JPS60114764A - Measurement of oxygen concentration - Google Patents

Measurement of oxygen concentration

Info

Publication number
JPS60114764A
JPS60114764A JP58223904A JP22390483A JPS60114764A JP S60114764 A JPS60114764 A JP S60114764A JP 58223904 A JP58223904 A JP 58223904A JP 22390483 A JP22390483 A JP 22390483A JP S60114764 A JPS60114764 A JP S60114764A
Authority
JP
Japan
Prior art keywords
gas
oxygen
sensor
oxygen concentration
solid electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58223904A
Other languages
Japanese (ja)
Inventor
Mitsuhiro Nakazawa
中沢 光博
Atsunari Ishibashi
石橋 功成
Akiyoshi Asada
浅田 昭良
Yoshiya Isono
磯野 吉哉
Kuniomi Mochida
持田 国臣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP58223904A priority Critical patent/JPS60114764A/en
Publication of JPS60114764A publication Critical patent/JPS60114764A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/4067Means for heating or controlling the temperature of the solid electrolyte
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0011Sample conditioning
    • G01N33/0016Sample conditioning by regulating a physical variable, e.g. pressure, temperature

Abstract

PURPOSE:To lower the operation temp. of a solid electrolyte sensor and to also reduce a limit current value, by diluting gas to be detected with reference gas to lower the oxygen concn. of the gas to be detected while guiding the diluted gas to the solid electrolyte sensor. CONSTITUTION:Gas G1 to be detected and diluting reference gas G2 are respectively guided from a first flow valve 6 and a second flow valve 7 both of which are controlled in cooperated relation to each other by a controller 5 and mixed to dilute the gas G1 to be detected with the reference gas G2 at definite magnification while the diluted gaseous mixture G3 is guided to a solid electrolyte oxygen sensor 9 by a pump 8 to calculate the oxygen concn. in the diluted gaseous mixture G3. As the reference gas G2, for example, 100% nitrogen gas or a gaseous mixture of nitrogen gas and oxygen, of which the oxygen concn. is known, is used. By this constitution, a sensor retains limit current characteristics even at a relatively low heating temp. (about 300 deg.C) and the limit current value thereof comes to a small value.

Description

【発明の詳細な説明】 〈発明の技術分野〉 本発明は、固体電解質酸素センサ°を用いた酸素濃度の
測定方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Technical Field of the Invention The present invention relates to a method for measuring oxygen concentration using a solid electrolyte oxygen sensor.

〈従来技術とその問題点〉 従来、固体電解質例えばジルコニアなどを用いた酸素セ
ンナには、第1図に示す構造のものがある。このセンナ
は、上記のようにジルコニアを生体とする立方晶系(Z
ro20.9−Y20!10.1 )の固体電解質で酸
素イオン導電板1を作成し、この導電板10両面に白金
などの多孔質金属膜からなる電極板2.2′を設けると
共に、この導電板10片面側には頂板部に微小径の拡散
孔4を有するカバー3を被せて隔離呈Rを形成し−Cな
る。
<Prior art and its problems> Conventionally, an oxygen senna using a solid electrolyte such as zirconia has a structure as shown in FIG. As mentioned above, this senna is a cubic crystal system (Z
An oxygen ion conductive plate 1 is prepared using a solid electrolyte of RO20.9-Y20!10.1), and electrode plates 2.2' made of a porous metal film such as platinum are provided on both sides of the conductive plate 10. One side of the plate 10 is covered with a cover 3 having a minute-diameter diffusion hole 4 on the top plate part to form an isolation plate -C.

そして、この酸素センナによると、測定時、一般には相
当の高温下(約700℃以上)で(被検ガス、センナ自
体を加熱)、上記電極2.2間に測定用の電圧を印加し
、この印加゛電圧を除々に高めていき、その隙、電極2
.2間に流れる電流を測定し、例えば第2図に示すよう
にセンサの電流特値ILを読み取り、この限界電流値工
りから、第3図に示すようにそのときの売件(センサの
印加電圧など)に対応して、被検ガス中の酸素濃度をめ
ることができる。ここで、限界電流値工りは、上述のよ
うに印加電圧が増加していても、電流が殆んど増えない
平坦部b?:なすときの電流値で、この現象は、センサ
中に2いて′#MJ極2.2間への電圧の印加により、
酸素イオン導電板1を介して隔l:に電R内の酸素分子
が外部に弁用される貝(ボンピンク量)が、拡散孔4よ
り隔離屋R内に導入される拡散量より大きく、隔離璽R
内の酸素両度が殆んど0に近くなって、電m2.2’間
に流れる電流が制限されるときの現象である。
According to this oxygen sensor, during measurement, a voltage for measurement is generally applied between the electrodes 2 and 2 at a considerably high temperature (approximately 700° C. or higher) (heating the test gas and the senna itself). This applied voltage is gradually increased, and the gap between the electrodes 2 and 2 is
.. For example, as shown in Figure 2, the current flowing between 2 is measured, and the current special value IL of the sensor is read, and from this limit current value processing, the current selling point (sensor's applied voltage) is calculated as shown in Figure 3. The oxygen concentration in the test gas can be adjusted depending on the voltage (voltage, etc.). Here, the limit current value is determined by determining the flat part b where the current hardly increases even if the applied voltage increases as described above. : The current value when
The amount of oxygen molecules in the electrode R being released to the outside through the oxygen ion conductive plate 1 is larger than the amount of diffusion introduced into the isolation chamber R through the diffusion hole 4, and the isolation is achieved. Seal R
This is a phenomenon that occurs when the oxygen concentration in the 2nd electrode becomes almost 0, and the current flowing between the electric currents m2 and 2' is limited.

し罠がって、この限界電流値工りにより酸素濃度をめる
酸素センナにあっては、その特性上、電流特性曲線a中
に上記平坦部すが判別できる程度に明確に表われること
が必要である。
However, in the case of an oxygen sensor that adjusts the oxygen concentration by modifying the limit current value, due to its characteristics, the above-mentioned flat part may appear clearly enough to be discernible in the current characteristic curve a. is necessary.

ところが、この平坦部すが同一酸素センナにおいて顕出
するには、測定温度、被検ガス中の酸素濃度などの相違
に石って、大きく匠右纏れる。即ち、同一酸素濃度の被
検ガスの場合、第4図に示すように測定温度の高いとき
(約500°C)の電流特性面14aIPcおいては平
坦部すが明確に表われ、かつその限界電流値工りも相当
大きな値として読み取ることができるが、測定温度の低
いとき(約300℃)の電流特性曲線a2にυいては、
極端な場合、当該曲線のように平坦部すが明確に表われ
ず、限界電流値ILをめることができない。また、測定
温度が同一でも、酸素濃度の異なる被検ガスの場合、第
5図に示すように酸素濃度の低いとき(約5チ)の電流
特性曲線a5に2いては、平坦部すが明確に顕出し、し
かも平坦部(Vo〜vE間)が広い限界電流特性りを読
み取ることができるが、酸素濃度の高いとき(釣15饅
、21チ)の電流特性曲線al1%a5にあっては平坦
部すが非常に狭くなり、限界電流値工りをめることが難
しくなる。すなはち、限界電流特性を失なってし首う。
However, the appearance of this flat area in the same oxygen sensor is largely dependent on differences in measurement temperature, oxygen concentration in the sample gas, etc. That is, in the case of the test gas having the same oxygen concentration, as shown in FIG. 4, a flat part clearly appears on the current characteristic surface 14aIPc when the measurement temperature is high (approximately 500°C), and its limit The current value processing can also be read as a fairly large value, but when the measurement temperature is low (approximately 300°C), the current characteristic curve a2 is υ.
In extreme cases, the flat portion of the curve does not clearly appear, making it impossible to determine the limit current value IL. In addition, even if the measurement temperature is the same, in the case of test gases with different oxygen concentrations, as shown in Figure 5, when the oxygen concentration is low (approximately 5 inches), the current characteristic curve a5 has a clear flat part. However, in the current characteristic curve al1%a5 when the oxygen concentration is high (Tsuri 15-man, 21-chi), The flat area becomes very narrow, making it difficult to adjust the limiting current value. In other words, it loses its limiting current characteristics and ends up dead.

そζで、従来の固体電解質e素センサにおいては、上述
のように@当な高温に加熱しながら使用して、電流特性
曲線a中に平坦部すが明確に、かつ広く表われるように
し広範な酸素濃度の被検ガスに対応できるようにしであ
る。これにともない当然得られる限界電流値I、も大き
な値をとるため、精度の面でも好ましくなる。
Therefore, in the conventional solid electrolyte e-element sensor, as mentioned above, it is used while being heated to a suitable high temperature so that the flat part in the current characteristic curve a clearly and widely appears. This makes it possible to handle test gases with a certain oxygen concentration. As a result, the naturally obtained limiting current value I also takes a large value, which is preferable in terms of accuracy.

しかしながら、このように酸素セン−9−を高温にに加
熱して限界電流値ILの平坦部分を可及的に広く、明瞭
にすべく゛使用することは次のような種々の問題があっ
た。
However, the use of heating the oxygen sensor 9 to a high temperature to make the flat portion of the limiting current value as wide and clear as possible has the following various problems.

(イ)、センナの加熱源して大型の手段が必要で、加熱
のための電力消費が極めて大きい。
(a) A large-sized means is required as a heating source for senna, and power consumption for heating is extremely large.

(ロ)、゛また、加熱手段を施した場合、高温度になる
44 、外部への熱流用が大きく、熱損失による電力消
費も無視できないものとなる。
(b) In addition, when a heating means is provided, the temperature becomes high44, a large amount of heat is diverted to the outside, and power consumption due to heat loss cannot be ignored.

(ハ)、′fた、高温状態にしてセンナを使用する場合
、外界(常温)との温度差が大きいため、外界に影#き
れ易く、一定温度に維持すること力軸如しく、これがた
め、測足鞘度の低下を招くことになる。
(c) When using senna in a high temperature state, there is a large temperature difference with the outside world (room temperature), so it is easy to be affected by the outside world, and it is necessary to maintain a constant temperature. , this will lead to a decrease in foot measurement accuracy.

(ニ)、更に、高温度で限界電流1直IL奮相当大きな
値としてセンナを作動させる場合には、大きな1ぬ界t
電流により、酸素イオン導′屯板のジルコニア固体屯解
質に対して大きな負担がか\す、自己発熱現米が生じ7
ζりして、眠)性質自体の破損、電極のか1j離などの
問題が起き、結局、センナ寿命が著しく短かくなる。
(d) Furthermore, when the senna is operated at a high temperature with a limit current equivalent to 1 pulse IL, a large value of the limit current t
The current causes self-heating, which places a heavy burden on the zirconia solid solution of the oxygen ion conductive plate7.
As a result, problems such as damage to the senna properties and separation of the electrodes occur, resulting in a significantly shortened senna life.

〈発明の目的〉 本発明は、このような従来技術の問題点に鑑魯てなされ
たもので、その目的とするところは、固体電解質酸素セ
ンfを使用するにυいて、消費電力を小感〈シ、かつセ
ンナ自体に無理な負担のがからな騒ようにした酸素濃度
の測定方法を提供するにある。
<Object of the Invention> The present invention has been made in view of the problems of the prior art, and its purpose is to minimize power consumption when using a solid electrolyte oxygen sensor. [0009]The present invention also provides a method for measuring oxygen concentration that does not impose an undue burden on senna itself.

〈発明の構成〉 本発明は、上述の目的全達成するため、被検ガス中の酸
素濃度が低いときkこは、比較的低い加熱温度(約30
0℃)で限界電流特性を得ることができ、しかもそのと
きの得られる限界電流値が小ちいことに着目したもので
、′4倹ガス中の酸素濃度を固体電力¥質酸素センサで
測定するにおいて、当該被検ガスを基準ガスで希釈して
から上記固体電解質センナに導びき、低酸素濃度として
測定し7ζ後、上記希釈倍率を乗算して真の酸素濃度を
めることt−特徴とするものである。
<Configuration of the Invention> In order to achieve all of the above-mentioned objects, the present invention uses a relatively low heating temperature (approximately 30
This method focuses on the fact that the limiting current characteristics can be obtained at 0℃) and the limiting current value obtained at that time is small.The oxygen concentration in the gas is measured with a solid-state electric oxygen sensor In this step, the test gas is diluted with a reference gas, guided to the solid electrolyte sensor, measured as a low oxygen concentration, and after 7ζ, multiplied by the dilution factor described above to find the true oxygen concentration. It is something to do.

ここで基準ガスとは、酸素濃度が既知のガスであって、
例えば100%の窒素ガス、窒素ガスと酸素との混合ガ
ス等がある。
Here, the reference gas is a gas whose oxygen concentration is known,
Examples include 100% nitrogen gas, a mixed gas of nitrogen gas and oxygen, and the like.

〈実施例〉 か\る本発明の実施例を示すと、第6図または第7図の
如くである。
<Embodiment> An embodiment of the present invention is shown in FIG. 6 or 7.

第6図の酸素濃度の測定方法の場合は、コントローラ5
で連動制御される第1流量弁6から被検ガスG1を、第
2流量升Tから希釈用の基準ガス02を夫々尋びき、混
合し、上記被検ガスGlを基準ガスG2で一定倍率で希
釈し、この希釈混合ガスG5をポンプ8で固体電解質酸
素セン?9に導ひいて、その希釈混合ガスG5中の酸素
濃度を先ずめ、このめた値に上記希釈倍率を乗算して、
真の酸素濃度をめる方法で、この方法は連続的に測定す
る場合に適した方式である。
In the case of the oxygen concentration measurement method shown in Fig. 6, the controller 5
The test gas G1 is supplied from the first flow valve 6 which is interlocked controlled by the flow valve 6, and the reference gas 02 for dilution is supplied from the second flow volume T, and mixed. Dilute this diluted mixed gas G5 with pump 8 to solid electrolyte oxygen sensor? 9, the oxygen concentration in the diluted mixed gas G5 is first multiplied by the above dilution factor,
This method calculates the true oxygen concentration and is suitable for continuous measurement.

第7図の酸素濃度の測定方法の場合は、やはりコントロ
ーラ5で連動制御遥れる@l流景升6から被検ガスG!
を、第2流量弁Tから希釈用の基準ガス02″ft夫々
導びき、混合した仮、一旦、タンク10内KYfJ#、
L、このタンク10から希釈混合ガスG5を上記コント
ローラ5で制御されるポンプ8で固体電解質酸素センナ
9に導びいて、上記第6図の場合と同様に、その希釈混
合ガスG。
In the case of the oxygen concentration measurement method shown in FIG. 7, the controller 5 performs interlocking control to control the gas G!
02″ft of reference gas for dilution is introduced from the second flow valve T, and once mixed, KYfJ# in the tank 10,
L, the diluted mixed gas G5 is guided from this tank 10 to the solid electrolyte oxygen sensor 9 by the pump 8 controlled by the controller 5, and the diluted mixed gas G is produced in the same manner as in the case of FIG. 6 above.

中の酸素濃度を先ずめ、このめた値に上記希釈倍率を乗
算して、真の酸翫濃反をめる方法で、この方法は所望時
に61度測定するにひいて有用なパッチ方式である。
First, calculate the oxygen concentration in the water, and then multiply this value by the above dilution factor to determine the true oxygen concentration.This method is a patch method that is particularly useful for measuring 61 degrees when desired. be.

上記各方法において、基準ガスG2としては、特に限定
纏れず、(重々のガス、例えば前述の窒素ガス或いは不
活性ガスのようにセンサの酸基イオン導電板によりボン
ピンク作用を受けないガスにあっては、単独でまたは混
合ガスとして1吏用でき、更に酸素含有ガスあるいは酸
素と同様に、俊素イオン導電板によりポンピング作用を
受ける分子を含むガスにあっては、当該酸素濃度及び含
有分子の含有濃度が既知のガスを用いるとよい。−!た
、被検ガスの希釈倍率としては、希釈後の希釈混合ガス
中の酸素濃度が約5%程度となるようにするとよい。
In each of the above methods, the reference gas G2 is not particularly limited, and may be a gas that is not subjected to the bombin pink effect by the acid-base ion conductive plate of the sensor, such as the aforementioned nitrogen gas or inert gas. can be used alone or as a mixed gas, and in the case of oxygen-containing gases or gases containing molecules that, like oxygen, are pumped by the oxygen ion conductive plate, the oxygen concentration and the content of the contained molecules can be adjusted. It is preferable to use a gas whose concentration is known. Furthermore, the dilution ratio of the test gas is preferably such that the oxygen concentration in the diluted mixed gas after dilution is about 5%.

このように、酸素濃度が約5%程度の場合、前述のよう
に固体電解質酸素センナにあっては、センナは比較的低
い加熱温度でも限界電流特性を維持し、その限界電流値
も小さな値をとる。
In this way, when the oxygen concentration is about 5%, solid electrolyte oxygen senna maintains its limiting current characteristics even at relatively low heating temperatures, and its limiting current value also remains small. Take.

なお、本発明は、上記各実施例に限定されるものではな
く、被検ガス中の酸素濃度が希釈できる方法であれば、
他の方法をとることも可能である。
Note that the present invention is not limited to the above-mentioned embodiments, and any method that can dilute the oxygen concentration in the test gas,
Other methods are also possible.

〈発明の効果〉 本発明は、以上の説明から明らかなように1被検ガス中
の酸素濃度を測定するにおりて、被検ガスを基準ガスで
希釈し、結局、酸素濃度の低い状態にして酸素センナを
作動させるものであるため、センナの作動温度は比較的
低い温度(約300℃)でよく、またこのときの限界電
流値も小さな値として得られる。との九め、次のような
優れた種々の効果が期待できる。
<Effects of the Invention> As is clear from the above description, the present invention dilutes the test gas with a reference gas when measuring the oxygen concentration in a test gas, resulting in a low oxygen concentration state. Since the oxygen senna is operated by the oxygen sensor, the operating temperature of the senna may be relatively low (approximately 300° C.), and the limiting current value at this time can also be obtained as a small value. Ninthly, you can expect various excellent effects such as:

(イ)、センナの加熱源がljX型でよく、加熱のため
電力消費量を大巾に低減することができる。
(a) The heating source for the senna may be of the ljX type, and power consumption for heating can be greatly reduced.

(ロ)、加熱温度がそんなに高くないので、外部への熱
流出による熱損失が小さく、この点からも電力消費量の
低減を図ることができる。
(b) Since the heating temperature is not so high, heat loss due to heat leakage to the outside is small, and from this point of view as well, it is possible to reduce power consumption.

(ハ)、また、外界との温度差が従来のものと比較して
大巾に小さくなるため、外界からの影響に強く、常に高
精度な測定が可能となる。
(c) Furthermore, since the temperature difference with the outside world is greatly reduced compared to conventional ones, it is resistant to influences from the outside world and always enables highly accurate measurements.

(ニ)、更に、比較的低い温度でセンナが作動し、その
限界電流値が小さいため、酸素イオン導電板に大きな電
流が流れることがなくなり、固体電解質に無理な負担が
か\つて自己発熱現象奮起こしえすすることがなく、−
t71:電極の剥離などもなく、センサ寿命の大巾な向
上を獲得することができる。
(d) Furthermore, since Senna operates at a relatively low temperature and its limiting current value is small, no large current flows through the oxygen ion conductive plate, which places an unreasonable burden on the solid electrolyte and causes self-heating phenomenon. I can't help but feel inspired,-
t71: There is no peeling of the electrode, and the sensor life can be greatly improved.

なおまた、今までの説明は限界電流方式の酸素センサを
対象としてきたが、被検知ガスを基準ガスにて希釈する
方法は両電極間に一定電流を通電し、その時の時間−電
圧特性から酸素濃度を検知する方式にも応用することが
でき同様に優れた効果を奏することができる。
Furthermore, although the explanation so far has focused on the limiting current type oxygen sensor, the method of diluting the detected gas with the reference gas is to pass a constant current between both electrodes, and from the time-voltage characteristics at that time, the oxygen sensor is It can also be applied to a method of detecting concentration, and similarly excellent effects can be achieved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は固体電解質酸素センナの一例を示す概略図、第
2図は上記センサの電圧−電流特性を示すグラフ、第3
図は上記センナの酸素濃度−限界電流値を示すグラフ、
83図は上記センサに2いて測定温度を変えた場合の電
圧−電流特性を示す各グラフ、第5図は上記センナにお
いて被検ガス中の酸素濃度の相異による電圧−電流特性
を示す各グラフ、第6図及び第7図は本発明に係る酸素
濃度の測定方法の%実施例t−説明する概略説明図であ
る。 Gl・・−被検カス、 G2・・・基準ガス、 9・・
・固体電解質酸素センサ。 特許用願人 藤倉電線株式会社 手続袖正書(方式) 昭和59年3月17日 特許庁長官 若杉和夫殿 1、事件の表示 昭和58年 特 許 願第223904号2、発明の名
称 #素fIk度の測定万υこ3、補正をする者 事件との関係 特許田顧人
Figure 1 is a schematic diagram showing an example of a solid electrolyte oxygen sensor, Figure 2 is a graph showing the voltage-current characteristics of the sensor, and Figure 3 is a graph showing the voltage-current characteristics of the sensor.
The figure is a graph showing the oxygen concentration vs. limiting current value of the above senna,
Figure 83 is a graph showing the voltage-current characteristics when the measurement temperature is changed using the above-mentioned sensor, and Figure 5 is a graph showing the voltage-current characteristics due to differences in the oxygen concentration in the test gas in the above-mentioned sensor. , FIG. 6, and FIG. 7 are schematic explanatory diagrams illustrating an embodiment of the method for measuring oxygen concentration according to the present invention. Gl...-Test dregs, G2...Reference gas, 9...
・Solid electrolyte oxygen sensor. Patent applicant: Fujikura Electric Cable Co., Ltd. Procedural Sleeve (Method) March 17, 1980 Director-General of the Patent Office Kazuo Wakasugi1, Indication of the case 1981 Patent Application No. 2239042, Name of the invention #Steel fIk Measurement of degree 3, relationship with the case of the person making the amendment

Claims (1)

【特許請求の範囲】[Claims] 被検ガス中の酸素濃度を固体電解質酸素センサで測定す
るにおいて、当該被検ガスを基準ガスで希釈してから上
記固体電解質センサに導びき、低m素濃度として測定し
た後、上記界釈倍率を乗算して真の酸素濃度をめるよう
にしたことを特徴とする酸素6度の測定方法。
When measuring the oxygen concentration in a test gas with a solid electrolyte oxygen sensor, the test gas is diluted with a reference gas and then guided to the solid electrolyte sensor, and after measurement as a low m elementary concentration, the above dilution magnification is applied. A method for measuring 6 degrees of oxygen, characterized in that the true oxygen concentration is determined by multiplying by .
JP58223904A 1983-11-28 1983-11-28 Measurement of oxygen concentration Pending JPS60114764A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58223904A JPS60114764A (en) 1983-11-28 1983-11-28 Measurement of oxygen concentration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58223904A JPS60114764A (en) 1983-11-28 1983-11-28 Measurement of oxygen concentration

Publications (1)

Publication Number Publication Date
JPS60114764A true JPS60114764A (en) 1985-06-21

Family

ID=16805526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58223904A Pending JPS60114764A (en) 1983-11-28 1983-11-28 Measurement of oxygen concentration

Country Status (1)

Country Link
JP (1) JPS60114764A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0857967A2 (en) * 1997-02-05 1998-08-12 Litton Systems, Inc. Apparatus for high oxygen concentration measurement using limiting current oxygen sensor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5269690A (en) * 1975-12-05 1977-06-09 Westinghouse Electric Corp Partil pressure measuring apparatus for specified gages in sighted environments
JPS5888662A (en) * 1981-11-24 1983-05-26 Toshiba Corp Automatic chemical analyzer
JPS58112532A (en) * 1981-12-26 1983-07-05 オムロン株式会社 Constinuous measuring apparatus of blood components of living body

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5269690A (en) * 1975-12-05 1977-06-09 Westinghouse Electric Corp Partil pressure measuring apparatus for specified gages in sighted environments
JPS5888662A (en) * 1981-11-24 1983-05-26 Toshiba Corp Automatic chemical analyzer
JPS58112532A (en) * 1981-12-26 1983-07-05 オムロン株式会社 Constinuous measuring apparatus of blood components of living body

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0857967A2 (en) * 1997-02-05 1998-08-12 Litton Systems, Inc. Apparatus for high oxygen concentration measurement using limiting current oxygen sensor
EP0857967A3 (en) * 1997-02-05 2002-08-21 Litton Systems, Inc. Apparatus for high oxygen concentration measurement using limiting current oxygen sensor

Similar Documents

Publication Publication Date Title
Maskell Progress in the development of zirconia gas sensors
Selim et al. Coulometric titration with higher oxidation states of manganese: electrolytic generation and stability of+ 3 manganese in sulfuric acid media
JPH0262954A (en) Method of amperometric titration
JPS57192856A (en) Oxygen concentration detector
US4576705A (en) Apparatus with polarographic sensor to detect concentrations of plurality of gas components
Kolthoff et al. Amperometric (Polarometric) Titrations. I. The amperometric titration of lead with dichromate or chromate
LaConti et al. Electrochemical detection of H2, CO, and hydrocarbons in inert or oxygen atmospheres
de Oliveira et al. Voltammetric determination of persulfate anions using an electrode modified with a Prussian blue film
Mer et al. Acidity in non-aqueous solvents. Conductimetric and electrometric titrations of acids and bases in benzene
JPS60114764A (en) Measurement of oxygen concentration
Montella Review and theoretical analysis of ac–av methods for the investigation of hydrogen insertion: Part III. Comparison of entry side impedance, transfer function and transfer impedance methods
Samec et al. Study of the Oxidation of SO2 Dissolved in 0· 5 M H2SO4 on a Gold electrode—II. A Rotating Disc Electrode
Johnson et al. Chlorine residual measurement cell: the HOCI membrane electrode
Chatenet et al. Electrochemical measurement of the oxygen diffusivity and solubility in concentrated alkaline media on rotating ring-disk and disk electrodes—application to industrial chlorine-soda electrolyte
JPS61280560A (en) Method for measuring concentration of oxygen
Raspi et al. Voltammetric behaviour of chlorites and chlorine dioxide on a platinized-platinum microelectrode with periodical renewal of the diffusion layer and its analytical applications
CA1137663A (en) Method for the control of an electrolytic display cell by means of electrical writing and erasure magnitudes applied to electrodes
Matsumoto et al. Hydrogen isotope sensor using high temperature proton conductors
Pastor et al. Bipotentiometric titrations with standard solutions of manganese (III) and manganese (IV)
JPS62175657A (en) Method of measuring gas concentration
JPH0425753A (en) Gas sensor
CA1114021A (en) Potentiostated, three-electrode, solid polymer electrolyte (spe) gas sensor having highly invariant background current characteristics with temperature during zero-air operation
Bronin et al. Polarized‐Cell Measurements on Yttria‐Stabilized Zirconia Using an Anodically Blocked Electrode
JPH03188366A (en) Method for analyzing mixed gas using electrochemical gas sensor
Rosamilia et al. Electrochemical examination of the copper oxidation state in the fluorine doped Nd2CuO4 superconductor