JPS60117222A - Nor arithmetic device for nor operation between images - Google Patents

Nor arithmetic device for nor operation between images

Info

Publication number
JPS60117222A
JPS60117222A JP22487983A JP22487983A JPS60117222A JP S60117222 A JPS60117222 A JP S60117222A JP 22487983 A JP22487983 A JP 22487983A JP 22487983 A JP22487983 A JP 22487983A JP S60117222 A JPS60117222 A JP S60117222A
Authority
JP
Japan
Prior art keywords
voltage
image
photocathode
electro
optic crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22487983A
Other languages
Japanese (ja)
Other versions
JPH0230496B2 (en
Inventor
Tsutomu Hara
勉 原
Yoshiji Suzuki
鈴木 義二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP22487983A priority Critical patent/JPS60117222A/en
Publication of JPS60117222A publication Critical patent/JPS60117222A/en
Publication of JPH0230496B2 publication Critical patent/JPH0230496B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F3/00Optical logic elements; Optical bistable devices
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • G02F1/0333Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect addressed by a beam of charged particles

Abstract

PURPOSE:To perform NOR operation between images by writing an image on the surface of electrooptic crystal by charges. CONSTITUTION:A voltage generating circuit 11 applies a voltage which is an odd multiple of a half-wavelength voltage or close to it between a dot type electrode 32 and a transparent electrode 32b, a write voltage is applied to a photoelectric surface 31, and an optical device irradiates the photoelectric surface 31 uniformly to charge the 1st surface 33a of the electrooptic crystal 33 uniformly. Then, the voltage which is an even multiple of the half-wavelength voltage or close to it is applied between the dot type electrode 32 and transparent electrode 32b, the write voltage is applied to the photoelectric surface, and the optical device forms a charge image corresponding to the 1st image Ix on the 1st surface 33a, thus writing the 2nd image Iy on the photoelectric surface by a similar method. The electrooptic crystal 33 is irradiated by a laser light source 4 to obtain the NOR result between images in light transmitted through a polarizer 10.

Description

【発明の詳細な説明】 (技術分野の説明) 本発明は2つの画像間の否定論理和(NOR)をめる否
定論理和演算装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Description of the Technical Field) The present invention relates to a NOR operation device that calculates a NOR between two images.

(発明の背景) 一つの画像に対する論理演q、または画像間の論理演算
は、電子計算機を用いた画像処理技術を利用することに
より可能である。
(Background of the Invention) Logical operations q on one image or logical operations between images are possible by using image processing technology using an electronic computer.

単一の画像の情報に対して論理演算、例えば否定をした
いときは、前記画像の情+lJを画素に分1wシて、各
画素に対して論理演算、例えば否定の演鱒等、を施ずこ
とにより、画像に対する論理演算を施すことができる。
When you want to perform a logical operation, such as negation, on the information of a single image, divide the information of the image + lJ into pixels, and do not perform a logical operation, such as negation, on each pixel. By doing so, logical operations can be performed on the image.

また2つの画像間の論理演算を施したいときは、例えば
論理和をめたいときLl、同様に各画像を画素に分解し
て、対応する両側−同志での論理和をめて画像を再構成
をすれば、iI+i像間の論理演算の結果をめることが
できる。
Also, when you want to perform a logical operation between two images, for example when you want to perform a logical sum, similarly, each image is decomposed into pixels, and the image is reconstructed by performing a logical sum on the corresponding two sides. By doing this, we can obtain the result of the logical operation between the iI+i images.

このような演算を行うために、fI雷子テレビジョン撮
像装置、画像情報を画素単位で蓄積するフレームメモリ
、演算結果を同様に画素単位で蓄積するフレームメモリ
、論理演算のための演算回路が!ν・要となる。
In order to perform such operations, an fI Raiko television imaging device, a frame memory that stores image information pixel by pixel, a frame memory that similarly stores calculation results pixel by pixel, and an arithmetic circuit for logical operations are required! ν・Important.

このような演算の過程は多くの直列処理が含まれ、画素
が多くなるに従って大形の演算処理装置が必要となる。
Such a calculation process involves many serial processes, and as the number of pixels increases, a larger arithmetic processing device is required.

(発明の目的) 本発明の目的は、前述のような画像処理技術とは全く異
なる新規な構成の画像間の否定論理和(N OR)をめ
る否定論理和演算装置を提供することにある。
(Object of the Invention) An object of the present invention is to provide a NOR operation device that calculates a NOR between images with a new configuration that is completely different from the image processing technology described above. .

(発明の構成) 前記目的を達成するために本発明による画像間の否定論
理和をめる否定論理和演算装置は、光電面、第1の面が
前記光電面に対向させられており第2の面に透明電極が
設りられている電気光学結晶、前記光電面と電気光学結
晶板との間に設りられた網目状電極から成る空間光変調
管と、前記空間光変調管の外から1):1記電気光学結
晶の前記第2の面側から直線偏光されたレーデ光で照射
するレーザ光源装置と、前記空間光変調管の光電面。
(Structure of the Invention) In order to achieve the above object, a NOR operation device for performing a NOR between images according to the present invention includes a photocathode, a first surface facing the photocathode, and a second surface facing the photocathode. an electro-optic crystal provided with a transparent electrode on its surface; a spatial light modulation tube comprising a mesh electrode provided between the photocathode and the electro-optic crystal plate; 1): A laser light source device that irradiates linearly polarized Raded light from the second surface side of the electro-optic crystal, and a photocathode of the spatial light modulation tube.

網目状電極、前記透明電極にぜ1作電圧を供給する電圧
発生回路と、演算対象である第1および第2の画像の像
を前記空間光変調管の光電面に形成する書込み光学装置
と、0;I配字間光変調管の光電面を一様に照射する照
射光学装置と、前記電気光学結晶の第1の面で反射した
光が入射させられる偏光子とを含み、前記照射光学装置
により前記空間光変調管の光電面を一様に照射し前記電
圧発生回路により前記網目状電極と前記透明電極間に半
波長電圧の奇数倍またはそれに近い電圧を印加した状態
で前記光電面にp:込み電圧を印加して前記電気光学結
晶の第1の面に一様なfli Rを形成し、前記光学装
置により前記第1の画像の像を前記光電面に形成し、前
記電圧発生回路により網目状電極と前記透明電極間に半
波長電圧の偶数倍またはそれに近い電圧を印加して書込
み電圧を印加し、前記光学装置により前記第2の画像の
像を前記光電面に形成し、前記電圧発生■路により網目
状電極と前記透明電極間に半波長電圧の偶数倍またはこ
れに近い電圧を印加して書込み電圧を印加し、前記レー
ザ光源装置により前記電気光学結晶を照射し前記偏光子
を透過した光に前記第1の画像と第2の画像の画像間の
否定論理和を得るように構成されている。
a voltage generating circuit that supplies an operating voltage to the mesh electrode and the transparent electrode; a writing optical device that forms images of first and second images to be calculated on the photocathode of the spatial light modulation tube; The irradiation optical device includes an irradiation optical device that uniformly irradiates the photocathode of the light modulation tube between the 0; The photocathode of the spatial light modulation tube is uniformly irradiated by the voltage generating circuit, and a voltage that is an odd multiple of the half-wave voltage or close to it is applied between the mesh electrode and the transparent electrode. : Applying a biasing voltage to form a uniform fli R on the first surface of the electro-optic crystal, forming an image of the first image on the photocathode by the optical device, and forming the first image on the photocathode by the voltage generating circuit. A writing voltage is applied between the mesh electrode and the transparent electrode by applying a voltage that is an even multiple of a half-wavelength voltage or a voltage close to it, the image of the second image is formed on the photocathode by the optical device, and the voltage is A writing voltage is applied by applying a voltage that is an even multiple of a half-wavelength voltage or a voltage close to this between the mesh electrode and the transparent electrode through the generation path, and the electro-optic crystal is irradiated with the laser light source device to polarize the polarizer. It is configured to obtain a NOR between the first image and the second image using the transmitted light.

(実施例の説明) 以下、図面等を参照して本発明をさらに詳しく説明する
(Description of Examples) Hereinafter, the present invention will be described in more detail with reference to the drawings and the like.

第1図は本発明による画像間の否定論理和をめる論理和
演算装置の基本的となる部分の構成を示すブロック図で
ある。
FIG. 1 is a block diagram showing the configuration of a basic part of an OR operation device for performing a NOR operation between images according to the present invention.

空間光変調管3の真空容器34の入射窓の内面に光電面
31が形成されている。
A photocathode 31 is formed on the inner surface of the entrance window of the vacuum vessel 34 of the spatial light modulation tube 3 .

LiNbO2の55°カツトの結晶を用いた電気光学結
晶33の第1の面33aは前記光電面に対向させられて
おり第2の面に透明電極33bが形成されている。
A first surface 33a of an electro-optic crystal 33 using a 55° cut crystal of LiNbO2 is opposed to the photocathode, and a transparent electrode 33b is formed on the second surface.

前記電気光学結晶33の第1の面33aの前面に網目状
電極32が配置され−ζいる。
A mesh electrode 32 is disposed in front of the first surface 33a of the electro-optic crystal 33.

前記光電面31.網目状電極32.電気光学結晶33の
第2の面の透明電極33bはそれぞれ接続端子31c、
32c、33cから動作電圧が接続される。
The photocathode 31. Mesh electrode 32. The transparent electrode 33b on the second surface of the electro-optic crystal 33 is connected to a connecting terminal 31c, respectively.
An operating voltage is connected from 32c and 33c.

画像■は画像載置台22に支持されインコヒーレントな
光源lで照明されζおり両像Iの像はレンズ2で前記空
間光変調管3の光電面31上に形成させられている。
The image (2) is supported on the image mounting table 22 and illuminated by an incoherent light source (1), and the images of both images (I) are formed on the photocathode 31 of the spatial light modulation tube 3 by the lens 2.

端子31c、32c、33cから動作電圧を供給し、光
電面31の電圧を網目状電極32.電気光学結晶33の
第2の面の透明電極33bの電圧よりも低い電圧(書込
め電圧)にし、網目状電極32、電気光学結晶3:(の
第2の面の透明電極33b間に電圧をJjえて、光電面
3Iの放出する電子の像に対応する電荷像を電気光学結
晶33の第1面に形成する。
The operating voltage is supplied from the terminals 31c, 32c, and 33c, and the voltage on the photocathode 31 is transferred to the mesh electrode 32. A voltage (writing voltage) lower than the voltage of the transparent electrode 33b on the second surface of the electro-optic crystal 33 is set, and a voltage is applied between the mesh electrode 32 and the transparent electrode 33b on the second surface of the electro-optic crystal 3: Then, a charge image corresponding to the image of electrons emitted from the photocathode 3I is formed on the first surface of the electro-optic crystal 33.

網目状電極32の電圧が、電気光学結晶33の第2の面
の透明電極33bの電圧より低いときは電気光学結晶3
3の第1の面33aに網目状電極32の電圧と等しい電
圧になるように電子が付着して(δ〈1)負電荷像が形
成される。電子が飛来して来ない部分は無電荷の状態に
ある。
When the voltage of the mesh electrode 32 is lower than the voltage of the transparent electrode 33b on the second surface of the electro-optic crystal 33, the electro-optic crystal 3
Electrons are attached to the first surface 33a of the electrode 3 at a voltage equal to the voltage of the mesh electrode 32 (δ<1), and a negative charge image is formed. The parts to which electrons do not come are in an uncharged state.

網目状電極32の電圧が、電気光学結晶33の第2の面
の透明電極33bの電圧より高いときは電気光学結晶3
3の第1の面33aに到達した電子により発生させられ
る二次電子(δ〉1)が前記網目状電極32に捕捉され
るごとにより当該部分に結果的に正電荷が蓄積される。
When the voltage of the mesh electrode 32 is higher than the voltage of the transparent electrode 33b on the second surface of the electro-optic crystal 33, the electro-optic crystal 3
Each time secondary electrons (δ>1) generated by electrons that have reached the first surface 33a of the mesh electrode 32 are captured by the mesh electrode 32, positive charges are accumulated in the corresponding portion.

正電荷による電位が前記細目状電極32の電位と等しく
なったときに平衡し、その後に電子が飛来してきても電
荷は変化しない。
Equilibrium occurs when the potential due to positive charges becomes equal to the potential of the fine electrode 32, and the charge does not change even if electrons come flying after that.

電子が飛来して来ない部分は無電荷の状態に保たれる。Parts where electrons do not come in remain uncharged.

電子を入射さヒなければ、電圧を変えても電気光学結晶
33の表面の電荷は保存される。
As long as no electrons are incident, the charge on the surface of the electro-optic crystal 33 is preserved even if the voltage is changed.

この電気光学結晶33の状態は、レーザ光源装置からの
レーザ光により読み出される。
The state of this electro-optic crystal 33 is read out by laser light from a laser light source device.

レーザ光源装置は、レーザ発振器4.偏光子5゜レンズ
6、ピンボール7、コリメーティングレンズ8から構成
されている。
The laser light source device includes a laser oscillator 4. It consists of a polarizer 5° lens 6, a pinball 7, and a collimating lens 8.

レーザ発振器4からの光は偏光子5で結晶のX軸(また
はy′軸)から45°の方向の直線偏向に変換される。
The light from the laser oscillator 4 is converted by a polarizer 5 into linear polarization in a direction of 45° from the X axis (or y' axis) of the crystal.

そしてレンズ6で拡大されピンホール7で余分な回折光
が除去される。
The light is then magnified by a lens 6 and excess diffracted light is removed by a pinhole 7.

ピンボール7を透過した光はコリメーティングレンズ8
で平行光に変換され、ハーフミラ−9を通して電気光学
結晶の第2の面から、結晶に入射させられる。
The light transmitted through the pinball 7 is passed through the collimating lens 8
The parallel light is converted into parallel light, and is made incident on the crystal from the second surface of the electro-optic crystal through the half mirror 9.

LiNbO3の電気光学結晶33の表面電荷によって、
結晶のX方向、y′方向の屈折率は次式のように変化す
る。
Due to the surface charge of the LiNbO3 electro-optic crystal 33,
The refractive index of the crystal in the X direction and the y' direction changes as shown in the following equation.

nx =nx(、−rx ・lE−+1+In+ ’ 
=nV ’o−r3” ・E・・・(2)ここで、 nX01 1131 ’O’電荷の存在しない時のX方
向。
nx = nx(, -rx ・lE-+1+In+'
=nV 'o-r3'' ・E... (2) Here, nX01 1131 'O' X direction when no charge exists.

y′方向の屈折率 E:電荷の存在により結晶内に生ずる電界rχ r y
l :電気光学定数 電気光学結晶33に入射した光のX方向成分、y′方向
成分の速度が異なるので(結晶のx、y1方向の屈折率
が異なるから)結晶表面で反射して戻ってくる光のX方
向成分、y′方向成分に次式のような位相差が生じ、一
般には楕円偏光となって出力してくる。
Refractive index E in the y' direction: electric field rχ r y generated within the crystal due to the presence of charges
l: Electro-optic constant Since the speeds of the X-direction component and the y'-direction component of the light incident on the electro-optic crystal 33 are different (because the refractive index of the crystal in the x and y1 directions is different), it is reflected at the crystal surface and returned. A phase difference as shown in the following equation occurs between the X-direction component and the y'-direction component of the light, and the light is generally output as elliptically polarized light.

I’=(2yr/λ)・(E6)・2 (ry ’−r
x) ・=(31ここで、 λ:レーザ発振器4の出力する光の波長1:結晶33の
厚さ この出力光を偏光子10を通過させれば一つの偏波方向
成分だけが取り出され、出力として入力像Iによって変
調されたコヒーレント光像か得られる。この時出力光強
度IOは次の式で与えられる。
I'=(2yr/λ)・(E6)・2 (ry'−r
x) ・=(31 Here, λ: Wavelength of light output from laser oscillator 4 1: Thickness of crystal 33 If this output light is passed through polarizer 10, only one polarization direction component is extracted. A coherent optical image modulated by the input image I is obtained as an output.At this time, the output optical intensity IO is given by the following equation.

1o =Asin 2r/2 =Asin2 (W/2) ・ (V/Vπ)・−・(
41ここで、 V :電荷σに等価な電圧 ■π:電荷σπに等価な電圧(半波長電圧)(4)式に
基づく曲線を第2図に示す。
1o = Asin 2r/2 = Asin2 (W/2) ・ (V/Vπ)・−・(
41 Here, V: Voltage equivalent to charge σ ■π: Voltage equivalent to charge σπ (half-wave voltage) A curve based on equation (4) is shown in FIG.

第2図に示されているように表面の電荷により電気光学
結晶33内の電界が変わることにより反射光の強度が変
化する。
As shown in FIG. 2, the electric field within the electro-optic crystal 33 changes due to surface charges, thereby changing the intensity of the reflected light.

第2図から次のことが理解できる。The following can be understood from Figure 2.

電気光学結晶の表面電荷がOlつまり光電子の入射がな
かった場合(以下aの状態と言う)は、ハーフミラ−9
を介して電気光学結晶33に入り第1面で反射し、ハー
フミラ−9で反射され、偏光子10を通過したレーザ光
は0である。
When the surface charge of the electro-optic crystal is O1, that is, when there is no incidence of photoelectrons (hereinafter referred to as state a), half mirror 9
The laser light that enters the electro-optic crystal 33 via the laser beam, is reflected by the first surface, is reflected by the half mirror 9, and passes through the polarizer 10 is zero.

表面電荷が−σπのとき(以下すの状態)および表面電
荷がσπのとき(以下Cの状態)では透過した光は最大
となる。
When the surface charge is -σπ (hereinafter referred to as the state S) and when the surface charge is σπ (hereinafter referred to as the state C), the transmitted light is at a maximum.

表面電荷が−σπ/2のとき(以下dの状態)および表
面電荷がσπ/2のとき(以下0のIJel)では透過
した光は前記最大の光の1/2の光が得られる。
When the surface charge is −σπ/2 (hereinafter d state) and when the surface charge is σπ/2 (hereinafter referred to as 0 IJel), the transmitted light is 1/2 of the maximum light.

第3図は本発明による画像間の否定論理和をめる否定論
理和演算装置の実施例を示すブロック図である。
FIG. 3 is a block diagram showing an embodiment of a NOR operation device for performing a NOR operation between images according to the present invention.

空間光変調装置3およびレーザ光源装置の構成は一第1
図を参照して説明した所と変わらない。
The configuration of the spatial light modulator 3 and the laser light source device is as follows.
This is the same as explained with reference to the figure.

空間光変調装置3の各部の電極は、電圧発生回路11に
接続されている。
Electrodes of each part of the spatial light modulator 3 are connected to a voltage generation circuit 11.

電圧発生回路11の出力端子(alは画像書き込み電圧
Vaを発生する。Vaは通常は+3kV(書込み禁止状
態)で0のときが書込み状態である。網1月状電極32
は電圧発生回路11の出力端子tblから電圧vbが接
続され、電気光学結晶33の第2の面の透明電極33b
は、電圧発生回路11の出力端子(elから電圧Vcが
接続される。これらの電圧は通富正の電圧であって、■
b−■cく0のときには、電気光学結晶33の第1の面
33aに負電荷による書込み、Vb−Vc>Qのときに
は正電荷による書込みが行われる。
The output terminal (al) of the voltage generating circuit 11 generates the image writing voltage Va. Va is normally +3 kV (writing prohibited state) and when it is 0, it is the writing state.
is connected to the voltage vb from the output terminal tbl of the voltage generating circuit 11, and the transparent electrode 33b on the second surface of the electro-optic crystal 33
A voltage Vc is connected from the output terminal (el) of the voltage generation circuit 11. These voltages are positive voltages, and
When b--c is 0, writing is performed on the first surface 33a of the electro-optic crystal 33 using negative charges, and when Vb-Vc>Q, writing is performed using positive charges.

この実施例において前述した半波長電圧■πは、−1,
0kVである。
In this example, the half-wave voltage ■π mentioned above is −1,
It is 0kV.

演算の対象となる画像は画像載置台22に載置されイン
コヒーレンi・光淘目こより、ハーフミラ−16を介し
て照射され透過光の(g!はハーフミラ−17、撮像レ
ンズ2を介して空間光変調管3の光電面31に形成され
る。
The image to be calculated is placed on the image mounting table 22 and is irradiated from the incoherent light beam through the half mirror 16 to the space through the half mirror 17 and the imaging lens 2. It is formed on the photocathode 31 of the light modulation tube 3.

インコヒーシン1−光源lがらの光は前記ハーフミラ−
16により、一部分別され、全反射鏡14で反射されて
シャッタ13に向&Jられる。
Incohesin 1 - The light from the light source is the half mirror.
16, the light is partially separated, reflected by the total reflection mirror 14, and directed toward the shutter 13.

シャッタ13が開いているときにシャッタI3を透過し
た光は全反射鏡15にJ、り反射され、ハーフミラ−1
7によりilFl成度され一ζ、レンズ2により空間光
変調管3の光電面31を一様に照射する。
When the shutter 13 is open, the light transmitted through the shutter I3 is reflected by the total reflection mirror 15, and is reflected by the half mirror 1.
7, the photocathode 31 of the spatial light modulation tube 3 is uniformly irradiated by the lens 2.

ジャック■3はシャッタ駆動回路12によりその開閉が
制御される。
The opening and closing of the jack 3 is controlled by a shutter drive circuit 12.

画像の書込めは前記シャッタ13が閉じた状態で行われ
る。
Image writing is performed with the shutter 13 closed.

次に、第4図(A)に示す画像1xと、同図(B)に示
す画像Iy間の否定論理和をめる例について詳しく説明
する。
Next, an example of calculating the negative logical sum between the image 1x shown in FIG. 4(A) and the image Iy shown in FIG. 4(B) will be described in detail.

前処理 電圧発生回路114;::より、網目状電極の端子32
CにVb=2kV、電気光学結晶33の透明電極にV 
c’= 3 kVを印加する。Vb −Vc=−1,O
kVで負の半波長電圧−■πが印加されることになる。
From the pre-processing voltage generation circuit 114;::, the terminal 32 of the mesh electrode
Vb=2kV at C, V at the transparent electrode of the electro-optic crystal 33
Apply c'=3 kV. Vb -Vc=-1,O
A negative half-wavelength voltage -■π of kV is applied.

シャッタ駆動回路12によりシャッタ13を開いた状態
で光電面31の電圧Vaを+3kVがら0に変化させて
、書込み状態を形成する。
With the shutter 13 open by the shutter drive circuit 12, the voltage Va of the photocathode 31 is changed from +3 kV to 0 to form a write state.

光電面31は一様に照射されるので電気光学結晶33の
第1面に一様な電荷−σπが形成される。
Since the photocathode 31 is uniformly irradiated, a uniform charge -σπ is formed on the first surface of the electro-optic crystal 33.

シャッタ13を閉シー4で、光電面31の電圧Vaを0
から+3kVに変化させて、一様な電荷−σπの書込み
を終了する。
The shutter 13 is closed with the shutter 4, and the voltage Va of the photocathode 31 is set to 0.
to +3 kV to complete the writing of uniform charge -σπ.

第1イメージIxの書込み 網目状電極の端子32CにVb=2kV、電気光学結晶
33の透明電極にVc=2kVを印加する。Vb−Vc
=OkVである。
Vb=2 kV is applied to the terminal 32C of the write mesh electrode of the first image Ix, and Vc=2 kV is applied to the transparent electrode of the electro-optic crystal 33. Vb-Vc
= OkV.

画像Ixを第3図の画像台22の位置に配置する。The image Ix is placed at the position of the image stage 22 in FIG.

画48 I x バインコヒーレント光源1で照射され
ており、白丸の部分の像が空間>Y、変調管3の光電面
に形成される。
Image 48 I x is irradiated by the Vine coherent light source 1 , and an image of the white circle portion is formed on the photocathode of the modulation tube 3 in space>Y.

光電面の電圧Vaをl−:(k Vから0に変化さ・V
て書込み状態を形成する。
The voltage Va of the photocathode is changed from l-: (k V to 0 ・V
to form a write state.

第1イメージlxの背景部分(黒地の部分)に相当する
電気光学結晶33の表面には電子が飛来しない。
Electrons do not fly to the surface of the electro-optic crystal 33 corresponding to the background portion (black portion) of the first image lx.

したがってその部分の電荷は変化せず先に)η、き込ま
れたーσπが保存される。
Therefore, the charge on that part does not change, and the previously inserted -σπ is preserved.

その部分の特性は第2図のbの位置にあたる。The characteristics of that part correspond to the position b in FIG.

第1イメージ1xの信号部う3(白丸の部分)には電子
が飛来し、発生した二次電子ば網L1状電極32に捕捉
され負の電(111が減少し゛C結果的に電荷は0とな
る。この状態は第2図の1)の状態に対応することにな
る。
Electrons fly to the signal part 3 (white circle part) of the first image 1x, and the generated secondary electrons are captured by the mesh L1-shaped electrode 32, resulting in a negative charge (111 decreases, and as a result, the charge becomes 0). This state corresponds to the state 1) in FIG.

光電面の電圧Vaを0から13kVに変化さ氾て第1イ
メージlxの書込みを終了する。
The voltage Va of the photocathode is changed from 0 to 13 kV, and writing of the first image lx is completed.

第2イメージ+yの11−込み 画像Iyを第3図の画像台22の位置に配置する。2nd image + 11- of y included The image Iy is placed at the position of the image stage 22 in FIG.

画像xyと画像lxは中央の白丸の部分が共通しており
、他の白丸の位置は互いにずれている。網目状電極の端
732CにVb=2kV、電気光学結晶33の透明電極
にVc=2kVを印加した状態(第1イメージの書込み
と同じ状態)で光電面に書込み電圧V、i=0を印加す
る。第2イメージIyの背景部勿(黒地の部分)Gご相
当する電気光学結晶33の表面には電子が飛来しない。
Image xy and image lx have a white circle in the center in common, and the positions of the other white circles are shifted from each other. With Vb = 2 kV applied to the end 732C of the mesh electrode and Vc = 2 kV applied to the transparent electrode of the electro-optic crystal 33 (same state as in writing the first image), a writing voltage V, i = 0 is applied to the photocathode. . Electrons do not fly to the surface of the electro-optic crystal 33 corresponding to the background part (black part) G of the second image Iy.

したがって第2イメージの黒地の部分に対応する結晶表
面は第1イメージlxにより書き込まれた状態、電荷O
お・よび−σπの状態を維持する。
Therefore, the crystal surface corresponding to the black part of the second image is in the state written by the first image lx, and the charge O
and maintain the state of −σπ.

つまり、第1イメージの黒地の部分の電荷は−σπの電
荷をもち、第1イメージの白丸の部分は0の電荷を保つ
ことになる。
In other words, the black portion of the first image has a charge of −σπ, and the white circle portion of the first image maintains a charge of 0.

第2イメージの白丸の部分で第1イメージの黒字の部分
の電荷G:L−σπからOに変化する。
The charge G in the black part of the first image changes from L-σπ to O in the white circle part of the second image.

第1イメージの中央の白丸の部分はすでに電荷0の状態
にあり、光電面から第2イメージに原因する電荷が飛来
してもこの平衡状態は変化しない。
The white circle in the center of the first image is already in a state of zero charge, and this equilibrium state does not change even if a charge from the photocathode is transferred to the second image.

書込み電圧VaをOから+3kVにして第2イメージの
書込みを終了する。
The writing voltage Va is changed from O to +3 kV to complete the writing of the second image.

以上のようにして71き込ま17に電荷は電圧Va。As described above, the electric charge on the 71 and 17 becomes the voltage Va.

vbを0にしても保存される。It is saved even if vb is set to 0.

このようにして書き込まれた電気光学結晶に、レーザ光
源装置のレーザ発振器4からの読み取り光を与える志、
電気光学結晶33の表面の電荷−σπの部分は結晶内に
半波長電圧による電界が形成されているので、強められ
た干渉光が反射される。
A desire to provide reading light from the laser oscillator 4 of the laser light source device to the electro-optic crystal written in this way;
In the portion of the surface of the electro-optic crystal 33 with a charge of -σπ, an electric field is formed within the crystal due to the half-wavelength voltage, so that the intensified interference light is reflected.

その結果第4図(C)に示すように読み出される。As a result, the data is read out as shown in FIG. 4(C).

以上詳しく説明した実施例につき本発明の範囲内で種々
の変形を施すことができる。
Various modifications can be made to the embodiments described in detail above within the scope of the present invention.

第5図に示すように、空間光度414管3の中にマイク
ロチャンネルブレート 微弱な画像の否定論理和をめるときに便利である。
As shown in FIG. 5, this is convenient when placing the NOR of a weak microchannel plate image in the spatial luminosity 414 tube 3.

実施例として空間光変調管の電気光学結晶として、Li
NbO3の55°カツI・の結晶を用いる例を示したが
、KDP,L3SOなどの単結晶も同様に利用できる。
As an example, Li is used as an electro-optic crystal for a spatial light modulation tube.
Although an example using a 55° cut I. crystal of NbO3 has been shown, single crystals such as KDP and L3SO can also be used in the same way.

(効果の説明) 以上説明したように本発明による装置は電気光学結晶表
面に画像を電荷により書込むことにより、画像間の否定
論理和をめることができる。
(Description of Effects) As explained above, the device according to the present invention can perform a negative disjunction between images by writing an image on the surface of an electro-optic crystal using electric charges.

本発明による装置は画像間の比較または照合に広く利用
できる。
The device according to the invention can be widely used for comparison or matching between images.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による画像間の否定論理和をめる否定論
理和演算装置の主要部の構成を示すブ1゛lツク図であ
る。 第2図は本発明による画像間の否定論理和をめる否定論
理和演算装置の空間光変調管の電気光学結晶の特性を示
すグラフである。 第3図は本発明による画像間の否定論理和をめる否定論
理和演算装置の実施例示すブロック図である。 第4図は論理演算の対象である画像と論理演算の結果を
示す説明図である。 第5図は空間光変調管の他の実施例を示す断面図である
。 」・・・インコヒーレント光源 2・・・レンズ3・・
・空間光変調管 31・・・光電面32・・・網目状電
極 33・・・電気光7結晶34・・・マイク1.1チ
ヤンネルプレート4・・・レージ゛発1級器 5・・・偏光子 6・・・レンズ 7・・・ピンボール 8・・・コリメーティングレンズ 9・・・ハーフミラ−10・・・偏光子11・・・電圧
発生回路 12・・・シャッタ駆動器II′8 工3・・・シ、トソタ 14、’ l 5・・・反射鏡 16.17・・・ハーフミラ− 20・・・再生像面 22・・・画像配置台 特許出願人 浜松ボl−二クス株式会社代理人 弁理士
 井 ノ 1] 壽 手 紅E ’tili 、’j’、j巳 店:昭和59
年 6月 1日 昭和58年特 、1′1° 願第224879号2、発
明の名称 画像間の否定論理和をめるIll:χij命理和演算装
置3、補正をする考− 事件との関(系 9・婬1r出願人 4、代 理 人 9前記光電面全ニー俤子乎−早叶:月;−9≠」(丈2
ヌ]l東込みを行い、前記レーザ光源装置により前記電
気光学結晶を!!(1射し前記偏光子を透過し・た光に
前記第1の画像と第2の画(8!の画像間の否定論理和
を得るように構成したが!i像間の否定論理和をめる否
定論理和演算装置。 (2)前記電気光学結晶は、L ’+ N l) 03
の55゜カットの結晶である特許請求の範囲第1項記載
の画像間の否定論理和をめる否定論理和演算装置。 (3)前記空間光変調上は光電面と網目状電極との間に
マイクロチャンネルプレー1・が配置されてい(2) 
明細書第4頁第17行から同第6頁第9行の[前記目的
を達成するために・・・・・構成されている。」を以下
のとおり補正する。 [前記目的を達成するために本発明による画像間の否定
論理和をめる否定論理和演算装置は、光電面、第1の面
が前記光電面にり1向させられており第2の面に透明電
極が設りられている電気光学結晶、前記光電面と電気光
学結晶板との間に設けられた網目状電極から成る空間光
変調管と、前記空間光変調管の外から前記電気光学結晶
の前記第2の面側から直線偏光されたレーザ光で照射す
るレーザ光源装置と、前記空間光変調管の光電面。 網目状電極、 1iij記透明電極に動作電圧を供給す
る電圧発生回路と、演算対象である第1および第2の画
像の像を1111記空間光変調1ゞ[の光電面に形成す
る書込み光学装置と、+”+ij記空同空間光変調管電
面を一様に照射する照射光学装置と、前記電気光学結晶
の第1の面で反射−した光が入射させられる偏光子とを
含み、+1ii記電圧発4目ill l?ifにより、
前記網目状電橋、前記透明電極間に半波長電圧の4数倍
またはそれに近い電圧を1−11加し、前記光電面に再
込み電圧を印加して、0:1記照射光学装置により前記
光電面を一様にli@ rI、J t4−ることによっ
て前記電気光学結晶の第1の面に一様な電(;ガを形成
し、前記電圧発生回路により前記1i111」状電極、
前記透明電極間に半波長電圧の1111数倍ま〕こはそ
れに近い電−圧を印加し、前記光電面に店込み電圧を印
加して、前記光学装置により前記第1の画像を前記光電
面に形成することによっ−r +iif記1iji像に
対応する電t:■像を前記電気光学結晶の第1の面に形
成し、1);1記第1の画像に対応する電荷像を保存し
た状態で、前記電圧発止回路により前記網11状電極、
前記透明電極間に半波長電圧の偶数倍う1:たはそれに
近い電圧を印加し、前記光電面に’i!、i込み電圧を
印加して、前記光学装置により前記第2の画像を前記光
電面に形成することによって第2の画像の書込めを行い
、前記レーザ光源装置により前記電気光学結晶を照射し
前記偏光子を透過した光に前記第1の画像と第2の画像
の画像間の否定論理和を得るように構成されている。」 (3) 明細書第17頁第8行と同第9行の間に以下の
文を挿入する。 「以上説明した実施例では、光電面にイメージを照射し
た状態で71−込み電圧Vaを変化させて書込みを行っ
たが、Vaを1込み状態に保ち、光電面へのイメージを
光学シャッタで制御して書込み動作を行わせることがで
きる。」 以 上
FIG. 1 is a block diagram showing the configuration of the main parts of a NOR operation device for performing a NOR operation between images according to the present invention. FIG. 2 is a graph showing the characteristics of the electro-optic crystal of the spatial light modulation tube of the NOR operation device for calculating the NOR between images according to the present invention. FIG. 3 is a block diagram showing an embodiment of a NOR operation device for performing a NOR operation between images according to the present invention. FIG. 4 is an explanatory diagram showing an image that is the object of a logical operation and the result of the logical operation. FIG. 5 is a sectional view showing another embodiment of the spatial light modulation tube. "...Incoherent light source 2...Lens 3...
・Spatial light modulation tube 31...Photocathode 32...Mesh electrode 33...Electro-optical 7 crystal 34...Microphone 1.1 channel plate 4...Range generator 1st class device 5... Polarizer 6... Lens 7... Pinball 8... Collimating lens 9... Half mirror 10... Polarizer 11... Voltage generating circuit 12... Shutter driver II'8 Engineering 3...Si, Tosota 14,'l 5...Reflector 16.17...Half mirror 20...Reproduction image surface 22...Image arrangement stand Patent applicant Hamamatsu Vol-Nix Co., Ltd. Company agent Patent attorney Ino 1] Jute Kurenai 'tili, 'j', jmi Branch: 1978
Special Patent Application No. 224879, June 1, 1982, 1'1° Application No. 224879 2, title of the invention Ill: χij imperative sum calculation device 3, consideration for making amendments - Relationship with the case (Series 9, 1r applicant 4, agent 9 said photocathode full knee 乤子乎-early leaf: month;-9≠" (length 2
[Nu]l East-filling is performed, and the electro-optic crystal is heated by the laser light source device! ! (It is configured to obtain the NOR between the first image and the second image (8! images) using the light that is irradiated and transmitted through the polarizer, but the NOR between the !i images is (2) The electro-optic crystal is L′+N l) 03
A NOR calculation device for calculating a NOR between images as claimed in claim 1, which is a 55° cut crystal. (3) On the spatial light modulation, a microchannel plate 1 is arranged between the photocathode and the mesh electrode (2)
From page 4, line 17 to page 6, line 9 of the specification [In order to achieve the above object...]. ' shall be amended as follows. [In order to achieve the above object, the present invention provides a NOR operation device for performing a NOR operation between images, which includes a photocathode, a first surface facing the photocathode, and a second surface facing the photocathode. an electro-optic crystal provided with a transparent electrode; a spatial light modulation tube comprising a mesh electrode provided between the photocathode and the electro-optic crystal plate; a laser light source device that irradiates with linearly polarized laser light from the second surface side of the crystal; and a photocathode of the spatial light modulation tube. a voltage generating circuit that supplies an operating voltage to the mesh electrode, the transparent electrode 1iiii, and a writing optical device that forms images of the first and second images to be calculated on the photocathode of the spatial light modulator 1111; and an irradiation optical device that uniformly irradiates the same spatial light modulation tube surface, and a polarizer into which the light reflected by the first surface of the electro-optic crystal is incident, +1ii According to the recorded voltage 4th ill l?if,
A voltage of 1-11 times several times the half-wavelength voltage or close to it is applied between the mesh electric bridge and the transparent electrode, and a recurrent voltage is applied to the photocathode, and the 0:1 irradiation optical device By uniformly applying li@rI,Jt4- to the photocathode, a uniform electric field is formed on the first surface of the electro-optic crystal, and the voltage generating circuit generates the 1i111''-shaped electrode,
A voltage approximately 1111 times the half-wavelength voltage is applied between the transparent electrodes, a store voltage is applied to the photocathode, and the first image is transferred to the photocathode by the optical device. By forming a -r+iif image on the first surface of the electro-optic crystal, the charge image corresponding to the first image is stored. In this state, the voltage starting circuit causes the mesh 11-shaped electrode,
A voltage equal to or close to an even multiple of the half-wavelength voltage is applied between the transparent electrodes, and 'i!' is applied to the photocathode. , the second image is written by applying an i-writing voltage and forming the second image on the photocathode by the optical device, and the electro-optic crystal is irradiated by the laser light source device to write the second image. It is configured to obtain a NOR between the first image and the second image using the light transmitted through the polarizer. (3) Insert the following sentence between page 17, line 8 and line 9 of the specification. ``In the embodiment described above, writing was performed by changing the 71-input voltage Va with an image irradiated onto the photocathode, but it is possible to keep Va in the 1-input state and control the image onto the photocathode with an optical shutter. The write operation can be performed by

Claims (1)

【特許請求の範囲】 +1) 光電面、第1の面が前記光電面に対向させられ
ており第2の面に透明電極が設けられている電気光学結
晶、前記光電面と電気光学結晶板との間に設けられた網
目状電極から成る空間光変調管と、前記空間光変調管の
外から前記電気光学結晶の前記第2の面側から直線偏光
されたレーザ光で照射するレーザ光源装置と、…1記空
間光変調管の光電面、 1lil目状電極、前記透明電
極に動作電圧を供給する電圧発生回路と、演算対象であ
る第1および第2の画像の像を前記空間光変調管の光電
面に形成する書込み光学装置と、前記空間光変調管の光
電面を一様に照射する照射光学装置と、前記電気光学結
晶の第1の面で反射した光が入射させられる偏光子とを
含め1.前記照射光学装置により前記空間光変調管の光
電1jりを一様に照射し前記電圧発生回路により前記網
目状電極と前記透明電極間に半波長電圧の奇数倍または
それに近い電圧を印加した状態で前記光電面に書込み電
圧を印加して前記電気光学結晶の第1の面に一様な電荷
を形成し、前記光学装置、により前記第1の画像の像を
前記光電面に形成し、前記電圧発生回路により網目状電
極と前記透明電極間に半波長電圧の偶数倍または、それ
に近い電圧を印加して書込み電圧を印加し、前記光学装
置に、1;り前記第2の画像の像を前記光電面に形成し
、前記電圧発生回路により網目状電極と前記透明電極間
に半波長電圧の偶数倍またはこれに近い電圧を印加して
書込み電圧を印加し、前記レーザ光源装置により前記電
気光学結晶を照射し前記偏光子を透過した光に前記第1
の画像と第2の画像の画像間の否定論理和を得るように
構成した画像間の否定論理和をめる否定論理和演算装置
。 (2)前記電気光学結晶は、LiNb03(7)55゜
カットの結晶である特許請求の範囲第1項記載の画像間
の否定論理和をめる否定論理和演算装置。 (3)前記空間光度i!+lJ管は光電面と網目状電極
との間にマイクロチャンネルプレー1が配置されCいる
特許請求の範囲第1 Jfi記載の画像間の否定論理和
をめる否定論理和演算装置。
[Claims] +1) A photocathode, an electro-optic crystal having a first surface facing the photocathode and a transparent electrode provided on a second surface, the photocathode and an electro-optic crystal plate; a spatial light modulation tube comprising a mesh electrode provided between the spatial light modulation tube; and a laser light source device that irradiates the second surface of the electro-optic crystal with a linearly polarized laser beam from outside the spatial light modulation tube. . . . 1 photocathode of the spatial light modulation tube, 1 lil eye-shaped electrode, a voltage generation circuit that supplies an operating voltage to the transparent electrode, and images of the first and second images to be calculated on the spatial light modulation tube. a writing optical device formed on the photocathode of the spatial light modulation tube; an irradiation optical device that uniformly irradiates the photocathode of the spatial light modulation tube; and a polarizer into which light reflected by the first surface of the electro-optic crystal is incident. Including 1. The irradiation optical device uniformly irradiates the spatial light modulation tube with photoelectric radiation 1j, and the voltage generation circuit applies a voltage that is an odd multiple of the half-wave voltage or close to it between the mesh electrode and the transparent electrode. applying a writing voltage to the photocathode to form a uniform charge on a first surface of the electro-optic crystal; forming an image of the first image on the photocathode by the optical device; A writing voltage is applied by applying a voltage equal to or close to an even multiple of the half-wavelength voltage between the mesh electrode and the transparent electrode by a generation circuit, and an image of the second image is transferred to the optical device. The electro-optic crystal is formed on a photocathode, and the voltage generation circuit applies a voltage that is an even multiple of a half-wavelength voltage or a voltage close to this between the mesh electrode and the transparent electrode to apply a writing voltage, and the laser light source device The first polarizer is applied to the light transmitted through the polarizer
A NOR calculation device configured to obtain a NOR between an image of an image and a second image. (2) The NOR operation device for performing a NOR operation between images according to claim 1, wherein the electro-optic crystal is a LiNb03 (7) 55° cut crystal. (3) The spatial luminosity i! A +lJ tube has a microchannel plate 1 disposed between a photocathode and a mesh electrode.Claim 1. A NOR calculation device for calculating a NOR between images as described in claim 1.
JP22487983A 1983-11-29 1983-11-29 Nor arithmetic device for nor operation between images Granted JPS60117222A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22487983A JPS60117222A (en) 1983-11-29 1983-11-29 Nor arithmetic device for nor operation between images

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22487983A JPS60117222A (en) 1983-11-29 1983-11-29 Nor arithmetic device for nor operation between images

Publications (2)

Publication Number Publication Date
JPS60117222A true JPS60117222A (en) 1985-06-24
JPH0230496B2 JPH0230496B2 (en) 1990-07-06

Family

ID=16820593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22487983A Granted JPS60117222A (en) 1983-11-29 1983-11-29 Nor arithmetic device for nor operation between images

Country Status (1)

Country Link
JP (1) JPS60117222A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4986598A (en) * 1987-04-24 1991-01-22 Toyota Jidosha Kabushiki Kaisha Wind deflector for a sunroof
JPH0318814A (en) * 1989-06-16 1991-01-28 Victor Co Of Japan Ltd Method for driving light-light conversion element

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5864742A (en) * 1981-10-09 1983-04-18 Hamamatsu Tv Kk Space modulating device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5864742A (en) * 1981-10-09 1983-04-18 Hamamatsu Tv Kk Space modulating device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4986598A (en) * 1987-04-24 1991-01-22 Toyota Jidosha Kabushiki Kaisha Wind deflector for a sunroof
JPH0318814A (en) * 1989-06-16 1991-01-28 Victor Co Of Japan Ltd Method for driving light-light conversion element

Also Published As

Publication number Publication date
JPH0230496B2 (en) 1990-07-06

Similar Documents

Publication Publication Date Title
JPH06118359A (en) Phase type space optical modulator
EP2846186A1 (en) Light modulator and exposure head
JPH079560B2 (en) Matched filtering method
JPS60117222A (en) Nor arithmetic device for nor operation between images
GB1056575A (en) A modulator for a light beam
JPS6318337A (en) Image arithmetic logic unit
JPS6273241A (en) Image logical arithmetic device
JPS60212728A (en) Logical operating device for deriving difference between pictures
JPS60117221A (en) Or arithmetic device for or operation between images
JPH0238932B2 (en)
JP2821059B2 (en) Electron holography real-time phase measurement method and apparatus
JP2536931B2 (en) Spatial light modulator
JPH0561615B2 (en)
JP2686067B2 (en) Image logic operation device
JPH059012B2 (en)
Casasent Spatial light modulators and their use in optical data processing
JPH0234367B2 (en)
JPH0422500B2 (en)
JP2686067C (en)
JPS6091328A (en) Spatial optical modulating device
Warde et al. Microchannel spatial light modulator as a storage medium
JPH0792712B2 (en) Image logic operation device
JPH0570129B2 (en)
JPH0271167A (en) Device for detecting surface potential distribution
JPS61156222A (en) Electronic image projecting device