JPS60116136A - Manufacture of thin film - Google Patents

Manufacture of thin film

Info

Publication number
JPS60116136A
JPS60116136A JP58224809A JP22480983A JPS60116136A JP S60116136 A JPS60116136 A JP S60116136A JP 58224809 A JP58224809 A JP 58224809A JP 22480983 A JP22480983 A JP 22480983A JP S60116136 A JPS60116136 A JP S60116136A
Authority
JP
Japan
Prior art keywords
reaction
thin film
gas
chamber
vapor phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58224809A
Other languages
Japanese (ja)
Inventor
Daijiro Kudo
工藤 大二朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DAINAMITSUKU INTERNATL KK
Original Assignee
DAINAMITSUKU INTERNATL KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DAINAMITSUKU INTERNATL KK filed Critical DAINAMITSUKU INTERNATL KK
Priority to JP58224809A priority Critical patent/JPS60116136A/en
Publication of JPS60116136A publication Critical patent/JPS60116136A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

PURPOSE:To equalize the thickness and quality of a thin film formed on a thin film by repeatedly performing an operation for growing the thin film in a vapor phase and an operation for stopping the growth. CONSTITUTION:A substrate 4 disposed in a reaction chamber 1 is heated, the chamber 1 is evacuated through an exhaust system 2 to a vacuum state. Reaction gases are fed from gas inlet systems 3a-3c in this state, and the evacuation by the system 2 is temporarily stopped. Then, the reaction gas in the chamber 2 is sealed under the prescribed pressure. Reaction is performed through reaction exciting means 6 in this state, and the desired thin film is grown on the substrate 4. On the other hand, the gas in the chamber 1 is raised at the temperature as the time goes, and vapor phase decomposition starts at the prescribed temperature or higher. When the gas is evacuated again in the chamber before decomposing the gas, and inert gas is simultaneously introduced into the chamber 1 to stop the growth of the film. Then, the chamber 1 is again evacuated, and similar operations are repeated. Thus, the thickness and quality of the thin film can be equalized.

Description

【発明の詳細な説明】 この発明は熱反応CVD(ケミカルベーパーデポジショ
ン、以下同様にCVDと略す。)或いはプラズマCVD
等による薄膜の製造方法に関し、基板上に形成される薄
膜の膜厚、膜質の均一化を目的としたものである。
Detailed Description of the Invention This invention utilizes thermal reaction CVD (chemical vapor deposition, hereinafter also abbreviated as CVD) or plasma CVD.
The purpose of this method is to make the thickness and quality of the thin film uniform on a substrate.

従来、半導体デバイス等の製造工程において、上記の熱
反応CVI)或いはプラズマCVDが多用されているが
、この種の製造方法においては、シリコンウェハー等の
基板を配置した反応室内を一定の圧力や流れとなるよう
に排気し乍ら反応ガスを連続的に導入していたの雫、反
応ガスの導入口から排気口に至るガスの流れに活って反
応成分の濃度差が生じ、これによって基板内、基板間で
膜厚分布が不均一となる問題点があった。又フォスポラ
スシリケートグラス(PSQ)のような場合では、Si
n、中のリンCP)濃度の分布が同様に生じ、基板内、
基板間で膜質が変化する問題点となっていた。
Conventionally, the above-mentioned thermal reaction CVI) or plasma CVD has been frequently used in the manufacturing process of semiconductor devices, etc., but in this type of manufacturing method, a constant pressure or flow is applied in a reaction chamber in which a substrate such as a silicon wafer is placed. When the reactant gas was continuously introduced while exhausting the air so that However, there was a problem in that the film thickness distribution was uneven between substrates. In cases such as phosporous silicate glass (PSQ), Si
n, phosphorus CP) concentration distribution occurs similarly, within the substrate,
The problem was that the film quality varied between substrates.

このような問題点を解決する手段として、最近では反応
ガスの導入管を反応室内まで挿入し、導入管壁に形成し
たガスノズルより反応室内へ反応ガスを導入して、反応
成分の濃度差が生じないようにした手段が提案されてい
るが、基板の大型化に伴なって(%に基板間隔を狭くし
た場合)、基板の面方向に沿って、前記と同様の濃度差
が生じ、均一な膜厚、膜質ン得る為の十分な解決策とは
なっていなかった。
Recently, as a means to solve these problems, a reaction gas introduction tube is inserted into the reaction chamber, and the reaction gas is introduced into the reaction chamber through a gas nozzle formed on the wall of the introduction tube, which causes a difference in the concentration of the reaction components. Measures have been proposed to prevent this from occurring, but as the size of the substrate increases (when the spacing between the substrates is narrowed by 30%), a concentration difference similar to the above occurs along the surface direction of the substrate, making it difficult to maintain a uniform density. This was not a sufficient solution to improve film thickness and film quality.

然るにこの発明は、前記の如く熱反応CVDやプラズマ
CVDによって基板上に薄膜を生長させる方法において
、反応室内を先ず所定圧力に排気した後、反応ガスを導
入して基板上に気相生長させる動作と、気相生長を停止
させる動作乞交互に繰り返すようにし又、気相生長時に
は反応ガスの流れ7実質的に止めて反応成分の濃度差が
生じないようにしたので、基板内、基板間における膜厚
、膜質の均一化が可能となり、前記の問題点を解決する
ことに成功したのである。
However, in the method of growing a thin film on a substrate by thermal reaction CVD or plasma CVD as described above, the present invention includes an operation in which the reaction chamber is first evacuated to a predetermined pressure, and then a reaction gas is introduced to cause vapor phase growth on the substrate. The operation of stopping the vapor phase growth was repeated alternately, and the flow 7 of the reaction gas was substantially stopped during the vapor phase growth to prevent concentration differences of the reaction components from occurring within the substrate and between the substrates. This made it possible to make the film thickness and quality uniform, and succeeded in solving the above-mentioned problems.

以下この発明乞実施例について説明する。製造に使用す
る装置は通常用いられ又いる装置で良く。
Embodiments of this invention will be described below. The equipment used for manufacturing may be any commonly used equipment.

例えば第1図に示した如く、反応室/に真空排気系コを
設けると共に、反応ガスや置換ガスのガス導入系3a、
3b、3c・・・を設げた装置を使用する。
For example, as shown in FIG. 1, a vacuum exhaust system is provided in the reaction chamber, and a gas introduction system 3a for reactant gas and replacement gas,
A device equipped with 3b, 3c, etc. is used.

反応室/には、内部にシリコンウエノ・−等の基板グ、
りZ保持したボートタが配置できるようになっており、
外部には加熱装置、プラズマ発生用の高周波コイル等の
反応励起手段6が設けである。
The reaction chamber contains a substrate such as silicone urethane, etc.
It is now possible to place the boat held in the Z position.
External reaction excitation means 6 such as a heating device and a high frequency coil for plasma generation are provided.

上記のような装置を用いて、この発明は次のような操作
によって基板ダ上に薄膜ビ生長させる。
Using the above-mentioned apparatus, the present invention grows a thin film on a substrate by the following operations.

即ち、先ず反応室/内に配置した基板グ、グを予め定め
た設定温度まで加熱すると共に、反応室/内を排気系−
を介して排気することにより、θ。05Torr以下の
真空状態とする。この状態でガス導入系3a、3I)、
3C・・・より排気系コで排気しながら反応ガスを導入
すれば通常の減圧CVDが行われることとなるが、この
発明では、反応ガスの導入に際して、排気系コによる排
気乞中断する。そしてガス導入系3a、3b・・・を通
して所定の反応ガスを反応室/内にθ、s To r 
r程度の圧力に封入するO 反応ガス7封じ込められた反応室/内では、ガスの流れ
は生じないことは勿論、反応ガスの濃度も各部で一様と
なる。この状態で、前記反応励起手段乙な介して反応ガ
ス相互の反応を行わせると、基板Z上には所望の薄膜が
生長する。
That is, first, the substrates placed inside the reaction chamber are heated to a predetermined set temperature, and the inside of the reaction chamber is heated to an exhaust system.
By exhausting through θ. The vacuum state is 0.05 Torr or less. In this state, the gas introduction systems 3a, 3I),
If a reaction gas is introduced while exhausting through the exhaust system from 3C..., normal reduced pressure CVD will be performed, but in this invention, when introducing the reaction gas, the exhaust system is interrupted. Then, a predetermined reaction gas is introduced into the reaction chamber through the gas introduction systems 3a, 3b...
In the reaction chamber/inside the reaction gas 7 sealed at a pressure of approximately r, not only does no gas flow occur, but the concentration of the reaction gas is also uniform in each part. In this state, when the reaction gases are caused to react with each other via the reaction excitation means B, a desired thin film is grown on the substrate Z.

尚、前記反応ガスは生長させる膜の種類に応じて種々の
反応性ガスが使用されるが、常温以上の温度で直ちに気
相分解を起すような種類の反応ガスを使用する場合には
、ガスの導入に際して、約−2,0℃程度に冷却して導
入し、基板光面まで分解することな(送るようにずろ必
要がある。反応室/内で直ちに気相分解を起した場合に
は、反応−室/内にパーティクルを生じ塵埃等の原因と
なる。
Note that various reactive gases are used depending on the type of film to be grown, but when using a type of reactive gas that immediately causes gas phase decomposition at a temperature higher than room temperature, the gas When introducing the material, it is necessary to cool it to about -2.0°C before introducing it, and to avoid decomposing it to the optical surface of the substrate. , particles are generated in the reaction chamber/inside, causing dust, etc.

一方、反応室/内に封じ込めた反応ガスは、反応室/を
排気していないので、時間と共に温度が上昇する。温度
の上昇と共に、薄膜の生長速度も増大するが、ある温度
以上では反応ガスの気相分解が開始する。そこで、この
気相分解の開始前に、−再び排気系2乞介して反応室/
内の反応ガスを排気すると同時に、ガス導入系3a、3
b・・・の一つ7介してN、ガスその他の不活性ガス馨
反応室/内に導入することにより、反応室/内の反応ガ
スを希釈および冷却して薄膜の生長を止める。
On the other hand, the temperature of the reaction gas sealed in the reaction chamber increases over time because the reaction chamber is not exhausted. As the temperature increases, the growth rate of the thin film also increases, but above a certain temperature, gas phase decomposition of the reactant gas begins. Therefore, before starting this gas phase decomposition, - once again, the exhaust system 2 is connected to the reaction chamber/
At the same time as exhausting the reaction gas inside, the gas introduction systems 3a, 3
By introducing N, gas or other inert gas into the reaction chamber via one of the b..., the reaction gas in the reaction chamber is diluted and cooled to stop the growth of the thin film.

次に上記の如(薄膜の生長乞止めた後、不活性ガスの導
入7止め、反応室/を再び排気系2で排気すると、反応
室/は初めのO20,ITo r r程度の真空に復帰
する。このようにし℃初めの状態に復帰したならば、再
び前記の通りの薄膜を生長させる動作と、生長を停止さ
せる動作を行う。然し℃上記サイクルを数回繰り返すこ
とによって基板り、グ上には所望の薄膜を所望の厚さに
形成することができる。薄膜乞生長させる過程では反応
室/内の各部における反応ガス濃度7均−にできるので
、基板内、基板間を問わす膜厚、膜質共に均一にするこ
とができる。
Next, as described above (after stopping the growth of the thin film, the inert gas introduction 7 is stopped, and the reaction chamber is evacuated again by the exhaust system 2, and the reaction chamber is returned to the original vacuum of about O20, ITor r). After returning to the initial state in this way, the operations of growing the thin film and stopping the growth are performed again as described above.However, by repeating the above cycle several times at A desired thin film can be formed to a desired thickness.During the process of growing a thin film, the reaction gas concentration in each part of the reaction chamber can be made uniform, so the film thickness can be controlled within the substrate and between the substrates. , the film quality can be made uniform.

第2図には上記実施例の熱反応CVDにおけるタイミン
グチャートを示し、第3図には上記実施例のプラズマC
VDにおけるタイミングチャートを示した。第3図から
明らかな通り、グ2ズマ已■におい又は薄膜の生長を停
止させる動作は、排気とRF電力の遮断で行われ、不活
性ガスの導入は行わない。
FIG. 2 shows a timing chart in the thermal reaction CVD of the above embodiment, and FIG. 3 shows the plasma CCVD of the above embodiment.
A timing chart for VD is shown. As is clear from FIG. 3, the operation to stop the odor or the growth of the thin film is performed by shutting off exhaust and RF power, and without introducing inert gas.

尚上記実施例において、薄膜生長動作中には排気系によ
る排気を中断しているが、排気ケ中断す グることな(
、排気量乞僅少に絞って、反応室内のガスの流れを実質
的に無(するようにしても、この発明の実施ができるこ
とば言うまでもない。
In the above example, the exhaust system is interrupted during the thin film growth operation, but the exhaust system is not interrupted (
It goes without saying that the present invention can also be carried out even if the displacement is reduced to a very small amount and the flow of gas in the reaction chamber is substantially eliminated.

以上に説明した通り、この発明によれば、薄膜乞気相生
長させる動作と、この気相生長を停止させる動作を繰り
返し行い、薄膜を気相生長させる動作においては、反応
ガスの流れが起らないようにすると共に、圧力勾配も生
じないようにしたので、単−成分膜、多糸成分膜を問わ
ず、膜厚、膜質2均−にできる効果がある。又反応室内
に配置する基板の密度を上げることが可能で、反応室お
よび排気系7小さくできることから、量産性を高くする
と共に、装置を小型化できる効果がある。
As explained above, according to the present invention, the operation of growing the thin film in the vapor phase and the operation of stopping the vapor phase growth are repeated, and during the operation of growing the thin film in the vapor phase, no flow of the reactant gas occurs. In addition, since no pressure gradient is generated, there is an effect that the film thickness and film quality can be made uniform regardless of whether the film is a single-component film or a multi-component film. Furthermore, it is possible to increase the density of the substrates arranged in the reaction chamber, and the reaction chamber and exhaust system 7 can be made smaller, which has the effect of increasing mass productivity and making the apparatus more compact.

更に反応ガスの反応は基板狭面での反応7主とできるこ
とからカバレージを良くできろ一方、ウェハーハンドリ
ンク乞自動(’l易い、反応ガス圧を上げることでベー
ス不純物の膜中への混入比率乞小さくでき、目的とする
膜質に近いものが得られる等の諸効果がある。
Furthermore, since the reaction of the reaction gas occurs mainly on the narrow surface of the substrate, coverage can be improved.On the other hand, wafer hand linkage is easy to achieve. It has various effects such as being able to be made very small and obtaining a film quality close to the desired one.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明を実施する装置の概略図、第2図およ
び第3図はこの発明の実施例のタイミングチャートで、
第一図は熱反応CVDのチャート、第3図はプラズマC
VD (7)チャートである。 /・・・反応室 コ・・・排気室 3a、3b、3G・・・ガス導入系 ダ・・・基板S・
・・ボート 6・・・反応励起手段特許出願人 ダイナミックインターナショナル株式会社代理人 鈴 木 正 次 第1図 第′2図 熱反沌CVDのタイミンクットヤート (例’) FILM、 5102 (SiH<+NO)
手続ネnJ 、iF内 (方式) lIrイ和59年3月5ト1 1、事イ11の表示 昭和58年特ル′1願第2271809R2、発明の名
称 薄膜の製造り法 3、補正を覆る者 事件どの関係 特%′l出願人 名称 ダイナミックインターナショナル株式会社 4、代理人〒゛16o電話(353) 3407昭和5
9年2月28[1 (2)明細書中、発明の詳細な説明の欄(3)図面中、
第°2図および第3図 7、補正の内容 (1)願吉は別紙の通り。 (2)明細四〇頁16行目より19行目に[第2図には
・・・示した。」とあるを下記に訂正する。 記 第2図にはS i l−1,+ N’O,ガスよりSi
O膜を熱反応CVDで生長させた実施例のタイミングチ
ャートを示し、第3図にはウェハ一温度を350℃に保
ち、N1〜1.→−8it−1.ガスよりs;、x、膜
をプラズマCVDで生長させた実施例のタイミングチャ
ーi〜を示した。 C1) 図面は別紙の通り。 8、添イ・」書類の目録 (1)訂正願出 1通 (2)訂正図面(第2図、第3図) 1通第2図 第3図
FIG. 1 is a schematic diagram of an apparatus for carrying out this invention, and FIGS. 2 and 3 are timing charts of an embodiment of this invention.
Figure 1 is a chart of thermal reaction CVD, Figure 3 is a chart of plasma C
VD (7) Chart. /...Reaction chamber C...Exhaust chamber 3a, 3b, 3G...Gas introduction system D...Substrate S...
... Boat 6 ... Reaction excitation means Patent applicant Dynamic International Co., Ltd. Agent Tadashi Suzuki 1 Figure '2 Timing of thermal-chaosic CVD (example') FILM, 5102 (SiH<+NO)
Procedure NJ, iF (Method) lIr I March 1959 5 To 1 1, Indication of Matter A 11 1982 Special Patent Application No. 2271809R2, Title of Invention Process for Manufacturing Thin Film 3, Overturns Amendment What is the relationship between the applicant and the applicant? Dynamic International Co., Ltd. 4, Agent: ゛16o Telephone (353) 3407 Showa 5
February 28, 2009 [1 (2) Detailed description of the invention in the specification (3) In the drawings,
Figure 2 and Figure 3 7, Contents of amendment (1) Kanji is as attached. (2) Page 40 of the specification, lines 16 to 19 [shown in Figure 2]. '' has been corrected as below. In Fig. 2, Si l-1, + N'O, Si
A timing chart of an example in which an O film was grown by thermal reaction CVD is shown in FIG. →-8it-1. The timing chart i~ of the example in which the film was grown by plasma CVD is shown. C1) The drawing is as attached. 8. List of documents (1) Application for correction 1 copy (2) Correction drawings (Fig. 2, 3) 1 copy Fig. 2 Fig. 3

Claims (1)

【特許請求の範囲】 / 反応室内に配置した基板上に、反応ガスの化学反応
を利用して所望の薄膜を気相生長させる方法において、
反応室内ケ所定圧力に排気した後、気相生長の為の反応
ガス乞反応室内へ導入し℃基板上に薄膜を気相生長させ
る動作と、基板上への気相生長を停止させる動作乞交互
に繰り返すことを特徴とした薄膜の製造方法 −気相生長を停止させる動作は、反応室の排気と、不活
性ガスの反応室への導入とした特許請求の範囲第1項記
載の薄膜の製造方法 3 気相生長の為の反応ガスは、低温に冷却して導入す
る特許請求のifα囲第1項記載の薄膜の製造方法 グ 気相生長は、熱反応又はプラズマを介して行う特許
請求の範囲第1項記載の薄膜の製造方法
[Claims] / A method for growing a desired thin film in a vapor phase on a substrate placed in a reaction chamber by utilizing a chemical reaction of a reaction gas,
After the reaction chamber is evacuated to a predetermined pressure, the reaction gas for vapor phase growth is introduced into the reaction chamber to grow a thin film on the substrate in vapor phase at ℃, and the operation to stop the vapor phase growth on the substrate is alternated. A method for manufacturing a thin film, characterized in that the operation of stopping vapor phase growth is performed by evacuation of the reaction chamber and introduction of an inert gas into the reaction chamber. Method 3: The method for producing a thin film according to item 1 of the ifα section of the patent claim, in which the reaction gas for vapor phase growth is cooled to a low temperature and introduced.The vapor phase growth is carried out via thermal reaction or plasma. Method for producing a thin film according to scope 1
JP58224809A 1983-11-29 1983-11-29 Manufacture of thin film Pending JPS60116136A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58224809A JPS60116136A (en) 1983-11-29 1983-11-29 Manufacture of thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58224809A JPS60116136A (en) 1983-11-29 1983-11-29 Manufacture of thin film

Publications (1)

Publication Number Publication Date
JPS60116136A true JPS60116136A (en) 1985-06-22

Family

ID=16819542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58224809A Pending JPS60116136A (en) 1983-11-29 1983-11-29 Manufacture of thin film

Country Status (1)

Country Link
JP (1) JPS60116136A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007187389A (en) * 2006-01-13 2007-07-26 Matsushita Electric Ind Co Ltd Electric water heater

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007187389A (en) * 2006-01-13 2007-07-26 Matsushita Electric Ind Co Ltd Electric water heater

Similar Documents

Publication Publication Date Title
JP3265042B2 (en) Film formation method
JPH0211012B2 (en)
JPS61117841A (en) Formation of silicon nitride film
JPS621565B2 (en)
JP4782316B2 (en) Processing method and plasma apparatus
JPS60116136A (en) Manufacture of thin film
JPS62113419A (en) Vapor phase epitaxial growth equipment
JPS6228569B2 (en)
JPS6010108B2 (en) Method for pyrolytically depositing silicon nitride onto a substrate
JPH01189114A (en) Vapor growth apparatus
JPS62214614A (en) Reduced pressure cvd device
JP2723053B2 (en) Method and apparatus for forming thin film
JPH10223620A (en) Semiconductor manufacturing device
JP4782314B2 (en) Plasma source and compound thin film forming apparatus
JP2004186376A (en) Apparatus and method for manufacturing silicon wafer
JP2003183837A (en) Semiconductor device manufacturing process and substrate treating device
JPH02268433A (en) Manufacture of semiconductor device
JPS5970763A (en) Thin film forming device
JP2002289615A (en) Method and apparatus for forming thin film
JPS6010715A (en) Device for chemical gas-phase growth
JPS61283113A (en) Epitaxial growth method
JPH1050620A (en) Method and device for manufacturing semiconductor
JPH04125930A (en) Manufacture of semiconductor device
JPH03196525A (en) Formation of silicon nitride film
JPS61187239A (en) Thin film forming equipment