JPS6011543B2 - rotating electric machine - Google Patents

rotating electric machine

Info

Publication number
JPS6011543B2
JPS6011543B2 JP52125524A JP12552477A JPS6011543B2 JP S6011543 B2 JPS6011543 B2 JP S6011543B2 JP 52125524 A JP52125524 A JP 52125524A JP 12552477 A JP12552477 A JP 12552477A JP S6011543 B2 JPS6011543 B2 JP S6011543B2
Authority
JP
Japan
Prior art keywords
permanent magnet
frequency
speed detection
equal pitch
magnetic body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52125524A
Other languages
Japanese (ja)
Other versions
JPS5457609A (en
Inventor
誠 後藤
一二 小林
祥晃 五十嵐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP52125524A priority Critical patent/JPS6011543B2/en
Publication of JPS5457609A publication Critical patent/JPS5457609A/en
Publication of JPS6011543B2 publication Critical patent/JPS6011543B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Permanent Magnet Type Synchronous Machine (AREA)

Description

【発明の詳細な説明】 本発明は、ロータの回転速度に応じた周波数の信号を得
ることのできる周波数発電機付電動機のごとき回転電機
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a rotating electrical machine such as a motor with a frequency generator that can obtain a signal with a frequency corresponding to the rotational speed of a rotor.

従来のこの種の回転電機、例えば周波数発電機付電動機
においては、電動機のロータに回転力を与える駆動部と
、ロータの回転速度を周波数信号として検出する周波数
発電機とは分離された構造のものが多かった。
In conventional rotating electrical machines of this type, such as motors with frequency generators, the drive unit that provides rotational force to the rotor of the motor and the frequency generator that detects the rotational speed of the rotor as a frequency signal have a separate structure. There were many.

そのため、部品点数が多く、機造が複雑化し、製造が難
かしかった。このような欠点を解消するために、例えば
日本国特閥昭52一51512号公報に見られるごとき
、ロータに取付けられた円板状の多極永久磁石と、ステ
ータに配置された駆動コイルとの間に発電コイルを配置
した周波数発電機付電動機が提案されている。
As a result, the number of parts was large, the structure was complex, and manufacturing was difficult. In order to eliminate these drawbacks, for example, as seen in Japanese Tokusatsu No. 52-51512, a disc-shaped multipolar permanent magnet attached to the rotor and a drive coil arranged in the stator have been developed. A motor with a frequency generator in which a generator coil is placed between the two has been proposed.

しかし、そのような構造においては、永久磁石と駆動コ
イルが離れてしまうためモータの効率が低下したり、ま
た、円環状の永久磁石を使用し難いなどの問題がある。
本発明は、そのような問題を解決し、構造の簡単な、し
かも効率の良い周波数発電機付電動機のごとき回転電機
を提供するものである。
However, such a structure has problems such as the permanent magnet and the drive coil being separated from each other, which reduces the efficiency of the motor, and also makes it difficult to use an annular permanent magnet.
The present invention solves such problems and provides a rotating electrical machine such as a frequency generator-equipped motor with a simple structure and high efficiency.

以下に本発明を図示の実施例に塞いて説明する。第1図
は本発明の一実施例の要部構成図である。同図において
、ロータ1に取付けられた永久磁石2は等ピッチ間隔(
90o)または、ほぼ等ピッチ間隔で4極に着滋された
円環状の磁石である。上記ロータ1の内側に配された電
機子鉄」○3は放射状に等ピッチ間隔(120o)また
は、ほぼ等ピッチ間隔で一体的に突出形成された略々T
字状の磁性体製突体4a,4b,4cを有している。上
記各突体4a,4b,4cにはそれぞれ1個の駆動コイ
ル5a,5b,5cが巻装されている。
The present invention will be explained below with reference to illustrated embodiments. FIG. 1 is a block diagram of main parts of an embodiment of the present invention. In the figure, permanent magnets 2 attached to a rotor 1 are spaced at equal pitches (
90o) or an annular magnet with four poles attached at approximately equal pitch intervals. The armature iron "○3" arranged inside the rotor 1 is radially formed at equal pitch intervals (120o) or approximately approximately T protruding integrally at approximately equal pitch intervals.
It has letter-shaped protrusions 4a, 4b, and 4c made of magnetic material. One drive coil 5a, 5b, 5c is wound around each of the protrusions 4a, 4b, 4c.

また、上記各突体4a,4b,4cの永久磁石2の着磁
面と対向する部分には、補助溝6a,,6a2,6b,
,6Q,6c,,6c2が電機子鉄心3の中心軸0に対
して平行に、すなわち図面の紙面に垂直な方向に設けら
れ、これにより、補助溝6a,,6a2,6b,,6Q
,6c.,6c2が設けられた突体部分は永久磁石2の
と間の間隙が大となっている。更に上記補助溝6a,と
6a2,60と6Q,6c,と6c2には、速度検出コ
イル7を構成するところの部分コイル7a,7b,7c
が巻装されている。なお、第1図中の8a,8b,8c
は突体4a,4b,4cの間の溝(間隙)である。ここ
で、前記突体4a,4b,4cは、永久磁石2の磁極と
の相対位置関係について位相差を有する3相に分かれて
いる。従って、たとえば、ホール素子などの磁気感応素
子により永久磁石2の回転位置を検出し、トランジスタ
などの半導体スイッチにより通電する駆動コイルを制御
するならば、同一方向の回転を持続させ得る。このよう
な制御回路については電子整流子型電動機において周知
のものを使用し得るので、ここでの図示ならびに詳細な
説明は省略する。次に速度検出コイル7に発電される速
度検出信号について、第2図を参照して説明する。
In addition, auxiliary grooves 6a, 6a2, 6b,
, 6Q, 6c, , 6c2 are provided in parallel to the central axis 0 of the armature core 3, that is, in a direction perpendicular to the plane of the drawing.
, 6c. , 6c2 is provided with a large gap between the permanent magnet 2 and the protruding part. Further, in the auxiliary grooves 6a, 6a2, 60, 6Q, 6c, and 6c2, partial coils 7a, 7b, 7c forming the speed detection coil 7 are provided.
is wrapped. In addition, 8a, 8b, 8c in FIG.
is a groove (gap) between the projecting bodies 4a, 4b, and 4c. Here, the protrusions 4a, 4b, 4c are divided into three phases having a phase difference in relative positional relationship with the magnetic poles of the permanent magnet 2. Therefore, for example, if the rotational position of the permanent magnet 2 is detected by a magnetically sensitive element such as a Hall element, and the energized drive coil is controlled by a semiconductor switch such as a transistor, rotation in the same direction can be maintained. As such a control circuit, a well-known one for electronic commutator type motors can be used, so illustration and detailed description thereof will be omitted here. Next, the speed detection signal generated by the speed detection coil 7 will be explained with reference to FIG.

第2図aは永久磁石2の表面の磁束密度BMの分布を示
し、同図bは電機子鉄心3の突体4a〜4cの配置関係
を示す展開図である。速度検出コイル7の部分コイル7
a,7b,7cに発生する電圧をそれぞれea,eb,
ecとすれば、速度検出コイル7には、それらを合成し
た発電電圧e(=ea+eb+ec)が得られる。永久
磁石2が第2図に示す矢印の方向に一定角速度で回転し
ているものとし、第2図の状態を初期位置にとれば、各
部分コイル7a,7b,7cには第3図a,b.cに示
すごとき位相差を有する3相の発電電圧ea,eb,e
cが生ずる。その結果、速度検出コイル7から得られる
合成発電電圧eは第3図dのようになる。すなわち、1
磁極対分の角度(180o)の回転に対して3パルスの
周波数信号を得ることができる。これは、各駆動コイル
に生じる逆起電力の周波数を〆Mとすれば、・3×ナ,
Mの周波数信号となっている。この周波数信号はロータ
1の回転速度を定速に制御する場合等に使用される。次
に、本実施例のコギング力について考察し、補助溝6a
,〜6c2の作用効果について説明する。
FIG. 2a shows the distribution of magnetic flux density BM on the surface of the permanent magnet 2, and FIG. 2b is a developed view showing the arrangement relationship of the protrusions 4a to 4c of the armature core 3. Partial coil 7 of speed detection coil 7
The voltages generated at a, 7b, and 7c are respectively ea, eb,
ec, the speed detection coil 7 obtains a generated voltage e (=ea+eb+ec) which is a combination of these. Assuming that the permanent magnet 2 is rotating at a constant angular velocity in the direction of the arrow shown in FIG. 2, and assuming the state shown in FIG. b. Three-phase generated voltages ea, eb, e with phase differences as shown in c
c occurs. As a result, the composite generated voltage e obtained from the speed detection coil 7 is as shown in FIG. 3d. That is, 1
A three-pulse frequency signal can be obtained for a rotation of the magnetic pole pair by an angle (180 degrees). If the frequency of the back electromotive force generated in each drive coil is 〆M, then ・3×Na,
It is a frequency signal of M. This frequency signal is used, for example, when controlling the rotational speed of the rotor 1 to a constant speed. Next, the cogging force of this embodiment will be considered, and the auxiliary groove 6a
, ~6c2 will be explained.

一般に、永久磁石2と電機子鉄心3の間の空間に貯えら
れた磁気エネルギーが、永久磁石2の回転位置に応じて
変化することにより、コギング力が生じる。磁気エネル
ギーは磁束密度の2乗に関係する量であるから、永久磁
石2は1磁極ピッチ(90o)を基本周期として、その
高調波成分の磁気的な変動分を有している。従って、1
磁極ピッチ(90o)を基本周期として、電機子鉄心3
の磁気的な変動分を考えれば良く、その合成変動分を小
さくするならばコギング力は減少する。電機子鉄心3の
磁気的な変動は、突体4a,4b,4c間の溝8a〜8
cと補助溝6a,,6a2,6b,,6Q,6c,,6
c2により生じる。これらの各溝による磁気的な変動を
第4図に示す。第4図aは突体4a,4b,4c間の溝
8a,8b,8cによる磁気的な変動分を表わしている
。溝8aを基準にとるならば、溝8bは1磁極ピッチの
1/3の位相差、8cは1磁極ピッチの2/3の位相差
がある。補助溝6a,,6b,,6c,による磁気的な
変動分を第4図bに示す。同様に補助溝6a2,6b2
,6c2による磁気的な変動分を第4図cに示す。従っ
て、第1図の実施例の電機子鉄03の磁気的な変動分は
、第4図a,b,cを合成した第4図dとなる。これを
、補助溝6a,,6a2,6b,6Q,6C,,6C2
を設けない場合の磁気的な変動分である第4図aと比較
するならば、変動のピッ升ま短くなり(周波数が高次と
なる)、かつ変動量も4・さくなっている。その結果、
本実施例のコギング力は小さくなっている。本実施例に
示すごとく、電機子鉄心の突体に設けた補助溝を利用し
て速度検出コイルを施すならば、部品点数は少なくなり
構造が簡単な周波数発電機付電動機を得ることができる
Generally, cogging force is generated when the magnetic energy stored in the space between the permanent magnet 2 and the armature core 3 changes depending on the rotational position of the permanent magnet 2. Since magnetic energy is a quantity related to the square of the magnetic flux density, the permanent magnet 2 has a magnetic fluctuation of its harmonic component with one magnetic pole pitch (90 degrees) as a fundamental period. Therefore, 1
With the magnetic pole pitch (90o) as the basic period, the armature core 3
It is only necessary to consider the magnetic fluctuation component of , and if the resultant fluctuation component is reduced, the cogging force will be reduced. Magnetic fluctuations in the armature core 3 are caused by grooves 8a to 8 between the protrusions 4a, 4b, and 4c.
c and auxiliary grooves 6a, 6a2, 6b, 6Q, 6c, 6
Caused by c2. FIG. 4 shows magnetic fluctuations due to each of these grooves. FIG. 4a shows magnetic fluctuations due to the grooves 8a, 8b, 8c between the protrusions 4a, 4b, 4c. If groove 8a is taken as a reference, groove 8b has a phase difference of 1/3 of one magnetic pole pitch, and groove 8c has a phase difference of 2/3 of one magnetic pole pitch. FIG. 4b shows the magnetic fluctuations caused by the auxiliary grooves 6a, 6b, 6c. Similarly, auxiliary grooves 6a2, 6b2
, 6c2 is shown in FIG. 4c. Therefore, the magnetic fluctuation of the armature iron 03 in the embodiment shown in FIG. 1 is shown in FIG. 4 d, which is a combination of FIGS. 4 a, b, and c. Add this to the auxiliary grooves 6a, 6a2, 6b, 6Q, 6C, 6C2.
If compared with FIG. 4a, which shows the magnetic fluctuation when no magnetic field is provided, the pitch of the fluctuation is shorter (the frequency becomes higher-order), and the amount of fluctuation is also 4.0 times smaller. the result,
The cogging force in this embodiment is small. As shown in this embodiment, if the speed detection coil is provided using the auxiliary groove provided on the protrusion of the armature core, the number of parts can be reduced and a motor with a frequency generator with a simple structure can be obtained.

また、速度検出コイルが電機子鉄心の突体の一部を巻回
するから、その速度検出コイルに鎖交する磁束は大きく
なる。
Moreover, since the speed detection coil winds a part of the protrusion of the armature core, the magnetic flux interlinking with the speed detection coil becomes large.

その結果、振幅の大きい検出周波数信号を得ることがで
き、定速制御などのための信号処理に有利となる。さら
には、電機子鉄心の突体と永久磁石との間隙を小さく設
定できるため、電動機としての効率を良くすることがで
きる。本実施例においては、速度検出コイル7から得ら
れる検出周波数信号の周波数〆oを、駆動コイル5a〜
5cに生じる逆起電力の周波数ナーNの3倍とした。
As a result, a detection frequency signal with a large amplitude can be obtained, which is advantageous for signal processing for constant speed control and the like. Furthermore, since the gap between the armature core protrusion and the permanent magnet can be set small, the efficiency of the electric motor can be improved. In this embodiment, the frequency of the detection frequency signal obtained from the speed detection coil 7 is set to
The frequency of the back electromotive force generated at 5c was set to three times the frequency N.

一般に、速度検出信号の周波数〆oは逆起電力の周波数
ふに比較して奇数倍にできる。すなわち、〆M=(2h
+1)・ナ,M (ただし、mは1以上の整数)とす
ることができる。
Generally, the frequency of the speed detection signal can be made an odd number times the frequency of the back electromotive force. That is, 〆M=(2h
+1)・Na,M (where m is an integer of 1 or more).

このように、検出周波数を高くするならば、制御特性を
良くすることができる。さらに、永久磁石2の磁極との
相対位置関係について、電機子鉄心3の突体4a〜4c
間の溝8a〜8cによる磁気的な変動分を補助溝6a,
,6a2,6b,6Q,6c,,6c2の有する磁気的
な変動分により相殺して減少させるようにするならば、
コギング力の小さい電動機を得ることができる。なお、
前述の本発明の実施例においては、永久磁石との相対位
置関係において独立せる3個の駆動コイルを用いた3相
駆動方式について説明したが、本発明はそのような方式
に限定されるものではなく、一般に、多相駆動方式に適
用可能である。
In this way, by increasing the detection frequency, control characteristics can be improved. Furthermore, regarding the relative positional relationship with the magnetic poles of the permanent magnet 2, the protrusions 4a to 4c of the armature core 3 are
The magnetic fluctuation due to the grooves 8a to 8c between the auxiliary grooves 6a,
, 6a2, 6b, 6Q, 6c, , 6c2, if the magnetic fluctuations are offset and reduced,
An electric motor with small cogging force can be obtained. In addition,
In the above-described embodiment of the present invention, a three-phase drive system using three drive coils that are independent in their relative position to the permanent magnet has been described, but the present invention is not limited to such a system. Generally, it is applicable to multi-phase drive systems.

さらに、突体および補助溝の形状、数、配置に関しても
前述の実施例のものに限定されることなく、本発明の主
旨を越えずして種々の変形が可能である。また、本発明
で使用する電機子鉄心は珪素鋼板の積層体に限らず、鉄
板を折り曲げて形成したものを用いても良い。
Furthermore, the shape, number, and arrangement of the protruding bodies and auxiliary grooves are not limited to those of the above-described embodiments, and various modifications can be made without departing from the spirit of the present invention. Further, the armature core used in the present invention is not limited to a laminate of silicon steel plates, and may be formed by bending iron plates.

さらに本発明は図示の実施例のごとき外転型に限らず、
内転型のものでも実施でき、本発明に含まれることはい
うまでもない。
Furthermore, the present invention is not limited to the abduction type as in the illustrated embodiment;
It goes without saying that an adductor type can also be used and is included in the present invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の−実施例の要部構成図、第2図a,b
は同実施例における永久磁石表面の磁束密度の分布を示
す図と電機子鉄心の突体の配置関係を示す展開図、第3
図a,b,c,dは同実施例において得られる各部の電
圧波形図、第4図a,a,c,dは同実施例における補
助溝の作用効果を説明するための磁気的変動分を示す図
である。 1・・・・・・。 −夕、2・・・・・・永久磁石、3・・・・・・電機子
鉄心、4a,4b,4c……磁性体製突体、5a,5b
,5c・・・・・・駆動コイル、6al,6a2,60
,6b2,6c,,6cな…・・補助溝、7・・・・・
・速度検出コイル、7a,7b,7c・・・・・・部分
コイル、8a,8b,8c・・・…溝。第4図 第1図 第2図 第3図
Fig. 1 is a configuration diagram of main parts of an embodiment of the present invention, Fig. 2 a and b
3 is a diagram showing the distribution of magnetic flux density on the surface of the permanent magnet and a developed diagram showing the arrangement relationship of the protrusions of the armature core in the same example.
Figures a, b, c, and d are voltage waveform diagrams of various parts obtained in the same example, and Figure 4 a, a, c, and d are magnetic fluctuations for explaining the effects of the auxiliary groove in the same example. FIG. 1... - Evening, 2...Permanent magnet, 3...Armature core, 4a, 4b, 4c...Magnetic body projecting body, 5a, 5b
, 5c... Drive coil, 6al, 6a2, 60
,6b2,6c,,6c...auxiliary groove,7...
-Speed detection coils, 7a, 7b, 7c... partial coils, 8a, 8b, 8c... grooves. Figure 4 Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】 1 等ピツチ間隔もしくは、ほぼ等ピツチ間隔に複数極
着磁された永久磁石を有するロータと、前記永久磁石の
着磁面と対向する複数個の略々T字状の磁性体製突体を
有する電機子鉄心と、前記各磁性体製突体に巻装された
駆動コイルと、前記ロータの回転速度に応じた周波数の
信号を得る速度検出コイルを具備し、前記複数個の磁性
体突体の前記永久磁石と対向する所要部には、前記永久
磁石との間の間隙が大となるごとき形状の補助溝を複数
個設け、前記補助溝部分に前記ロータの回転に伴って等
ピツチもしくは略等ピツチの位相差を有する多相の発電
電圧を発生する複数個の部分コイルを巻装し、前記部分
コイルを直列接続して前記速度検出コイルを構成したこ
とを特徴とする回転電機。 2 特許請求の範囲第1項の記載において、前記速度検
出コイルに生じる発電電圧の周波数をf_Dとし、前記
駆動コイルに生じる逆起電力の周波数をf_Mとすると
き、 f_D=(2m+1)f_M(ただし、mは1以
上の整数)と設定したことを特徴とする回転電機。
[Scope of Claims] 1. A rotor having a plurality of permanent magnets magnetized with multiple poles at equal pitch intervals or approximately equal pitch intervals, and a plurality of approximately T-shaped magnets facing the magnetized surfaces of the permanent magnets. an armature core having a body-made protrusion, a drive coil wound around each of the magnetic body protrusions, and a speed detection coil for obtaining a signal with a frequency corresponding to the rotational speed of the rotor; A plurality of auxiliary grooves having a shape such that the gap between the magnetic body and the permanent magnet is large is provided in a required portion of the magnetic body projecting body facing the permanent magnet, and the auxiliary groove portion is provided with a plurality of auxiliary grooves that are shaped so as to increase the gap between the magnetic body and the permanent magnet. The speed detection coil is constructed by winding a plurality of partial coils that generate multi-phase power generation voltages having a phase difference of equal pitch or approximately equal pitch, and connecting the partial coils in series. Rotating electric machine. 2. In the statement of claim 1, when the frequency of the generated voltage generated in the speed detection coil is f_D, and the frequency of the back electromotive force generated in the drive coil is f_M, f_D=(2m+1)f_M (wherein , m is an integer of 1 or more).
JP52125524A 1977-10-18 1977-10-18 rotating electric machine Expired JPS6011543B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52125524A JPS6011543B2 (en) 1977-10-18 1977-10-18 rotating electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52125524A JPS6011543B2 (en) 1977-10-18 1977-10-18 rotating electric machine

Publications (2)

Publication Number Publication Date
JPS5457609A JPS5457609A (en) 1979-05-09
JPS6011543B2 true JPS6011543B2 (en) 1985-03-26

Family

ID=14912288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52125524A Expired JPS6011543B2 (en) 1977-10-18 1977-10-18 rotating electric machine

Country Status (1)

Country Link
JP (1) JPS6011543B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5796194A (en) * 1996-07-15 1998-08-18 General Electric Company Quadrature axis winding for sensorless rotor angular position control of single phase permanent magnet motor
US6104113A (en) * 1998-05-14 2000-08-15 General Electric Company Coil assembly for sensorless rotor angular position control of single phase permanent magnet motor

Also Published As

Publication number Publication date
JPS5457609A (en) 1979-05-09

Similar Documents

Publication Publication Date Title
US5006745A (en) Polyphase direct current motor
US4280072A (en) Rotating electric machine
JPS6114743B2 (en)
JPS6331453A (en) Electric equipment
US3433987A (en) Rotor without sticking moment
JPS6223537B2 (en)
KR101210876B1 (en) Permanent magnet linear and rotating type synchronous motor
JPS6030195B2 (en) straight electric machine
JPS6011543B2 (en) rotating electric machine
JPS6046633B2 (en) Electric motor
JPS5827752B2 (en) straight electric machine
JPH0753427Y2 (en) Linear motion motor
JPS6010504B2 (en) frequency generator
JPS6111542B2 (en)
JPS64912B2 (en)
JP2564801B2 (en) Rotating electric machine
JPS6245788B2 (en)
JP3014544B2 (en) Electric motor
JPH0750867Y2 (en) Slotless DC brushless motor
JPS608555Y2 (en) rotating electric machine
JPS63144749A (en) Motor
JPS6046632B2 (en) Electric motor
JPS6216786Y2 (en)
JPS587829Y2 (en) Partially driven electric motor on the outer periphery
JPS6223535B2 (en)