JPS60117139A - Methane gas detecting element and manufacture thereof - Google Patents

Methane gas detecting element and manufacture thereof

Info

Publication number
JPS60117139A
JPS60117139A JP22417883A JP22417883A JPS60117139A JP S60117139 A JPS60117139 A JP S60117139A JP 22417883 A JP22417883 A JP 22417883A JP 22417883 A JP22417883 A JP 22417883A JP S60117139 A JPS60117139 A JP S60117139A
Authority
JP
Japan
Prior art keywords
methane gas
electrode
palladium
gas detection
printed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22417883A
Other languages
Japanese (ja)
Inventor
Shinji Suzuki
伸次 鈴木
Hideo Arima
有馬 英夫
Masami Kaneyasu
昌美 兼安
Akira Ikegami
昭 池上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP22417883A priority Critical patent/JPS60117139A/en
Publication of JPS60117139A publication Critical patent/JPS60117139A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

PURPOSE:To improve the massproducibility with a higher sensitivity and detection accuracy by employing palladium as electrode material for a methane gas detecting element adapted to detect the presence of mathane gas as variations in the resistance value. CONSTITUTION:The pattern of a heater 2 is printed and backed on the back of an alumina substrate 1 to form the heater 2. Then, an electrode material comprising palladium is printed and baked on the surface of the alumina substrate 1 to provide a lower electrode 3. In addition, a detection material comprising an oxide semiconductor is printed and dried thereon and an electrode material comprising palladium is printed and baked thereon to form a gas detection layer 4 and an upper electrode 5. Thus, the methane gas detection sensitivity can be elevated along with a higher detection accuracy.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、メタンガスの存在を抵抗値の変化として検知
するメタンガス検知素子、及び該メタンガス検知素子を
製造する製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a methane gas detection element that detects the presence of methane gas as a change in resistance value, and a manufacturing method for manufacturing the methane gas detection element.

〔発明の背景〕[Background of the invention]

従来のこの種のもの、例えば一般の半導体式メタンガス
検知素子としては、酸化スズ等のセラミツ夛スに電極と
して白金を埋め込んだ構造のものが、主として使用され
ている。しかしとのような検知素子は、メタンに対する
感度が不十分であり、検知精度が悪いという欠点がある
Conventional devices of this type, for example, general semiconductor methane gas detection devices, have a structure in which platinum is embedded as an electrode in a ceramic material such as tin oxide. However, such detection elements have the drawback of insufficient sensitivity to methane and poor detection accuracy.

かつ従来技術にあっては%tx性が低いという問題があ
った。
In addition, the conventional technology had a problem in that the %tx property was low.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、メタンガスに対して高感度で検知精度
の良好なメタンガス検知素子を提供することにある。ま
た、このようなメタンガス検知素子を、−11産性良く
製造できる製造方法を提供することをも目的とする。
An object of the present invention is to provide a methane gas detection element that is highly sensitive to methane gas and has good detection accuracy. Another object of the present invention is to provide a manufacturing method capable of manufacturing such a methane gas detection element with good -11 productivity.

〔発明のe要〕[E-essentials of invention]

上記目的を達成するため、本発明は、メタンガスの存在
を抵抗値の変化として検知するメタンガス検知素子にお
いて、パラジウム電極ソの電極材料として用いる構成と
した。
In order to achieve the above object, the present invention is configured to be used as an electrode material for a palladium electrode in a methane gas detection element that detects the presence of methane gas as a change in resistance value.

この発明は、メタン検知感度を向上させるために種々の
酸化物半導体、添加剤、素子構造、電極材料等につき様
々に検討した結果、メタン検知感度の向上に社、電極材
料としてパラジウム(Pd )を用いるのが最も効果の
高論ことを見い出し、かかる知見に基づいてなされたも
のである。
As a result of various studies on various oxide semiconductors, additives, element structures, electrode materials, etc. in order to improve methane detection sensitivity, this invention was developed by using palladium (Pd) as an electrode material to improve methane detection sensitivity. This study was based on this knowledge and found that it is most effective to use this method.

この発明の好ましい実施の態様としては、素子構造をサ
ンドイッチ構造にする構成を挙げることができる。パラ
ジウム電極による効果を最大限に引き出すには、素子構
造としてサンドイッチ構造を用いるのが最も有利である
ことを実験的に見い出したからである。
A preferred embodiment of the present invention includes a configuration in which the element structure is a sandwich structure. This is because we have experimentally found that it is most advantageous to use a sandwich structure as the element structure in order to maximize the effects of the palladium electrode.

この発明の更に別の好ましい実施の態様として、酸化物
半導体として酸化スズ(SnO,)、酸化亜鉛(Zr&
O)%酸化チタン(T * Ot )または五酸化タン
タル(Tα、Ol)を用いる構成全挙けることができる
。これは、これらを酸化物半導体として用いた場合、メ
タン検出感度が特に高くなることを見い出したので、か
かる知見に基づくものである。
As yet another preferred embodiment of the present invention, tin oxide (SnO), zinc oxide (Zr&
O)% titanium oxide (T*Ot) or tantalum pentoxide (Tα,Ol) can all be mentioned. This is based on the finding that methane detection sensitivity is particularly high when these are used as oxide semiconductors.

但し5本発明は上記態様にのみ限定されるものではない
However, the present invention is not limited to the above embodiments.

また上記の如き検知素子を製造する製造方法として1本
発明KThいては、基板の裏面に加熱ヒータのパターン
を印刷して、焼成し、次に基板の表面にパラジウムから
成る電極材料を用いて下部電極を印刷して、焼成し、該
下部電極上に酸化物半導体から成る検知材料を印刷し、
これを乾燥後その上に同一電極材料を用いて上部電極を
印刷して、焼成することにより、ガス検知材料層と上部
電極とを形成する方法をとることができる。この製造方
法によれば、メタンガス検知素子を量産性良く生産する
ことができる。
Further, as a manufacturing method for manufacturing the above-mentioned sensing element, according to one of the present invention KTh, a heater pattern is printed on the back side of the substrate and fired, and then an electrode material made of palladium is used on the surface of the substrate to form the lower part. printing and firing an electrode; printing a sensing material made of an oxide semiconductor on the lower electrode;
After this is dried, an upper electrode is printed thereon using the same electrode material and fired, thereby forming the gas sensing material layer and the upper electrode. According to this manufacturing method, methane gas detection elements can be produced with good mass productivity.

〔発明の実施例〕[Embodiments of the invention]

以下1本発明の一実施例について説明する。 An embodiment of the present invention will be described below.

第1図は、本発明に係るメタンガス検知素子の一例を示
す構成図である。
FIG. 1 is a configuration diagram showing an example of a methane gas detection element according to the present invention.

このメタンガス検知素子は、その電極3.4の材料とし
て、パラジウムを用いている。本例の検知素子は図示の
如く、アルミナ基板10表面に下部電極3t−設け、そ
の上にガス検知層4を形成し、更にその上に上部電極5
を設ける構琲となっており、lス検知層4金上部下部の
両電極3.5で狭むサンドイッチ構造をとりている。こ
のような電極3,5の材料として、パラジウムを用いる
ものである。まfc、基板1の裏面には加熱ピー。夕2
が形成される。
This methane gas detection element uses palladium as the material for its electrodes 3.4. As shown in the figure, the sensing element of this example has a lower electrode 3t provided on the surface of an alumina substrate 10, a gas sensing layer 4 formed thereon, and an upper electrode 5 formed thereon.
It has a sandwich structure in which the metal sensing layer 4 is sandwiched between the upper and lower electrodes 3.5. Palladium is used as a material for such electrodes 3 and 5. There is a heating pin on the back side of the board 1. Evening 2
is formed.

このようなメタンガス検出素子は、第2図に工程囚で示
す如く、次の方法で製造した。
Such a methane gas detection element was manufactured by the following method, as shown by the process diagram in FIG.

■ アルミナ基板1の裏面に白金ペーストを用いて加熱
ヒータのパターンを印刷する。
(2) Print a heater pattern on the back side of the alumina substrate 1 using platinum paste.

■ これを乾燥後、電気炉を用いて、1200℃で2時
間焼成してヒ、−タ21!−焼き付ける。
■ After drying this, use an electric furnace to bake it at 1200℃ for 2 hours and heat it! 21! - Burn.

■ 次にアルミナ基板1の表面に電極材料を用いて下部
電極を印刷する。
(2) Next, a lower electrode is printed on the surface of the alumina substrate 1 using an electrode material.

■ この基板を乾燥後、ベルト炉を用いて最高温度90
0℃で10分間焼成して、下部電極3t−1該アルミナ
基板10表面に形成する。
■ After drying this substrate, use a belt furnace to heat it to a maximum temperature of 90℃.
The lower electrode 3t-1 is formed on the surface of the alumina substrate 10 by firing at 0° C. for 10 minutes.

■ 下部電極3に、所定の酸化物半導体から成る。ベア
スト状としたガス検知材料を印刷する。
(2) The lower electrode 3 is made of a predetermined oxide semiconductor. Print the gas sensing material in the form of a bare strip.

■ これを乾燥後、史、にその上に同一電極材料を用い
て上部電極を印刷する。
■ After this is dried, an upper electrode is printed on top of it using the same electrode material.

■ これを乾燥後、ベルト炉を用いて最高温度9000
℃で10分間焼成し、ガス検知層4及び上部電極5を形
成する。
■ After drying this, use a belt furnace to a maximum temperature of 9000
C. for 10 minutes to form a gas sensing layer 4 and an upper electrode 5.

この方法によれば、検知素子をきわめて量産性良く製造
することができる。
According to this method, sensing elements can be manufactured with extremely good mass productivity.

上記方法で形成した検知素子のメタンガスに対する検出
感度について、次に述べる。検出感度は、メタンガス濃
度5000ppmの雰囲気でのコンダクタンスの変化割
合をもって、表わすものとする。変化割合が大きいほど
、検出感度が高い。
The detection sensitivity of the detection element formed by the above method to methane gas will be described next. The detection sensitivity is expressed by the rate of change in conductance in an atmosphere with a methane gas concentration of 5000 ppm. The larger the change rate, the higher the detection sensitivity.

第1表に、各種の材料により電極全形成した場合の、各
検知素子のメタンガス検出感度を示す。ガス検知層4の
材料は酸化スズ(SrLOt )にパラジウム(prt
)を1 wt%添加した組成物として、すべて同じもの
を用い、両電極の材料として各種材料を用いて素子を形
成した各々の検知素子につき、それぞれのメタンガスに
対する感度をまとめて示すものである。
Table 1 shows the methane gas detection sensitivity of each sensing element when the electrodes are all made of various materials. The material of the gas detection layer 4 is tin oxide (SrLOt) and palladium (prt).
) is added at 1 wt%, the same composition is used, and the sensitivity to methane gas is summarized for each sensing element formed using various materials as materials for both electrodes.

第1表から明らかなように、電極材料にパラジウムを用
いた本実施例に係る素子が、検出感度が抜群に高い。白
金を用いた素子がそれに次ぎ、その他のものは検出感度
はそれより低くなっている。
As is clear from Table 1, the element according to this example using palladium as the electrode material has extremely high detection sensitivity. Elements using platinum come next, and the detection sensitivity of other devices is lower than that.

同様に第2表は、ガス検知層4の材料として、無添加の
酸化亜鉛(ZルO)、酸化チタン(Tie、)、五酸化
タンタル(Tα2’!l)k用いた場合の、各素子のメ
タンガスに対する検出感度の測定結果を示すものである
。第1表の場合と同じく、各ガス検知材料について電極
材料を変え、それぞれの感度を示しである。第2表から
明らかなように、これらの場合も、パラジウムを電極材
料として用いた本実施例に係る検知素子が、最もメタン
ガス検出感度が商いことがわかる。
Similarly, Table 2 shows each element when additive-free zinc oxide (ZruO), titanium oxide (Tie), tantalum pentoxide (Tα2'!l)k is used as the material for the gas detection layer 4. This figure shows the measurement results of the detection sensitivity for methane gas. As in Table 1, the electrode materials are changed for each gas sensing material, and the respective sensitivities are shown. As is clear from Table 2, in these cases as well, the sensing element according to this example using palladium as the electrode material has the highest methane gas detection sensitivity.

〔発明の効果〕〔Effect of the invention〕

以上説明したように1本発明のメタンガス検知素子は、
パラジウムをその電極材料として用いたので、メタンガ
ス検知感度を高くでき、この結果メタン検知精度を高く
することができるという効果を有する。
As explained above, one methane gas detection element of the present invention is
Since palladium is used as the electrode material, the methane gas detection sensitivity can be increased, and as a result, the methane detection accuracy can be improved.

また本発明のメタンガス検知素子製造方法は、量産性が
高いので、検知素子の低価格化をもたらすことができる
等の効果を有する。
Furthermore, the method for manufacturing a methane gas sensing element of the present invention has high mass productivity, and therefore has the effect of reducing the price of the sensing element.

なお当然のことではあるが、本発明は上記具体的に示し
た実施例にのみ限定されるものではない。
It should be noted that, as a matter of course, the present invention is not limited to the embodiments specifically shown above.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係るメタンガス検知素子の一例を一部
破断して示す構成図である。第2因は該検知素子の製造
方法上水した工程図である。 1・・・アルミナ基板 2・・・加熱ヒータ第 1 図 慕2 図
FIG. 1 is a partially cutaway configuration diagram showing an example of a methane gas detection element according to the present invention. The second factor is the process diagram of the method for manufacturing the sensing element. 1...Alumina substrate 2...Heating heater Fig. 1 Fig. 2

Claims (1)

【特許請求の範囲】 1 メタンガスの存在を抵抗値の変化として検知するメ
タンガス検知素子においてJパラジウムをその電極材料
としで用いたことを特徴とするメタンガス検知”素子。 2 素子構造がサンドイッチ構造であることを特徴とす
る特許請求の範囲第1項に記載過メタンガス検知素子。 五 ガス検知素子材料として、酸化スズ、酸化亜鉛、酸
化チタン、または五□酸化タンタルのいずれかを用いた
ことを特徴とする特許請求の範−第1項または第2゛項
のいずれかに記載のメタンガス検知素子。 4、 メタンガスの存在を抵抗値゛の変化として検知す
るメタンガス検知素手の製造方法において、基板の裏面
に加熱ヒータのパターンを印刷して、焼成し1次に基板
の表面にパラジウムから成る一極材料を用いて下部電極
を印刷して、焼成し、該下部電極上に酸化物半導体から
成る検知材料を印刷し、これを乾燥後その上に同一電極
材料を用いて上部−極を印刷し電、焼成することにより
、ガス検知材料層と上部電極とを形成したととt−特徴
と子るメタンガス検知素子の製造方法。
[Scope of Claims] 1. A methane gas detection device that detects the presence of methane gas as a change in resistance, characterized in that J palladium is used as an electrode material in the methane gas detection device. 2. The device has a sandwich structure. 5. The permethane gas detection element according to claim 1, characterized in that the gas detection element uses any one of tin oxide, zinc oxide, titanium oxide, or penta tantalum oxide. 4. A method for manufacturing a methane gas detection bare hand that detects the presence of methane gas as a change in resistance value, wherein A heater pattern is printed and fired. First, a lower electrode is printed on the surface of the substrate using a unipolar material made of palladium, and fired, and a sensing material made of an oxide semiconductor is placed on the lower electrode. The gas sensing material layer and the upper electrode were formed by printing, drying, printing an upper electrode using the same electrode material, and firing the same electrode material to form a gas sensing material layer and an upper electrode. Method of manufacturing elements.
JP22417883A 1983-11-30 1983-11-30 Methane gas detecting element and manufacture thereof Pending JPS60117139A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22417883A JPS60117139A (en) 1983-11-30 1983-11-30 Methane gas detecting element and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22417883A JPS60117139A (en) 1983-11-30 1983-11-30 Methane gas detecting element and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS60117139A true JPS60117139A (en) 1985-06-24

Family

ID=16809743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22417883A Pending JPS60117139A (en) 1983-11-30 1983-11-30 Methane gas detecting element and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS60117139A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5447054A (en) * 1990-03-02 1995-09-05 Eniricerche S.P.A. Gas sensors formed of thin tin oxide films, for gaseous hydro-carbon determination

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6070501A (en) * 1983-09-27 1985-04-22 Mitsubishi Electric Corp Rotary transformer for magnetic recording and reproducing device of video and sound signal

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6070501A (en) * 1983-09-27 1985-04-22 Mitsubishi Electric Corp Rotary transformer for magnetic recording and reproducing device of video and sound signal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5447054A (en) * 1990-03-02 1995-09-05 Eniricerche S.P.A. Gas sensors formed of thin tin oxide films, for gaseous hydro-carbon determination

Similar Documents

Publication Publication Date Title
JPH051416B2 (en)
US4016308A (en) Humidity sensor, material therefor and method
US4050048A (en) Humidity sensor, material therefor and method
JPS60117139A (en) Methane gas detecting element and manufacture thereof
JPS58221154A (en) Gas sensor element
JPH0765977B2 (en) Method for producing an inert, catalytic or gas-sensitive ceramic layer for gas sensors
JP2941395B2 (en) Composite gas sensing element
JPS61155848A (en) Thin film type sensor for combustible gas
JPH01313751A (en) Gas sensor
JPH0690961B2 (en) Resistive materials and temperature-dependent resistive layers in temperature-measuring sensors made therefrom
JP2588217B2 (en) Gas sensor manufacturing method
JPH07104309B2 (en) Gas sensor manufacturing method
KR940009955B1 (en) Manufacturing method of humidity sensor
JPH02263145A (en) Semiconductor type gas sensor
JPS5842965A (en) Oxygen sensor element
JPS6214921B2 (en)
JPH0572162A (en) Gas sensor
JP2714006B2 (en) Gas sensor
KR0128552Y1 (en) Thick film type three terminal gas sensor element
JPH07209234A (en) Semiconductor gas sensor
JPH01196556A (en) Gas sensor
JPS6245495B2 (en)
JPS6383651A (en) Gas sensor
JPS6375548A (en) Gas sensor
JPS6152936B2 (en)