JPS5864742A - Space modulating device - Google Patents

Space modulating device

Info

Publication number
JPS5864742A
JPS5864742A JP16183181A JP16183181A JPS5864742A JP S5864742 A JPS5864742 A JP S5864742A JP 16183181 A JP16183181 A JP 16183181A JP 16183181 A JP16183181 A JP 16183181A JP S5864742 A JPS5864742 A JP S5864742A
Authority
JP
Japan
Prior art keywords
crystal plate
voltage
electrode
image
mirror surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16183181A
Other languages
Japanese (ja)
Other versions
JPH0234366B2 (en
Inventor
Yoshiji Suzuki
鈴木 義二
Tsutomu Hara
勉 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu TV Co Ltd
Original Assignee
Hamamatsu TV Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu TV Co Ltd filed Critical Hamamatsu TV Co Ltd
Priority to JP16183181A priority Critical patent/JPH0234366B2/en
Publication of JPS5864742A publication Critical patent/JPS5864742A/en
Publication of JPH0234366B2 publication Critical patent/JPH0234366B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J31/00Cathode ray tubes; Electron beam tubes
    • H01J31/08Cathode ray tubes; Electron beam tubes having a screen on or from which an image or pattern is formed, picked up, converted, or stored
    • H01J31/50Image-conversion or image-amplification tubes, i.e. having optical, X-ray, or analogous input, and optical output
    • H01J31/501Image-conversion or image-amplification tubes, i.e. having optical, X-ray, or analogous input, and optical output with an electrostatic electron optic system

Landscapes

  • Image-Pickup Tubes, Image-Amplification Tubes, And Storage Tubes (AREA)

Abstract

PURPOSE:To enable removal of written electric-charge images or rewriting of electric-charge images by installing between a crystalline plate and an electron- image producing means, a secondary-electron catching electrode which is located so that it doesn't prevent any electric-charge image from being formed on the mirror surface of the crystalline plate, and a power source which can change a power source used for the electrode of the crystalline plate. CONSTITUTION:In an airtight glass case, a photoelectric screen 5, a focusing electrode 6, a micro-channel plate MCP7, a secondary-electron cathcing electrode 8 and an electrooptic crystalline plate 9 are arranged in that order. The electrode 8 and the plate 9 are placed parallel to each other so that they are spaced at a distance of, for example, 0.5mm.. The front surface of the plate 9 is provided with a transparent crystalline plate electrode 91. A power source (D) works as a power source for the electrode 8. Power sources (E-G), which are the elements of a crystalline-plate-electrode-power source, are used for determining the electric potential of the electrode 91 of the crystalline plate 9, and connected to the electrode 91 by the change-over-operation of a switch 15.

Description

【発明の詳細な説明】 本発明は、電気光学結晶板を用いた空間変調装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a spatial modulation device using an electro-optic crystal plate.

記録媒体として用いるマイクロチャンネルプレートを用
いた空間光変調装置(以下M 8 L Mという)は1
976年のSPIg 177巻67−70頁のワード等
の論文に示されている。 まずこのM8LMについて原
理と動作を略述する。
A spatial light modulation device (hereinafter referred to as M 8 L M) using a microchannel plate used as a recording medium is 1
976, SPIg, Vol. 177, pp. 67-70, in an article by Ward et al. First, the principle and operation of this M8LM will be briefly described.

第1図は前記MSLMの構成を示す略図である。FIG. 1 is a schematic diagram showing the configuration of the MSLM.

この装置の光電面22、マイクロチャンネルプレート(
MCP )24、および電気光学結晶板28を基本的に
備えており、それ等は入射窓2および出射窓田を有する
真空容器内に封入されている。 23.25はそれぞれ
MCPの人、出力電極である。 電気光学結晶板28の
前面は誘電体境面27を形成しておシ、後面には透明電
極四が設けられている。 電気光学結晶板28の前記誘
電体境面27は、面に溢ってきわめて高い抵抗を持って
いる。
The photocathode 22 of this device, the microchannel plate (
It basically comprises an MCP (MCP) 24 and an electro-optic crystal plate 28, which are enclosed in a vacuum container having an entrance window 2 and an exit window. 23 and 25 are the MCP person and output electrode, respectively. The front surface of the electro-optic crystal plate 28 forms a dielectric interface 27, and the rear surface is provided with a transparent electrode 4. The dielectric interface 27 of the electro-optic crystal plate 28 has a very high resistance over the entire surface.

書込光aが光電面nに入射して、電子像が形成されると
、その電子像はMCP24により増幅される。 そして
増幅された電子像は誘電体鏡面27に入射させられる。
When the writing light a enters the photocathode n and an electronic image is formed, the electronic image is amplified by the MCP 24. The amplified electron image is then made incident on the dielectric mirror surface 27.

 その結果の表面の電荷分布が電気光学結晶板邸内に屈
折率の空間的な変化を生ぜしめる。 左下方から投射さ
れた書込光は半透明鏡31により反射され電気光学結晶
に達し、誘電体境面27で反射されて戻される。
The resulting surface charge distribution causes spatial variations in the refractive index within the electro-optic crystal plate. The writing light projected from the lower left is reflected by the semitransparent mirror 31, reaches the electro-optic crystal, is reflected by the dielectric interface 27, and is returned.

電気光学結晶板28の屈折率は、表面電荷像に依存する
ので、反射光dは位相または強度の変調を受けることに
なる。
Since the refractive index of the electro-optic crystal plate 28 depends on the surface charge image, the reflected light d undergoes phase or intensity modulation.

前記構成に係るM#8LMは、電荷像を長時間記憶して
おくのには適しているが、再利用のために、電荷像を消
去するのには、若干の問題があるように思われる。
M#8LM according to the above configuration is suitable for storing charge images for a long time, but there seems to be some problems in erasing charge images for reuse. .

本発明の主目的は多くの使用モードを選択可能であシ、
書込まれた電荷像を消去し、あるいは一定な均一な電荷
分布状態を形成して、再誉込みを可能にする空間変調装
置を提供することにある。
The main purpose of the present invention is to be able to select many modes of use;
The object of the present invention is to provide a spatial modulation device that erases a written charge image or forms a constant and uniform charge distribution state to enable rewriting.

前記主目的を達成するために本発明による空間変調装置
は、電子像発生手段と電気光学結晶板を含み、前記心気
光学結晶板の鏡面に前記電子像発生源からの電子により
電荷像を形成し、前記電荷像と他面に設けられている透
明電極間の電界により結晶板内の屈折率の2次元分布を
変化させる放射線像変換管を用いた空間変調装置におい
て、前記結晶板と電子像発生手段との間に境面への電荷
像形成を妨げないように配置され、前記焼面で発生した
2次電子を捕集するだめの2次電子捕集電極と、前記捕
集電極に捕集電圧を供給する捕集電極電源と、前記透明
電極に鏡面の2次電子放出比を1よりも大きくするだめ
の第1の電圧、前記放出比を実質的に1とするだめの第
2の電圧を切換接続可能な結晶板電極電源または前記第
2の電圧と前記放出比を1より小とするための第3の電
圧を切換接続可能な結晶板電極電源とを設けて構成され
ている。
In order to achieve the above main object, the spatial modulation device according to the present invention includes an electron image generating means and an electro-optic crystal plate, and forms a charge image on a mirror surface of the hypochondral optical crystal plate by electrons from the electron image generating source. In a spatial modulation device using a radiation image conversion tube that changes the two-dimensional distribution of refractive index within the crystal plate by an electric field between the charge image and a transparent electrode provided on the other surface, the crystal plate and the electron image are A secondary electron collecting electrode is disposed between the generating means so as not to impede the formation of a charge image on the boundary surface, and is for collecting secondary electrons generated on the burning surface, and a collection electrode power source for supplying a collection voltage; a first voltage applied to the transparent electrode to make the secondary electron emission ratio of the mirror surface larger than 1; and a second voltage applied to the transparent electrode to make the emission ratio substantially 1. The crystal plate electrode power supply is provided with a crystal plate electrode power supply that can switch and connect the voltage or a crystal plate electrode power supply that can switch and connect the second voltage and the third voltage for making the emission ratio smaller than 1.

以下図面等を参照して、本発明による空間変調装置をさ
らに詳しく説明する。
The spatial modulation device according to the present invention will be described in more detail below with reference to the drawings and the like.

第2図は本発明による空間変調装置の実施例を示す図で
ある。 図において1は被写体、2は対物レンズ、3は
対物レンズZにより形成された被写体の光学像である。
FIG. 2 is a diagram showing an embodiment of the spatial modulation device according to the present invention. In the figure, 1 is a subject, 2 is an objective lens, and 3 is an optical image of the subject formed by an objective lens Z.

 4はガラス気密容器および容器に内蔵される構成を含
めて光像変換管全体を相称する。 前記容器内には光電
面5、集束電極6、マイクロチャンネルプレート(以下
MCPという)7.2次電子捕集電極8、電気光学結晶
板9がこの順に配列されている。
Reference numeral 4 denotes the entire optical image conversion tube including the glass airtight container and the structure built into the container. Inside the container, a photocathode 5, a focusing electrode 6, a microchannel plate (hereinafter referred to as MCP) 7, a secondary electron collecting electrode 8, and an electro-optic crystal plate 9 are arranged in this order.

前記捕集電極8は銅メツシユで、30本/關の格子間隔
をもち開口比は604である。
The collection electrode 8 is a copper mesh having a grid spacing of 30 lines/square and an aperture ratio of 604.

そしてこの捕集電極8は電気光学結晶板9と平行に間隔
0.5Mを保たされている。
The collection electrode 8 is arranged parallel to the electro-optic crystal plate 9 with a distance of 0.5M.

容器の後端面は情報取出窓となっている。The rear end of the container serves as an information extraction window.

MCP 7の前面にはMCPの電子入射側の電極である
入力電極71、後面には電子出射側の電極である出力電
極nが設けられている。 電気光学結晶板9として例え
ばL t NbO5の結晶またはLiTa0aの結晶等
を利用することができる。−この結晶9の前面は鏡面に
仕上げられ以下鏡面92ということにする。 また結晶
板9の後面にFiS透明な結晶板電極91が設けられて
いる。
An input electrode 71, which is an electrode on the electron incident side of the MCP, is provided on the front surface of the MCP 7, and an output electrode n, which is an electrode on the electron output side, is provided on the rear surface. As the electro-optic crystal plate 9, for example, L t NbO5 crystal or LiTa0a crystal can be used. - The front surface of this crystal 9 is finished to a mirror surface and will hereinafter be referred to as a mirror surface 92. Further, an FiS transparent crystal plate electrode 91 is provided on the rear surface of the crystal plate 9.

なお、この実施例では光電面を用いるようにしであるが
、X線のように直接MCP 7を励起できるような像源
の場合には、光電面は不可欠な構成でなくなる。 MC
P以前の構成が電子偉発生手段の実施例であると理解さ
れたい。
In this embodiment, a photocathode is used, but in the case of an image source that can directly excite the MCP 7, such as X-rays, the photocathode is no longer an essential component. M.C.
It should be understood that the configuration before P is an embodiment of the electronic wave generation means.

A−B−C−D−B−F−Gはそれぞれ電源であって、
電源Aは光電面5と集束電極6間のバイヤス電圧を提供
し、電源Bは集束電極6とMCPの入射側電極71間に
電圧を提供し、電源CはMCP 7のバイヤス電圧を提
供する。
A-B-C-D-B-F-G are power sources,
Power supply A provides the bias voltage between the photocathode 5 and the focusing electrode 6, power supply B provides the voltage between the focusing electrode 6 and the input side electrode 71 of the MCP, and power supply C provides the bias voltage of the MCP 7.

この実施例装置では、これ等の電源により、光電面6は
基準電位であるMCPの出射側の電極の電位(Ov)に
対して−4,0KVに保たれている。 同様に集束電極
は−3,7KVにMCPの入射例の電極71は−LOK
Vに保たれている。
In the device of this embodiment, these power supplies keep the photocathode 6 at -4.0 KV with respect to the reference potential (Ov) of the electrode on the emission side of the MCP. Similarly, the focusing electrode is -3.7 KV, and the electrode 71 in the MCP incident example is -LOK.
It is maintained at V.

電源りは2次電子捕集電極8の電源を構成し2次電子捕
集電極8は4.OKVに保たれている。
The power source constitutes the power source of the secondary electron collecting electrode 8, and the secondary electron collecting electrode 8 is connected to the 4. It is maintained at OKV.

電源E−F−Gはそれぞれ電気光学結晶板9の電極91
の電位を決定するための電源で結晶板電極電源の豐素で
ある。 スイッチ15の切換えにより、前記電極91に
接続され、15aに接続されたときは0.IKV、15
bに接続されたときは4KV、 15 c K接続され
たときは8KVの電圧が電極91に供給される。
Power sources E-F-G are connected to electrodes 91 of the electro-optic crystal plate 9, respectively.
This is the power source for determining the potential of the crystal plate electrode. By switching the switch 15, it is connected to the electrode 91, and when connected to the electrode 15a, it is 0. IKV, 15
A voltage of 4 KV is supplied to the electrode 91 when the electrode is connected to the electrode 91, and a voltage of 8 KV is supplied to the electrode 91 when the electrode is connected to the electrode 91.

半透明鏡10、単色フィルタ11、コリメータレンズ1
2、点光源13、および写真フィルム14は読出しのた
めの装置である。
Semi-transparent mirror 10, monochromatic filter 11, collimator lens 1
2, a point light source 13, and a photographic film 14 are devices for reading.

光源13としてレーザ光源を用いれば、可干渉光による
光学像が得られる。 この光学像は画像演算に用いるこ
とができる。
If a laser light source is used as the light source 13, an optical image using coherent light can be obtained. This optical image can be used for image calculations.

第3図は電気光学結晶板9の鏡面乾の2次電子放出比δ
を入射電子の加速電圧を横軸にとって示したグラフであ
る。
Figure 3 shows the mirror dry secondary electron emission ratio δ of the electro-optic crystal plate 9.
This is a graph showing the accelerating voltage of incident electrons on the horizontal axis.

加速電圧はこの実施例ではMCP7の出力電極と鏡面9
2間の電位差によって与えられ、鏡面92の電位は表面
に電荷が存在しないときは、透明電極91の電位と略等
しい。
In this embodiment, the acceleration voltage is applied to the output electrode of MCP 7 and the mirror surface 9.
The potential of the mirror surface 92 is approximately equal to the potential of the transparent electrode 91 when no charge exists on the surface.

第3図に示すように加速電圧が0.IKVより低いEl
以下ではδ〈1であシ、ElからE2(=’4KV)の
間ではδ>1、E、を超えるとδ〈1となる。
As shown in FIG. 3, when the acceleration voltage is 0. El lower than IKV
Below, δ<1, between El and E2 (='4KV), δ>1, and beyond E, δ<1.

本発明ではこのE2の前後でδの符号が変化することを
利用して、電荷像の形成および消去または均一な電荷分
布状態を形成するようにしたものである。
In the present invention, the change in the sign of δ before and after E2 is utilized to form and erase a charge image or to form a uniform charge distribution state.

本発明による装置の動作モードは次のI、I、11Nに
大別できる。 第4図に前記1%  Nの動作モードを
第3図に示した2次電子放出比と対比して示しである。
The operating modes of the device according to the present invention can be broadly classified into the following I, I, and 11N modes. FIG. 4 shows the operation mode of the 1% N in comparison with the secondary electron emission ratio shown in FIG.

 第5図には同様な第■、第■の動作モードを示しであ
る。 各図において、縦軸は鏡面92の電位を示し、e
(o)、  !((1))e←)はそれぞれ、電荷の存
在しないこと、正の電荷が存在していること、および負
の電荷が存在していることを示す。 またWrは書込、
Erは消去、Prは準備を意味する。
FIG. 5 shows similar operation modes (1) and (2). In each figure, the vertical axis indicates the potential of the mirror surface 92, e
(o), ! ((1))e←) indicates the absence of charge, the presence of positive charge, and the presence of negative charge, respectively. Also, Wr is writing,
Er means erase and Pr means preparation.

また1各図において書込まれた像はそれぞれ特殊な形状
を想定し2次元像の1次元方向のみを横軸にと9略図示
したものである。
In addition, the images drawn in each figure are each assumed to have a special shape, and are schematically illustrated with only the one-dimensional direction of the two-dimensional image as the horizontal axis.

(I)  まず第1の動作モードから説明する(第4図
■参照)。
(I) First, the first operation mode will be explained (see FIG. 4).

このモードでは書込Wr時にスイッチ15を接点15m
に接続し電気光学結晶板9の透明電極91の電圧を0.
 I KVとする。 被写体1からの書込み光によシ光
電画5に被写体1の像が形成される。 光電変換された
電子像はMCP7で増倍され、電気光学結晶板9に増倍
電子が入射させられる。 その結果電気光学結晶板9の
鏡面92上に正電荷像e(+)が形成される。
In this mode, when writing Wr, switch 15 is set to contact 15m.
and set the voltage of the transparent electrode 91 of the electro-optic crystal plate 9 to 0.
I KV. An image of the subject 1 is formed on the photoelectric image 5 by the writing light from the subject 1. The photoelectrically converted electron image is multiplied by the MCP 7, and the multiplied electrons are made to enter the electro-optic crystal plate 9. As a result, a positive charge image e(+) is formed on the mirror surface 92 of the electro-optic crystal plate 9.

電気光学結晶板9の鏡面92には当初電荷が存在しない
ので、透明電極91と略同電位で0.1KVに保たれて
いる。 すなわち鏡面92の電位はMCP7の出力電−
72よシ0.IKV高いので、第4図左側に示すように
2次電子放出比δはδ〉1である。  したがってこの
面への1次電子の入射量に応じて正に帯電される。
Since there is no electric charge initially on the mirror surface 92 of the electro-optic crystal plate 9, it is maintained at approximately the same potential as the transparent electrode 91, ie, 0.1 KV. In other words, the potential of the mirror surface 92 is the output voltage of the MCP7.
72yoshi0. Since the IKV is high, the secondary electron emission ratio δ is δ>1 as shown on the left side of FIG. Therefore, it is positively charged depending on the amount of primary electrons incident on this surface.

放出された2次電子は鏡面92より高い電位烏=4KV
の2次電子捕集電極8に捕集される。
The emitted secondary electrons have a higher potential than the mirror surface 92 = 4KV
The secondary electron collecting electrode 8 collects the electrons.

読取(Wr)時にもスイッチ15は接点15aに接続さ
れている。 点光源13からの光はコリメータレンス1
2で平行光化される。
The switch 15 is also connected to the contact 15a during reading (Wr). The light from the point light source 13 passes through the collimator lens 1
2 makes it parallel light.

そしてフィルタ11で単色化される。  この単色化平
行光は電気光学結晶板9で変調される。 すなわち前記
単色化平行光は、電気光学結晶板9がその鏡面92上の
正電荷像にょシ結晶中の光路長が変化しているので干渉
により強められる部分と、弱められる部分が生じ光学像
に対応する変調が行なわれる。
Then, the filter 11 converts the image into a monochromatic color. This monochromatic parallel light is modulated by an electro-optic crystal plate 9. In other words, since the electro-optic crystal plate 9 is a positively charged image on the mirror surface 92 of the monochromatic parallel light, and the optical path length in the crystal is changing, there are parts where it is strengthened and parts where it is weakened due to interference, resulting in an optical image. A corresponding modulation is performed.

変調された光は半透明鏡10で反射され写真フィルム1
4上に記録されろう 消去(F’r )時にはスイッチ15を15bに接続L
 、電極91を4KVにする。 図示しない消去用の光
源を用いて、光’を面5全面に一様な強さの光を照射す
る。 光電変換により得られた均一な分布の電子はMC
P7で増倍され電気光学結晶板9に入射し、鏡面ψ上の
電荷を0にして消去を終了する。
The modulated light is reflected by a semi-transparent mirror 10 and transferred to a photographic film 1.
When erasing (F'r) recorded on 4, connect switch 15 to 15b L
, set the electrode 91 to 4KV. Using a light source for erasing (not shown), the entire surface 5 is irradiated with light of uniform intensity. The uniformly distributed electrons obtained by photoelectric conversion are MC
At P7, the light is multiplied and enters the electro-optic crystal plate 9, and the charge on the mirror surface ψ is reduced to 0, thereby completing erasing.

前述したように電気光学結晶板9の鏡面は、透明電極の
電位は4KVに正の帯電による電位上昇分が部分的に加
わった電位となっている。 そのため、鏡面92の電位
は第4図左側に示すようにE2(=4KV)より高いの
で鏡面92のδはδく1となる。 したがって、E2に
なるまでは負電荷が加えられる傾向にあ’)、E2に達
するとδ=1となり帯電は0となシ鏡面92の電位は4
KVとなる。
As described above, the potential of the transparent electrode on the mirror surface of the electro-optic crystal plate 9 is 4 KV plus a potential increase due to positive charging. Therefore, since the potential of the mirror surface 92 is higher than E2 (=4 KV) as shown on the left side of FIG. 4, δ of the mirror surface 92 becomes δ×1. Therefore, there is a tendency for negative charges to be added until E2 is reached. When E2 is reached, δ=1 and the charge becomes 0, and the potential of the mirror surface 92 is 4.
It becomes KV.

(旬 次に第2の動作モードについて説明する(第4図
■参照)。
Next, the second operation mode will be explained (see Fig. 4 (■)).

このモードは、準備、書込、消去の順に実行され、準備
の工程では、スイッチ15は接点15aに接続され電気
光学結晶板の電極91は0.IKVに保たれる。 書込
工程ではスイッチ15は15bに接続され、電気光学結
晶板の電極91は4.OKVに保たれる。 また消去の
工程ではスイッチ15は接点15aに接続され、電極9
1は0.IKVに保たれる。
This mode is executed in the order of preparation, writing, and erasing. In the preparation step, the switch 15 is connected to the contact 15a and the electrode 91 of the electro-optic crystal plate is set to 0. Maintained by IKV. In the writing process, the switch 15 is connected to 15b, and the electrode 91 of the electro-optic crystal plate is connected to 4. Maintained at OKV. Further, in the erasing process, the switch 15 is connected to the contact 15a, and the electrode 9
1 is 0. Maintained by IKV.

準備Prの際に、光電面5の全面に一様な強さの光を照
射する。 光電変換により得られた電子像はMCP7に
より増倍され、増倍された電子像は電気光学結晶板9に
入射させられる。 鏡面92の電荷を正(e(+−))
にする。
During preparation Pr, the entire surface of the photocathode 5 is irradiated with light of uniform intensity. The electron image obtained by photoelectric conversion is multiplied by the MCP 7, and the multiplied electron image is made incident on the electro-optic crystal plate 9. The charge on the mirror surface 92 is positive (e(+-))
Make it.

前述したように電気光学結晶板9の鏡面92の電位は当
初0.1KVにある。
As described above, the potential of the mirror surface 92 of the electro-optic crystal plate 9 is initially at 0.1 KV.

このとき、鏡面92の2次電子放出比δはδ〉1である
から、結晶板の鏡面92は一様に正に帯電される。 そ
の結果鏡面92の電位はE2(−4KV)に近づいて均
一な正電位分布となる。
At this time, since the secondary electron emission ratio δ of the mirror surface 92 is δ>1, the mirror surface 92 of the crystal plate is uniformly positively charged. As a result, the potential of the mirror surface 92 approaches E2 (-4KV), resulting in a uniform positive potential distribution.

書込(Wr)時には、光電面5に被写体1の像3を投影
する。 光電変換により得られた電子像は、MCP7で
増倍され電気光学結晶板9に投射される。
During writing (Wr), an image 3 of the subject 1 is projected onto the photocathode 5 . The electronic image obtained by photoelectric conversion is multiplied by the MCP 7 and projected onto the electro-optic crystal plate 9.

そして鏡面92上に正電荷中に反転像を形成する。 す
なわち、書込は前述した準備の工程で電気光学結晶板9
の鏡面郭はあらかじめ一様に正に帯電されているところ
から開始する。
Then, an inverted image is formed in the positive charge on the mirror surface 92. That is, writing is performed on the electro-optic crystal plate 9 in the preparation process described above.
The mirror surface starts from a point that is uniformly positively charged in advance.

電気光学結晶板9の鏡面92は書込当初電極91によっ
て与えられた電位(=4KV)K上記正電荷e(+)に
よる電位上昇(Ez=4KVに近い)を加えてほぼ4 
K V + E2= 8 KVである。
The mirror surface 92 of the electro-optic crystal plate 9 has a potential of approximately 4 KV (approximately 4 KV) given by the electrode 91 at the time of writing, plus the potential increase due to the positive charge e(+) (Ez = close to 4 KV).
KV+E2=8 KV.

ここでは第4図左側に示すようにδはδ〈1であるから
、光学像に対応する境面92への1次電子の入射量に応
じて負の電荷がたまる傾向にある。 すなわち、一様な
正の電荷e((1)に像に対応する分布の負の電荷が重
なるので正電荷中に反転像が形成されるのである。
Here, as shown on the left side of FIG. 4, since δ is δ<1, negative charges tend to accumulate depending on the amount of primary electrons incident on the boundary surface 92 corresponding to the optical image. That is, since the uniform positive charge e((1) is overlapped with the negative charge of the distribution corresponding to the image, an inverted image is formed in the positive charge.

読取(Wr )は前述した第1の動作モードと変らない
Reading (Wr) is no different from the first mode of operation described above.

消去(Er)はこのモードの準備(P、)と同じである
。 電気光学結晶板9の境面92は、0、IKV−E2
(=4KV)O間にある(像の形成されていない部分は
Ex)。
Erasing (Er) is the same as preparing (P,) in this mode. The boundary surface 92 of the electro-optic crystal plate 9 is 0, IKV-E2
(=4KV) between O (the part where no image is formed is Ex).

電気光学結晶板9の鏡面92のδはδ〉1であるから結
晶板の鏡面92は正に帯電される傾向にある。 その結
果、鏡面92の電位がE2になるまでは正電荷が増加し
てE2に達するとδ=1となり、一様に正に帯電させら
れて反転像が消去されたことになる。
Since δ of the mirror surface 92 of the electro-optic crystal plate 9 is δ>1, the mirror surface 92 of the crystal plate tends to be positively charged. As a result, the positive charge increases until the potential of the mirror surface 92 reaches E2, and when it reaches E2, δ=1, which means that the mirror surface 92 is uniformly positively charged and the inverted image is erased.

消去終了によシ、次の書込が可能となる。After erasing is completed, next writing becomes possible.

(1)  次に第3の動作モードについて説明する(第
5図■参照)。
(1) Next, the third operation mode will be explained (see FIG. 5).

この動作モードでは、書込時、スィッチ15ハ接点15
cに接続され電気光学結晶板9の透明電極91は8.O
KVに保たれる。 消去のさいはスイッチ15は接点1
5cに接続され透明電極91は4.0KVK保たれる。
In this operating mode, when writing, switch 15 is connected to contact 15.
The transparent electrode 91 of the electro-optic crystal plate 9 connected to 8. O
KV is maintained. During erasing, switch 15 is contact 1
5c and the transparent electrode 91 is maintained at 4.0KVK.

書込(Wr)時に光電面5に被写体1の像を投影すると
、光電変換によシ像に対応する電子像が形成される。 
この像はMCP7で増倍される。 増倍された電子像は
電気光学結晶板9に入射させられる。 その結果、電気
光学結晶板9の鏡面92上に負電荷像e(−)が形成さ
れる。
When an image of the subject 1 is projected onto the photocathode 5 during writing (Wr), an electronic image corresponding to the image is formed by photoelectric conversion.
This image is multiplied by MCP7. The multiplied electron image is made incident on an electro-optic crystal plate 9. As a result, a negative charge image e(-) is formed on the mirror surface 92 of the electro-optic crystal plate 9.

この負電荷像形成の原理は次のとおシテある。The principle of negative charge image formation is as follows.

電気光学結晶の鏡面92は当初前述したように8・OK
Vである。 ここでは第54図左側に示すように2次電
子放出比δはδく1である。
The mirror surface 92 of the electro-optic crystal was originally 8.OK as described above.
It is V. Here, as shown on the left side of FIG. 54, the secondary electron emission ratio δ is δ×1.

そのため鏡面92への1次電子の入射量に応じて鏡面は
負に帯電される。
Therefore, the mirror surface 92 is negatively charged depending on the amount of primary electrons incident on the mirror surface 92.

読取(Wr)は先に第1のモードで説明したところと変
らない。
Reading (Wr) is the same as described above in the first mode.

消去(Er )は光電面全体に一様な強さの光を照射す
ることにより行なわれる。
Erasing (Er) is performed by irradiating the entire photocathode with light of uniform intensity.

光電変換により得られた一様な電子流はMCP7で増倍
される。
The uniform electron flow obtained by photoelectric conversion is multiplied by MCP7.

増倍された電子は、電気光学結晶板9の境面値に入射さ
せられ”(0)となる。 その結果、鏡面92の電荷は
消去される。 消去前に電気光学結晶板9の鏡面ψは、
4KVに負の帯電e(→による電位下降分が重畳された
状態にある。 負電荷e (−)の存在する部分の表面
電位はE2よりも低いので、鏡面92の2次電子放出比
δはδ〉1である。 このためE2になるまでは正電荷
が加わる。 E2に達すると、δ=1となシ帯電は均一
に消去されe<o>となZつ頭 次に第4の動作モード
について説明する(第5図■参照)。
The multiplied electrons are made incident on the interface value of the electro-optic crystal plate 9 and become ``(0).As a result, the charge on the mirror surface 92 is erased.Before erasing, the mirror surface ψ of the electro-optic crystal plate 9 teeth,
It is in a state in which the potential drop due to the negative charge e (→) is superimposed on 4KV. Since the surface potential of the part where the negative charge e (-) exists is lower than E2, the secondary electron emission ratio δ of the mirror surface 92 is δ>1. Therefore, a positive charge is added until E2 is reached. When E2 is reached, δ=1 and the charge is uniformly erased and becomes e<o>. Next, the fourth operation The mode will be explained (see Figure 5 ■).

このモードにおいて、スイッチ15は準備のさい15c
に接続され結晶板の電極91は8 KVに保たれている
。 書込のさいはスイッチ15は15bに接続され結晶
の電極91は4 KVに保たれる。 消去のさいはスイ
ッチ15は15cに接続され結晶板の電極91は5KV
K保たれている。
In this mode, switch 15 is set to 15c during preparation.
The electrode 91 of the crystal plate connected to is maintained at 8 KV. During writing, switch 15 is connected to 15b and crystal electrode 91 is maintained at 4 KV. During erasing, the switch 15 is connected to 15c and the electrode 91 of the crystal plate is connected to 5KV.
K is maintained.

準備(Pr)は光電面5全面に一様な強さの光を照射す
ることによシ開始される。
Preparation (Pr) is started by irradiating the entire surface of the photocathode 5 with light of uniform intensity.

光電変換により得られた一様な電子はMCP7により増
倍され、結晶板9に入射させられる。 電気光学結晶板
9の鏡面92は当初8.OKV近辺であるから、2次電
子放出比δはδく1したがって鏡面には負電荷e (−
)が一様に付着する。
Uniform electrons obtained by photoelectric conversion are multiplied by the MCP 7 and made incident on the crystal plate 9. The mirror surface 92 of the electro-optic crystal plate 9 was originally 8. Since it is near OKV, the secondary electron emission ratio δ is δ×1. Therefore, the mirror surface has a negative charge e (−
) adheres uniformly.

書込(Wr)は結晶板の電極91の電圧を4.OKVに
してから行なわれ、境面92の2次電子放出比δはδ〉
1であるから負電荷e (−)の中に反転像が形成され
る。
For writing (Wr), the voltage of the electrode 91 of the crystal plate is set to 4. The secondary electron emission ratio δ of the interface 92 is δ〉
1, an inverted image is formed in the negative charge e (-).

読取は第1のモードで説明したところと変らない。Reading is the same as described in the first mode.

消去(gr )は電極91の電圧を8. OKVにして
鏡面92をδく1の領域にもたらして前面に一様に負電
荷e(→を付着させる〇 以上詳しく説明したように、本発明による装置では2次
電子捕集電極を設け、かつ電気光学結晶板の電極電源を
多様に切換可能にしたので、消去または準備が答易とな
った。
For erasing (gr), the voltage of the electrode 91 is set to 8. OKV is applied to bring the mirror surface 92 to the region of δ1, and a negative charge e(→ is uniformly attached to the front surface) As explained in detail above, in the device according to the present invention, a secondary electron collecting electrode is provided, and Since the electrode power source of the electro-optic crystal plate can be switched in various ways, erasing or preparing becomes easy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のMSLMの構成を示す略図、第2図は本
発明によるMSLMの実施例を示す図、第3図は電気光
学結晶の2次電子放出特性を示すグラフ、第4図は前記
実施例装置のw、1および第2の動作モードを説明する
ためのグラフ、第5図は前記実施例装置の第3および第
4の動作モードを説明するためのグラフである。 1・・・被写体     2・・・対物レンズ3・・・
光学像     4・・・光学像変換管5・・・光電面
     6・・・集束電極7・・・マイクロチャンネ
ルプv−) (=MCP )71・・・MCPの電子入
射側の電極 72・・・M CPの電子出射側の電極8・・・2次電
子捕集電極 9・・・電気光学結晶板 91・・・電気光学結晶板の電極 92・・・電気光学結晶板の鏡面 10・・・半透明鏡    11・・・単色フィルタ1
2・・・コリメータレンズ 七・・点光源     14・・・写真フィルム15・
・・切換スイッチ  21・・・入射窓22・・・光電
面     囚・・・!vicP入力電極ス・・・MC
P      25・・・MCP出力電極が・・・ギャ
ップ    27・・・誘電体鏡面悠・・・電気光学結
晶IL29・・・透明電極器・・・出射窓     3
1・・・半透明鏡A〜G・・・電源 才1図 72図 才3図 才5 (I[[) (X2I)
FIG. 1 is a schematic diagram showing the configuration of a conventional MSLM, FIG. 2 is a diagram showing an embodiment of the MSLM according to the present invention, FIG. 3 is a graph showing the secondary electron emission characteristics of an electro-optic crystal, and FIG. FIG. 5 is a graph for explaining the w, first and second operation modes of the embodiment device. FIG. 5 is a graph for explaining the third and fourth operation modes of the embodiment device. 1...Subject 2...Objective lens 3...
Optical image 4... Optical image conversion tube 5... Photocathode 6... Focusing electrode 7... Microchannel amplifier v-) (=MCP) 71... Electrode 72 on the electron incident side of MCP... Electrode 8 on the electron emission side of MCP...Secondary electron collecting electrode 9...Electro-optic crystal plate 91...Electrode 92 of the electro-optic crystal plate...Mirror surface 10 of the electro-optic crystal plate...・Semi-transparent mirror 11... Single color filter 1
2... Collimator lens 7... Point light source 14... Photographic film 15.
...Selector switch 21...Incidence window 22...Photocathode prisoner...! vicP input electrode...MC
P 25...MCP output electrode...gap 27...dielectric mirror surface Yu...electro-optic crystal IL29...transparent electrode device...exit window 3
1... Semi-transparent mirror A to G... Power source 1 Figure 72 Figure 3 Figure 5 (I[[) (X2I)

Claims (6)

【特許請求の範囲】[Claims] (1)  電子像発生手段と電気光学結晶板を含み、前
記電気光学結晶板の鏡面に前記電子像発生源からの電子
により、電荷像を形成し、前記電荷像と他面に設けられ
ている透明電極間の電界によシ結晶板内の屈折率の2次
元分布を変化させる放射線像変換管を用いた空間変調装
置において、前記結晶板と電子像発生手段との間に鏡面
への電荷像形成を妨げないように配置され、前記鏡面で
発生した2次電子を捕集するだめの2次電子捕集電極と
、前記捕集電極に捕集電圧を供給する捕集電極電源と、
前記透明電極に鏡面の2次電子放出比を1よシも大きく
するための第1の電圧、前記放出比を実質的に1とする
だめの第2の電圧を切換接続可能な結晶板電極電源とを
設けたことを特徴とする空間変調装置。
(1) It includes an electron image generating means and an electro-optic crystal plate, and forms a charge image on a mirror surface of the electro-optic crystal plate by electrons from the electron image generation source, and is provided on the other surface from the charge image. In a spatial modulation device using a radiation image conversion tube that changes the two-dimensional distribution of refractive index within a crystal plate by an electric field between transparent electrodes, a charge image is formed on a mirror surface between the crystal plate and an electron image generating means. a secondary electron collection electrode that is arranged so as not to impede formation and that collects secondary electrons generated on the mirror surface; a collection electrode power source that supplies a collection voltage to the collection electrode;
A crystal plate electrode power supply capable of switching and connecting a first voltage for increasing the secondary electron emission ratio of the specular surface to more than 1 and a second voltage for making the emission ratio substantially 1 to the transparent electrode. A spatial modulation device characterized by comprising:
(2)  前記結晶板電極電源によシ、第1の電圧を接
続して正電荷像を形成して書込を行ない、第2の電圧を
接続して一様な電子流で結晶板鏡面を照射して消去を行
なうように構成した特許請求の範囲第1項記載の空間変
調装置。
(2) A first voltage is connected to the crystal plate electrode power supply to form a positive charge image for writing, and a second voltage is connected to the crystal plate mirror surface with a uniform electron flow. The spatial modulation device according to claim 1, which is configured to perform erasing by irradiation.
(3)前記結晶板電極電源により、第1の電圧を接続し
て一様な電子流で結晶板鏡面を照射することによシ正電
荷を一様に形成して準備を行ない、第2の電圧を接続し
て正電荷中に反転像を形成する書込みを行ない、第1の
電圧を接続して前記準備に相当する消去を行なうように
構成した特許請求の範囲第1項記載の空間変調装置。
(3) Using the crystal plate electrode power supply, connect the first voltage and irradiate the mirror surface of the crystal plate with a uniform electron flow to uniformly form positive charges and prepare the second voltage. The spatial modulation device according to claim 1, wherein a voltage is connected to perform writing to form an inverted image in a positive charge, and a first voltage is connected to perform erasing corresponding to the preparation. .
(4)電子像発生手段と電気光学結晶板を含み、前記電
気光学結晶板の鏡面に前記電子像発生源からの電子によ
り、電荷像を形成し、前記電荷像と他面に設けられてい
る透明電極間の電界により結晶板内の屈折率の2次元分
布を変化させる放射線像変換管を用いた空間変調装置に
おいて、前記結晶板と電子像発生手段との間に鏡面への
電荷像形成を妨げないように配置され、前記鏡面で発生
した2次電子を捕集するための2次電子捕集電極と、前
記捕集電極に捕集電圧を供給する捕集電極電源と、前記
透明電極に鏡面の2次電子放出比を実質的に1とするだ
めの第2の電圧、前記放出比を1よりも小とするための
第3の電圧を切換接続可能な結晶板電極電源とを設けた
ことを特徴とする空間変装置。
(4) comprising an electron image generating means and an electro-optic crystal plate, a charge image is formed on a mirror surface of the electro-optic crystal plate by electrons from the electron image generation source, and the charge image is provided on the other surface of the electro-optic crystal plate; In a spatial modulation device using a radiation image conversion tube that changes the two-dimensional distribution of refractive index within a crystal plate by an electric field between transparent electrodes, a charge image is formed on a mirror surface between the crystal plate and an electron image generating means. a secondary electron collection electrode for collecting secondary electrons generated on the mirror surface, which is arranged so as not to interfere with the mirror surface; a collection electrode power source that supplies a collection voltage to the collection electrode; A crystal plate electrode power source is provided which can switch and connect a second voltage to make the secondary electron emission ratio of the mirror surface substantially 1, and a third voltage to make the emission ratio smaller than 1. A space transformation device characterized by:
(5)前記結晶板電極電源により、第3の電圧を接続し
て負電荷像を形成して書込みを行ない、第2の電圧を接
続して前記負電荷像を消去するように構成した特許請求
の範囲第4項記載の空間変調装置。
(5) A patent claim configured such that a third voltage is connected to the crystal plate electrode power source to form a negative charge image for writing, and a second voltage is connected to erase the negative charge image. 4. The spatial modulation device according to item 4.
(6)前記結晶板電極電源により第3の電圧を接続して
一様な電子流で結晶板上に一様な負電荷を形成して準備
を行ない、第20電圧を接続して前記一様な負電荷中に
反転像を形成し、第3の電圧を接続して消去を行なうよ
うに構成した特許請求の範囲第4項記載の空間変調装置
(6) Prepare by connecting a third voltage using the crystal plate electrode power source to form a uniform negative charge on the crystal plate with a uniform electron flow, and connect a 20th voltage to form a uniform negative charge on the crystal plate. 5. The spatial modulation device according to claim 4, wherein the spatial modulation device is configured to form an inverted image in a negative charge and perform erasing by connecting a third voltage.
JP16183181A 1981-10-09 1981-10-09 KUKANHENCHOSOCHI Expired - Lifetime JPH0234366B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16183181A JPH0234366B2 (en) 1981-10-09 1981-10-09 KUKANHENCHOSOCHI

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16183181A JPH0234366B2 (en) 1981-10-09 1981-10-09 KUKANHENCHOSOCHI

Publications (2)

Publication Number Publication Date
JPS5864742A true JPS5864742A (en) 1983-04-18
JPH0234366B2 JPH0234366B2 (en) 1990-08-02

Family

ID=15742742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16183181A Expired - Lifetime JPH0234366B2 (en) 1981-10-09 1981-10-09 KUKANHENCHOSOCHI

Country Status (1)

Country Link
JP (1) JPH0234366B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS608822A (en) * 1983-06-29 1985-01-17 Hamamatsu Photonics Kk Spatial optical modulation tube
JPS608823A (en) * 1983-06-29 1985-01-17 Hamamatsu Photonics Kk Spatial optical modulator
JPS6091328A (en) * 1983-10-25 1985-05-22 Hamamatsu Photonics Kk Spatial optical modulating device
JPS60117221A (en) * 1983-11-29 1985-06-24 Hamamatsu Photonics Kk Or arithmetic device for or operation between images
JPS60117222A (en) * 1983-11-29 1985-06-24 Hamamatsu Photonics Kk Nor arithmetic device for nor operation between images
JPS60117223A (en) * 1983-11-29 1985-06-24 Hamamatsu Photonics Kk Not logical arithmetic device for not operation between images
JPS60184226A (en) * 1984-03-02 1985-09-19 Hamamatsu Photonics Kk Writing method of space optical modulator
JPS60207114A (en) * 1984-03-30 1985-10-18 Hamamatsu Photonics Kk And operating device calculating logical product of image
JPS60212728A (en) * 1984-04-06 1985-10-25 Hamamatsu Photonics Kk Logical operating device for deriving difference between pictures
JPS6170525A (en) * 1984-09-14 1986-04-11 Hamamatsu Photonics Kk Space light modulating tube
JPS61156222A (en) * 1984-12-28 1986-07-15 Hamamatsu Photonics Kk Electronic image projecting device
JPH03112040A (en) * 1989-09-26 1991-05-13 Hamamatsu Photonics Kk Driving method for space photo-modulator
US5208696A (en) * 1988-06-23 1993-05-04 Hamamatsu Photonics Kabushiki Kaisha Spatial light modulating device with CRT input image

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS608823A (en) * 1983-06-29 1985-01-17 Hamamatsu Photonics Kk Spatial optical modulator
JPS608822A (en) * 1983-06-29 1985-01-17 Hamamatsu Photonics Kk Spatial optical modulation tube
JPH0230494B2 (en) * 1983-10-25 1990-07-06 Hamamatsu Photonics Kk
JPS6091328A (en) * 1983-10-25 1985-05-22 Hamamatsu Photonics Kk Spatial optical modulating device
JPH0230496B2 (en) * 1983-11-29 1990-07-06 Hamamatsu Photonics Kk
JPS60117223A (en) * 1983-11-29 1985-06-24 Hamamatsu Photonics Kk Not logical arithmetic device for not operation between images
JPH0238932B2 (en) * 1983-11-29 1990-09-03 Hamamatsu Photonics Kk
JPH0230495B2 (en) * 1983-11-29 1990-07-06 Hamamatsu Photonics Kk
JPS60117222A (en) * 1983-11-29 1985-06-24 Hamamatsu Photonics Kk Nor arithmetic device for nor operation between images
JPS60117221A (en) * 1983-11-29 1985-06-24 Hamamatsu Photonics Kk Or arithmetic device for or operation between images
JPS60184226A (en) * 1984-03-02 1985-09-19 Hamamatsu Photonics Kk Writing method of space optical modulator
JPH0234367B2 (en) * 1984-03-02 1990-08-02 Hamamatsu Photonics Kk
JPS60207114A (en) * 1984-03-30 1985-10-18 Hamamatsu Photonics Kk And operating device calculating logical product of image
JPH0561615B2 (en) * 1984-03-30 1993-09-06 Hamamatsu Photonics Kk
JPS60212728A (en) * 1984-04-06 1985-10-25 Hamamatsu Photonics Kk Logical operating device for deriving difference between pictures
JPH0230497B2 (en) * 1984-04-06 1990-07-06 Hamamatsu Photonics Kk
JPH0232607B2 (en) * 1984-09-14 1990-07-23 Hamamatsu Photonics Kk
JPS6170525A (en) * 1984-09-14 1986-04-11 Hamamatsu Photonics Kk Space light modulating tube
JPS61156222A (en) * 1984-12-28 1986-07-15 Hamamatsu Photonics Kk Electronic image projecting device
JPH0456292B2 (en) * 1984-12-28 1992-09-08 Hamamatsu Photonics Kk
US5208696A (en) * 1988-06-23 1993-05-04 Hamamatsu Photonics Kabushiki Kaisha Spatial light modulating device with CRT input image
JPH03112040A (en) * 1989-09-26 1991-05-13 Hamamatsu Photonics Kk Driving method for space photo-modulator

Also Published As

Publication number Publication date
JPH0234366B2 (en) 1990-08-02

Similar Documents

Publication Publication Date Title
JPS5864742A (en) Space modulating device
JPS61239551A (en) Streak tube having in-tube image cut-out device
US3603828A (en) X-ray image intensifier tube with secondary emission multiplier tunnels constructed to confine the x-rays to individual tunnels
Schade Sr Electron optics and signal readout of high-definition return-beam vidicon cameras
US2270232A (en) Television receiving system
US4851677A (en) Apparatus for recording and reproducing image produced by an electron microscope including an optical filter and a deflecting element
Schwartz et al. Electron-beam-addressed microchannel spatial light modulator
US3792259A (en) Electro-optic device comprising an optic image relay and method of manufacturing same
JP3690888B2 (en) Optical information processing equipment
US3994000A (en) Device for electrostatographic reproduction of an optical image using a charge storage grid
JPH0357553B2 (en)
Johnson et al. Microchannel plate inverter image intensifiers
JPS608823A (en) Spatial optical modulator
US2851624A (en) Tube sensitive to images of invisible radiation
JPH02301716A (en) Light/light converting method and its display device
JPH0230497B2 (en)
JPS608822A (en) Spatial optical modulation tube
Warde et al. Microchannel spatial light modulator as a storage medium
US2248986A (en) Electro-optical system
SU464030A1 (en) Chronographing method of single light signals
Kilkenny et al. Sub-100 psec x-ray gating cameras for ICF imaging applications
Schwartz et al. Electron-Beam-Addressed Microchannel Spatial Light Modulator
Coleman et al. Ultra fast x-ray streak camera
JPH0561615B2 (en)
JPS63165818A (en) Image processor