可撓性基板を用い、しかもその上に形成
される電極の酸化、剥離等の発生を防止して電気的特性
の経時劣化を有効に抑制することが可能な非晶質シリコ
ン太陽電池を提供することにある。
The present invention has been made in view of the above circumstances, and its purpose is to prevent the occurrence of oxidation, peeling, etc. of the electrodes formed on the flexible substrate, and to improve electrical conductivity. An object of the present invention is to provide an amorphous silicon solar cell that can effectively suppress deterioration of characteristics over time.

〔発明の概要〕[Summary of the invention]

このような目的を達成するために、本発明は、可撓性か
つ耐熱性を有する基板上にシリコンと炭素の化合物から
なる絶縁膜を形成し、この膜上に電極および非晶質シリ
コン膜を形成したものである。以下、実施例を用いて本
発明の詳細な説明する。
In order to achieve such an object, the present invention forms an insulating film made of a compound of silicon and carbon on a flexible and heat-resistant substrate, and forms electrodes and an amorphous silicon film on this film. It was formed. Hereinafter, the present invention will be explained in detail using Examples.

〔発明の実施例〕[Embodiments of the invention]

第1図は本発明の一実施例を示す要部平面図、第2図は
その断面図である。図において、可撓性かつ耐熱性を有
する例えば板厚的100μmのステンレス基板10表面
を、表面粗さが約0.1μm以下となる程度に研磨する
。次に研磨されたステンレス基板1の上面に耐熱性を有
する例えばポリイミド樹脂などの高分子樹脂膜2を厚さ
約5μm程度に形成する。この場合、膜形成方法として
は、液状の樹脂をスピンナー、スプレーもしくはディッ
プ法によシ一様に塗布し、これを約350℃の高温で焼
成する。
FIG. 1 is a plan view of a main part showing an embodiment of the present invention, and FIG. 2 is a sectional view thereof. In the figure, the surface of a stainless steel substrate 10, which is flexible and heat resistant and has a thickness of, for example, 100 μm, is polished to a surface roughness of about 0.1 μm or less. Next, on the top surface of the polished stainless steel substrate 1, a heat-resistant polymer resin film 2 made of, for example, polyimide resin is formed to a thickness of about 5 μm. In this case, the film is formed by uniformly applying a liquid resin using a spinner, spraying, or dipping method, and baking it at a high temperature of about 350°C.

このようにして樹脂膜2が形成されたステンレス基板1
上に、シリコ/に炭素を添加して電気抵抗を増大させて
なるSiCターゲットをスパッタする。その際、SiC
ターゲットに含まれる炭素の量は、5%以下では十分な
効果が得られず、50%を越えると高分子樹脂膜2との
接着力が低下するため、5〜50チの範囲が適尚である
。これによシ、膜厚約zoooX程度で高分子樹脂膜2
との接着性の良好な炭化ケイ素膜3を形成する。
Stainless steel substrate 1 with resin film 2 formed in this way
On top of this, a SiC target made by adding carbon to silicone to increase its electrical resistance is sputtered. At that time, SiC
If the amount of carbon contained in the target is less than 5%, a sufficient effect will not be obtained, and if it exceeds 50%, the adhesive force with the polymer resin film 2 will decrease, so a range of 5 to 50 inches is appropriate. be. With this, the polymer resin film 2 is formed with a film thickness of about zooooX.
A silicon carbide film 3 with good adhesion to the substrate is formed.

次いでこの炭化ケイ素膜3上にステンレスをスパッタし
て膜厚約2000X程度の下部電極4aH4be4n、
4t1.4’aをそれぞれ所9間隔幅〒形成する。
Next, stainless steel is sputtered onto the silicon carbide film 3 to form a lower electrode 4aH4be4n with a film thickness of about 2000X.
4t1.4'a are each formed with a width of 9 intervals.

次にこれらの各下部電極4m+4b+4c+4d+4@
が形成された炭化ケイ素膜3上にプラズマCVD法によ
シ、基板1の温度約250℃でp、1.nまたはn。
Next, each of these lower electrodes 4m+4b+4c+4d+4@
The silicon carbide film 3 formed with p, 1. n or n.

t、pの順に光電変換用の非晶質シリコン膜5を形成し
、さらに前記各下部電極4a、4b+4e+4ti+4
aと対向する非晶質シリコン膜5に社、相互に隣接する
各下部電極4b+4c、4d+4e上の一端にまたがっ
てIn、03− SnO□を約5ooXの厚さにスパッ
タリングして透光性上部電極6m、6b+6e+6d+
6・をそれぞれ被着形成する。最後にこれらの上部電極
6a+6b+6c+6de6*上にs、io□を約20
00Aの厚すニスパッタリングしてパッシベーションと
してのsio、膜7を被着形成し、5個直列接続された
非晶質シリコン太陽電池を完成した。この場合、5個の
非晶質シリコン太陽電池の相互の接続は各上部電極6a
+6b、6c、6a+6eの電極パターンの形成と同時
に形成され、また、上部電極6aの一端部と下部電極4
eの一端部には出力電圧取り出し用の端子6m 、 4
@ がそれぞれ形成されている。
An amorphous silicon film 5 for photoelectric conversion is formed in the order of t and p, and each of the lower electrodes 4a, 4b+4e+4ti+4
A transparent upper electrode is formed by sputtering In, 03-SnO□ to a thickness of about 50X across one end of each of the mutually adjacent lower electrodes 4b+4c and 4d+4e on the amorphous silicon film 5 facing the a. 6m, 6b+6e+6d+
6. are respectively deposited and formed. Finally, apply approximately 20 s, io□ on these upper electrodes 6a+6b+6c+6de6*.
A film 7 of SIO as passivation was deposited by sputtering to a thickness of 00A to complete five amorphous silicon solar cells connected in series. In this case, the five amorphous silicon solar cells are interconnected through each upper electrode 6a.
+6b, 6c, 6a+6e are formed simultaneously with the formation of the electrode patterns, and one end of the upper electrode 6a and the lower electrode 4
At one end of e, there is a terminal 6m, 4 for taking out the output voltage.
@ is formed respectively.

このように構成された非晶質シリコン太陽電池において
、ステンレス基板1の上面を研磨してその表面に耐熱性
を有する高分子樹脂膜2fi−設け、さらにこの高分子
樹脂膜2の表面に炭化ケイ素膜3を設けたことによシ、
各電極間のリークに起因する特性劣化を抑止できるばか
シでなく、炭化ケイ素膜3は、高分子樹脂膜2上に緻密
に密着されるので、太陽電池の基板として十分な平面平
滑度が得られ、かつ高分子樹脂膜2と各下部電極4a〜
4eとの間を湿度から完全に遮断して絶縁することがで
きるので、約200 Luxの螢光打丁において、約3
.3vの開放電圧と約18μAの短絡電流が得られた。
In the amorphous silicon solar cell constructed in this way, the upper surface of the stainless steel substrate 1 is polished and a heat-resistant polymer resin film 2fi is provided on the surface, and silicon carbide is further applied to the surface of the polymer resin film 2. By providing the membrane 3,
In addition to suppressing characteristic deterioration caused by leakage between each electrode, the silicon carbide film 3 is tightly adhered to the polymer resin film 2, so that it has sufficient planar smoothness as a substrate for a solar cell. and the polymer resin film 2 and each lower electrode 4a~
4e can be completely insulated from humidity, so in a fluorescent knife of about 200 Lux, about 3
.. An open circuit voltage of 3 V and a short circuit current of about 18 μA were obtained.

なお、この場合、セル1個(受光面積l cr&)当)
の開放電圧は約0.66Vであ夛、セル間の絶縁不良は
全く生じなかった。また、高分子樹脂膜2上に炭化ケイ
素膜3を設けたことによシ、温度約70℃、相対温度約
95チで約1000時間以上の耐湿試験においても下部
電極4a〜4eの酸化、剥離等の発生が皆無となシ、電
気的特性の劣化も全く発生しなかった。
In this case, one cell (light receiving area l cr&))
The open circuit voltage was approximately 0.66 V, and no insulation defects occurred between the cells. Furthermore, since the silicon carbide film 3 is provided on the polymer resin film 2, the lower electrodes 4a to 4e are not oxidized or peeled off even in a humidity test of about 1000 hours or more at a temperature of about 70°C and a relative temperature of about 95°C. No deterioration of electrical characteristics occurred.

なお、炭化ケイ素膜3の形成方法はスパッタリング法に
限定されるものではなく、プラズマCVD法でもよいが
、スパッタリング法の方が基板加熱を必要とせず、しか
も安定性、安全性に優れている。また、膜厚も2000
 Xに限定されるものではなく、#1ぼ200μm5μ
mの範囲に形成すればよい。
Note that the method for forming silicon carbide film 3 is not limited to the sputtering method, and may also be a plasma CVD method, but the sputtering method does not require substrate heating and is superior in stability and safety. Also, the film thickness is 2000
Not limited to X, #1 is 200μm5μ
It may be formed within the range of m.

この場合、200^未満では十分な耐湿性が得られず、
また5μmを越えるようになると厚くなるのみで無意味
である。耐湿性を十分に満足しかつ生産性が良いという
点を考慮すると、上述した2000X程度が最適である
In this case, if it is less than 200^, sufficient moisture resistance cannot be obtained,
Moreover, if it exceeds 5 μm, it will only become thicker and is meaningless. Considering that it satisfies moisture resistance and has good productivity, the above-mentioned 2000X or so is optimal.

また、前記実施例において、非晶質シリコン膜を形成す
る可撓性かつ耐熱性を有する基板として板厚約100μ
mのステンレス基板を用いた場合について説明したが、
本発明はこれに限定されるものではなく、このステンレ
ス基板の代シに板厚約100μmの金属基板、または例
えばポリイミド系のカプトン(商品名)を用いた場合に
おいても全く同様の効果が得られた。また、これらの基
板の厚さも特に100μmに限定されるものではない。
In the above embodiment, the flexible and heat-resistant substrate on which the amorphous silicon film is formed has a thickness of about 100 μm.
We explained the case using a stainless steel substrate of m.
The present invention is not limited to this, and the same effect can be obtained even when a metal substrate with a thickness of about 100 μm or polyimide Kapton (trade name), for example, is used in place of the stainless steel substrate. Ta. Further, the thickness of these substrates is not particularly limited to 100 μm.

さらに、前記実施例において、基板上に形成する高分子
樹脂膜は、約5μmの厚さに形成した場合について説明
したが、との膜厚は基板の板厚によっても異なるので、
概略0.1〜100μmの範囲で形成すれば良い。この
場合、膜厚は0.1μm以下では絶縁性が得られず、1
00μm以上となると、折シ曲げたときに膜剥れが生じ
ることから、この膜厚は0.1〜100μmの範囲が良
く、さらには、膜特性、生産性等の点から考慮して2〜
10μmの範囲が最適である。
Furthermore, in the above embodiment, the polymer resin film formed on the substrate was described as having a thickness of about 5 μm, but the film thickness varies depending on the thickness of the substrate.
The thickness may be approximately 0.1 to 100 μm. In this case, if the film thickness is less than 0.1 μm, insulation cannot be obtained;
If the thickness exceeds 0.00 μm, the film will peel off when it is bent, so the film thickness should preferably be in the range of 0.1 to 100 μm.
A range of 10 μm is optimal.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、光電変換用の非晶
質シリコン膜、電極を形成する可撓性かつ耐熱性を有す
る基板上に、シリコンと炭素の化合物からなる絶縁膜を
設けたことによシ、電極の酸化、剥離等の発生が皆無と
なシミ極間のリークによる特性劣化を抑制することがで
きるので、信頼性の高い、高品質、高性能の非晶質シリ
コン太陽電池が得られるという極めて優れた効果を有す
る0
As explained above, according to the present invention, an insulating film made of a compound of silicon and carbon is provided on a flexible and heat-resistant substrate forming an amorphous silicon film and an electrode for photoelectric conversion. There is no occurrence of damage, electrode oxidation, peeling, etc., and characteristic deterioration due to leakage between electrodes can be suppressed, making highly reliable, high-quality, and high-performance amorphous silicon solar cells possible. 0, which has an extremely excellent effect of being obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による非晶質シリコン太陽電池の一例を
示す一部ば断平面図、第2図はそのA −A線に沿う断
面図である。 1・・・・ステンレス基板、2・・・・高分子樹脂膜、
3・・・・炭化ケイ素膜、4m+4b+4c+4d+4
a・・・拳下部電極、4eIIII・・端子、5@11
1111非晶質シリコン膜、6a+6b+6c+6d+
6e・・φ・上部電極、6m・・・・端子、T・・・・
5tO2膜。
FIG. 1 is a partially sectional plan view showing an example of an amorphous silicon solar cell according to the present invention, and FIG. 2 is a sectional view taken along the line A-A. 1...Stainless steel substrate, 2...Polymer resin film,
3...Silicon carbide film, 4m+4b+4c+4d+4
a... lower fist electrode, 4eIII... terminal, 5@11
1111 amorphous silicon film, 6a+6b+6c+6d+
6e...φ・Top electrode, 6m...Terminal, T...
5tO2 membrane.

Claims (1)

【特許請求の範囲】 1、可撓性かつ耐熱性を有する基板と、前記基板上に形
成された下部電極と、前記下部電極上に形成された光電
変換用の非晶質シリコン膜と、前記非晶質シリコン膜上
に形成された上部電極とを少なくとも備えた非晶質シリ
コン太陽電池において、前記基板と前記下部電極との間
に、シリコンと炭素の化合物からなる絶縁膜を設けたこ
とを特徴とする非晶質シリコン太陽電池。 2、前記基板を、表面に高分子樹脂膜を有するステンレ
ス板としたことを特徴とする特許請求の範囲第1項記載
の非晶質シリコン太陽電池。 3、前記基板を、高分子樹脂板としたことを特徴とする
特許請求の範囲第1項記載の非晶質シリコン太陽電池。 4、前記基板を、表面に高分子樹脂膜を有する高分子樹
脂板としたことを特徴とする特許請求の範囲第1項記載
の非晶質シリコン太陽電池。
[Scope of Claims] 1. A flexible and heat-resistant substrate; a lower electrode formed on the substrate; an amorphous silicon film for photoelectric conversion formed on the lower electrode; In an amorphous silicon solar cell comprising at least an upper electrode formed on an amorphous silicon film, an insulating film made of a compound of silicon and carbon is provided between the substrate and the lower electrode. Characteristics of amorphous silicon solar cells. 2. The amorphous silicon solar cell according to claim 1, wherein the substrate is a stainless steel plate having a polymer resin film on its surface. 3. The amorphous silicon solar cell according to claim 1, wherein the substrate is a polymer resin plate. 4. The amorphous silicon solar cell according to claim 1, wherein the substrate is a polymer resin plate having a polymer resin film on its surface.
JP58224109A 1983-11-30 1983-11-30 Amorphous si solar battery Pending JPS60117682A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58224109A JPS60117682A (en) 1983-11-30 1983-11-30 Amorphous si solar battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58224109A JPS60117682A (en) 1983-11-30 1983-11-30 Amorphous si solar battery

Publications (1)

Publication Number Publication Date
JPS60117682A true JPS60117682A (en) 1985-06-25

Family

ID=16808671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58224109A Pending JPS60117682A (en) 1983-11-30 1983-11-30 Amorphous si solar battery

Country Status (1)

Country Link
JP (1) JPS60117682A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10934172B2 (en) * 2011-04-21 2021-03-02 The Government Of The United States Of America, As Represented By The Secretary Of The Navy In situ grown SiC coatings on carbon materials

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10934172B2 (en) * 2011-04-21 2021-03-02 The Government Of The United States Of America, As Represented By The Secretary Of The Navy In situ grown SiC coatings on carbon materials

Similar Documents

Publication Publication Date Title
JPS59147469A (en) Amorphous silicon solar cell
JPH0652795B2 (en) Flexible amorphous semiconductor solar cell
JP2001148496A (en) Solar cell module and method of manufacturing same
JPS60117682A (en) Amorphous si solar battery
JPS5947776A (en) Amorphous silicon solar battery
JPS59189680A (en) Amorphous silicon solar battery
GB2117971A (en) Amorphous silicon photovoltaic device
JPH08167726A (en) Thin film photoelectric conversion element
EP0103168A2 (en) Amorphous silicon solar battery
JPS6018972A (en) Amorphous silicon solar battery
JPS6060774A (en) Solar cell
JPS5950571A (en) Manufacture of amorphous silicon solar battery
JPH08181339A (en) Flexible solar cell module
JPS62128571A (en) Amorphous silicon solar battery
JPS60198782A (en) Amorphous thin film solar cell
JPS58173873A (en) Amorphous si solar battery and manufacture thereof
JPS63119587A (en) Integrated type amorphous silicon solar battery
JPS6318349B2 (en)
CN214751172U (en) Protective film for high-temperature process of liquid crystal panel
JPH0125234B2 (en)
JPS62123781A (en) Photoelectric conversion element
JPS60130867A (en) Amorphous silicon solar cell
JPH0978236A (en) Forming method of indium/tin oxide transparent conductive film
JPS59193074A (en) Amorphous silicon solar battery
JPH0769531B2 (en) Method for producing transparent conductive film having insulating protective film