JPH03188366A - Method for analyzing mixed gas using electrochemical gas sensor - Google Patents

Method for analyzing mixed gas using electrochemical gas sensor

Info

Publication number
JPH03188366A
JPH03188366A JP1328969A JP32896989A JPH03188366A JP H03188366 A JPH03188366 A JP H03188366A JP 1328969 A JP1328969 A JP 1328969A JP 32896989 A JP32896989 A JP 32896989A JP H03188366 A JPH03188366 A JP H03188366A
Authority
JP
Japan
Prior art keywords
sensor
gas
mixed gas
output
sensors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1328969A
Other languages
Japanese (ja)
Other versions
JPH07117517B2 (en
Inventor
Shuji Hitomi
周二 人見
Hisashi Kudo
工藤 寿士
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP1328969A priority Critical patent/JPH07117517B2/en
Publication of JPH03188366A publication Critical patent/JPH03188366A/en
Publication of JPH07117517B2 publication Critical patent/JPH07117517B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
  • Measuring Oxygen Concentration In Cells (AREA)

Abstract

PURPOSE:To make it possible to analyze gas comprising many components by using the same number of sensors as the intended components wherein diaphragms having different gas permeabilities are mounted, simultaneously aligning the outputs of the sensors in the mixed gas, and computing the constituting ratio of the mixed gas. CONSTITUTION:A sensor is composed of, for example, a main body 1 comprising ABS resin, an electrolyte 2 comprising the mixed aqueous solution of acetic acid and calcium acetate, a working electrode 3 comprising platinum (Pt), a counter electrode 4 comprising lead dioxide (PbO2), a reference electrode 5 comprising PbO2 which is provided in the vicinity of the working electrode 3 and a diaphragm 6. The sensor using a 'Teflon(R)', film as the diaphragm 6 is made to be the sensor A, and the sensor using a polyethylene film is made to be the sensor B. The potential of the working electrode 3 is set at -300 mV with respect to the reference electrode. The output in the mixed gas of CO and N2 or H2 and N2 whose mixing ratio is known is measured in order to obtain the output constants for CO and H2 in the sensors A and B.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、混合ガスの構成割合をガス透過係数の異なる
隔膜を装着した複数個の電気化学式ガスセンサを用いて
分析する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for analyzing the composition ratio of a mixed gas using a plurality of electrochemical gas sensors equipped with diaphragms having different gas permeability coefficients.

さらに詳しくは、混合ガスの構成4分それぞれに対する
出力定数と構成々分の構成割合との積の和で表される混
合ガス中での該センサの出力を連立させることにより混
合ガスの構成割合を算出し、分析する方法に関するもの
である。
More specifically, the composition ratio of the mixed gas can be calculated by simultaneously combining the output of the sensor in the mixed gas, which is expressed as the sum of the products of the output constant for each of the four constituent parts of the mixed gas and the composition ratio of each component. It concerns the method of calculation and analysis.

従来の技術 電気化学式ガスセンサとは、電気化学的に被検知ガスを
酸化還元して電流あるいは電圧に変換するデバイスであ
り、代表的なものに定電位電解式ガスセンサとガルバニ
電池式ガスセンサがある。
2. Description of the Related Art An electrochemical gas sensor is a device that electrochemically oxidizes and reduces a gas to be detected and converts it into current or voltage. Typical examples include a constant potential electrolytic gas sensor and a galvanic cell gas sensor.

前者においては、被検知ガスの種類により電解電位がそ
れぞれ異なることを利用して多成分ガスの場合、いくつ
かの電解電位を適当に選び、特定成分を選択的に検知し
、構成4分の構成割合を分析するものである。
In the former case, in the case of multi-component gases, several electrolytic potentials are appropriately selected to selectively detect specific components by taking advantage of the fact that electrolytic potentials differ depending on the type of gas to be detected. This is to analyze the ratio.

また後者においては、特定の成分を選択的に透過させる
隔WAまたは、特定の成分に対して活性な触媒電極をセ
ンサに装着し、特定成分を選択的に検知することで多成
分ガス中の特定成分の構成割合を分析するものである。
In addition, in the latter case, a sensor is equipped with a barrier WA that selectively transmits a specific component or a catalyst electrode that is active against a specific component, and the specific component is selectively detected. This is to analyze the composition ratio of components.

発明が解決しようとする課題 しかし、定電位電解式ガスセンサにおいては、他の成分
と目的とする成分の電解電位が近い場合、電解電位の決
定が非常に困難であったり、目的外の成分を除去するた
めに吸着剤を用いたりする必要がある。
Problems to be Solved by the Invention However, in constant potential electrolytic gas sensors, if the electrolytic potential of the target component is close to that of other components, it may be very difficult to determine the electrolytic potential, or it may be difficult to remove unintended components. In order to do this, it is necessary to use an adsorbent.

また、ガルバニ電池式ガスセンサにおいては、目的とす
る成分を選択的に透過させる隔膜や目的とする成分に対
してのみ活性な触媒電極を選定するのはかなり困難で、
多成分ガスの分析はほとんど不可能である。
In addition, in galvanic cell type gas sensors, it is quite difficult to select a diaphragm that selectively transmits the target component and a catalytic electrode that is active only against the target component.
Analysis of multicomponent gases is almost impossible.

課題を解決するための手段 本発明は、ガス透過係数の異なる被検知混合ガスの構成
4分の内、目的とする成分と同数のセンサを用い、目的
とする各々の構成4分の出力定数と構成割合との積の和
で表されるという電気化学センサの性質を利用して混合
ガス中での該センサの出力を連立させて混合ガスの構成
割合を算出することで上述の如き問題を解決しようとす
るものである。
Means for Solving the Problems The present invention uses the same number of sensors as the target components among the four constituents of a mixed gas to be detected having different gas permeability coefficients, and calculates the output constant for each of the four constituents to be detected. The above problem is solved by calculating the composition ratio of the mixed gas by simultaneously combining the output of the sensor in the mixed gas using the property of the electrochemical sensor that it is expressed as the sum of the products with the composition ratio. This is what I am trying to do.

作用 N個の構成4分a、b・・・nより成る混合ガスの各成
分に対するN個の電気化学式ガスセンサの出力は下式で
表される。
The outputs of the N electrochemical gas sensors for each component of the mixed gas consisting of N components a, b, . . . n are expressed by the following equations.

yaK=am ・Ca  (1−a) Y bx=b x ・Ca  (1” )Ymz=nx
  −cm   (1−n)ここで、Y a X 、 
Y b K”’ Y a lLは、ガスa、b−nそれ
ぞれと不活性ガスとの混合ガス中でのセンサXの出力で
あり、Cm、Cb・・・C,は、ガスa、b・・・nの
濃度である。また、ax、bx・・・nxはセンサXの
ガスa、b・・・nそれぞれに対する出力定数であり、
センサに用いる隔膜のガス透過係数や、各成分単体中で
のセンサ出力、構成々分とその割合が自明なガス中での
センサ出力等より算出することができる。
yaK=am ・Ca (1-a) Y bx=b x ・Ca (1”)Ymz=nx
-cm (1-n) where Y a X ,
Y b K"' Y a lL is the output of sensor ...n is the concentration of gases a, b...n, and ax, bx...nx are the output constants of sensor X for gas a, b...n,
It can be calculated from the gas permeability coefficient of the diaphragm used in the sensor, the sensor output in each component alone, the sensor output in a gas whose components and their ratios are obvious, etc.

そこで、定電位電解式ガスセンサの場合、作用極の電位
を混合ガスの各成分がすべて限界電流を示す電位に設定
すれば、混合ガス中での該センサの出力は下式で表され
るという性質をもっている。
Therefore, in the case of a constant potential electrolytic gas sensor, if the potential of the working electrode is set to a potential where all components of the mixed gas exhibit the limiting current, the output of the sensor in the mixed gas is expressed by the following formula. have.

Y、=Y、、+Yb、+・・・YllIl==aIlH
ca + bw ・cb +=・nx ・Cm (2x
)ここで、 Y8:センサXの混合ガス中での出力 またガルバニ電池式ガスセンサにおいても、作用極と対
極間に接続される検出抵抗値を混合ガスの各成分がすべ
て限界電流を示すよう設定すれば、定電位電解式ガスセ
ンサの場合と同様に、上式(2−x)が得られる。N個
の化学式センサについて、N個の上式(2−x)が得ら
れればそれらを連立して解くことにより混合ガスの各成
分の構成割合が求まる。
Y,=Y,,+Yb,+...YllIl==aIlH
ca + bw ・cb +=・nx ・Cm (2x
)Here, Y8: Output of sensor For example, as in the case of a constant potential electrolytic gas sensor, the above formula (2-x) can be obtained. If N equations (2-x) are obtained for N chemical sensors, the composition ratio of each component of the mixed gas can be determined by solving them simultaneously.

実施例 以下、本発明をガス透過係数の興なる隔膜を装着した2
ケの定電位電解式ガスセンサにより一酸化炭素(CO)
と水素(N2) 、さらに窒素(N2)の混合ガスを分
析した実施例により説明する。
In the following examples, the present invention will be explained using a diaphragm with a high gas permeability coefficient.
Carbon monoxide (CO)
This will be explained using an example in which a mixed gas of hydrogen (N2) and nitrogen (N2) was analyzed.

用いたセンサの概略図を第1図に示す。A schematic diagram of the sensor used is shown in FIG.

ABS樹脂より成る本体1と酢酸と酢酸カリウムの混合
水溶液より成る電解液2、白金(Pt)からなる作用極
3、二酸化鉛(Pb02)より成る対@4、さらに、作
用極3の近傍に設置されたpbo2より成る参照極5と
隔WA6より構成されている。
A main body 1 made of ABS resin, an electrolyte 2 made of a mixed aqueous solution of acetic acid and potassium acetate, a working electrode 3 made of platinum (Pt), a pair @4 made of lead dioxide (Pb02), and further installed near the working electrode 3. It consists of a reference pole 5 made of pbo2 and a distance WA6.

ここで、隔膜6としてテフロン膜を用いたものをセンサ
A、またポリエチレン膜を用いたものをセンサBとする
。また、ポテンシオスタットを用いて作用極3の電位を
参照極5に対し一300+1vに設定した。
Here, sensor A uses a Teflon film as the diaphragm 6, and sensor B uses a polyethylene film. Further, the potential of the working electrode 3 was set to -300+1 V with respect to the reference electrode 5 using a potentiostat.

まず、センサAとセンサBのCOおよびN2に対する出
力定数を求めるため、混合割合の自明なCOとN2また
はN2とN2の混合ガス中での出力を測定した。
First, in order to determine the output constants of sensor A and sensor B for CO and N2, the output in a mixed gas of CO and N2 or N2 and N2 with an obvious mixing ratio was measured.

第2図、第3図にセンサA、センサBのCOおよびN2
に対する出力特性を示す。
Figures 2 and 3 show CO and N2 of sensor A and sensor B.
shows the output characteristics for

第2図より、センサAのCOおよび112G二対する出
力定数a 1 + b +はそれぞれ0.12.0.4
2であることがわかる。また、第3図よりセンサBのC
Oおよび112に対する出力定数a2.b2はそれぞれ
0.35.0.30である。
From Figure 2, the output constants a 1 + b + for CO and 112G of sensor A are 0.12 and 0.4, respectively.
It turns out that it is 2. Also, from Figure 3, C of sensor B
Output constant a2 for O and 112. b2 are 0.35 and 0.30, respectively.

つまり、センサAおよびセンサBのCOおよび11、、
N2混合ガス中での出力は式(2−X)より次式により
表される。
That is, CO and 11 of sensor A and sensor B,
The output in N2 mixed gas is expressed by the following equation from equation (2-X).

Y 、 = 0.42Cco+ 0.12C□ ・・・
(3)Y x = 0.300 co+ o、 35C
H−・・・ (4)ここで、Y、、Y2は混合ガス中で
のセンサA。
Y, = 0.42Cco+ 0.12C□...
(3) Y x = 0.300 co+ o, 35C
H-... (4) Here, Y,, Y2 is the sensor A in the mixed gas.

Bの出力(nV)テあり、CCO、CHaはそれぞれC
O。
B output (nV) is present, CCO and CHa are each C
O.

+12の濃度(%)である。+12 concentration (%).

次に、センサAおよびセンサBのC0=20%。Next, C0 of sensor A and sensor B = 20%.

H2=5%、142=75%の混合ガス中での出力を測
定し、上式(3)、  (4)より導き出した値が、混
合ガスの構成割合と一致するかを確かめた。
The output in a mixed gas of H2 = 5% and 142 = 75% was measured, and it was confirmed whether the values derived from the above equations (3) and (4) matched the composition ratio of the mixed gas.

センサAおよびセンサBの混合ガス中での出力はそれぞ
れ9.00nv、 7.75nvであった。そこで、式
(3) 、 (4)より次の式が導かれ、CCO,CH
aが算出された。
The outputs of sensor A and sensor B in the mixed gas were 9.00 nv and 7.75 nv, respectively. Therefore, the following equation is derived from equations (3) and (4), and CCO, CH
a has been calculated.

9.00= 0.42Cco+ 0.12C□7、75
= 0.30Cco+ 0.35CI4*、“、 Cc
o= 20、C,、=5 算出された値は、混合ガスの構成割合とよく一致した。
9.00= 0.42Cco+ 0.12C□7, 75
= 0.30Cco+0.35CI4*, “, Cc
o = 20, C, , = 5 The calculated value was in good agreement with the composition ratio of the mixed gas.

発明の効果 本発明による、電気化学式センサによる混合ガスの分析
方法は、従来化学式センサによる分析が不可能であった
種々の混合ガスの分析を可能にするため、産業上に寄与
すること非常に大である。
Effects of the Invention The method of analyzing mixed gases using an electrochemical sensor according to the present invention makes it possible to analyze various mixed gases that were previously impossible to analyze using chemical sensors, and therefore makes a very large contribution to industry. It is.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の実施例に用いた定電位電解型ガスセ
ンサの概略図である。 1・・・本体、2・・・電解液、3・・・作用極、4・
・・対極。 5・・・参照極、6・・・隔膜 第2図は隔膜にテフロン膜を用いたセンサAのCOおよ
び11嘆に対する出力特性図であり、図3は隔膜にポリ
エチレン膜を用いたセンサBのCOおよび112に対す
る出力特性図である。 牢 1 酊 vP Z 画 ポテンシオスタット RVJ   C 弁 3 目 め  4D  ぶ08θ  嵯 α’ 8 k /2 )/ t eP)@炭(x )手
続ネ市正書(自発) 1.事件の表示 平成 1年 特許願第328969号 2、発明の名称 電気化学式ガスセンサによる混合ガスの分析方法3、補
正をする者 事件との関係
FIG. 1 is a schematic diagram of a constant potential electrolysis type gas sensor used in an example of the present invention. 1... Main body, 2... Electrolyte, 3... Working electrode, 4...
...the opposite. 5...Reference electrode, 6...Diaphragm Fig. 2 is an output characteristic diagram for CO and 11 of sensor A which uses a Teflon membrane as its diaphragm, and Fig. 3 shows the output characteristics of sensor B which uses a polyethylene membrane as its diaphragm. It is an output characteristic diagram with respect to CO and 112. Prison 1 Intoxication vP Z Drawing Potentiostat RVJ C Valve 3rd Eye 4D BU08θ 嵯α' 8 k /2 ) / t eP) @ Charcoal (x) Procedural City Author (Spontaneous) 1. Display of the case 1999 Patent Application No. 328969 2, Name of the invention Method for analyzing mixed gas using an electrochemical gas sensor 3, Person making the amendment Relationship with the case

Claims (1)

【特許請求の範囲】 N個の構成々分a,b・・・nより成る混合ガスの構成
割合をガス透過係数の異なる隔膜を装着し、構成々分そ
れぞれに対する出力特性をあらかじめ求めておいたN個
の電気化学式ガスセンサの下式で表される混合ガス中で
の出力を連立させることにより求めることを特徴とする
電気化学式ガスセンサによる混合ガスの分析方法。 Y_x=a_x・c_a+b_x・c_b+・・・n_
x・c_nここで、 Y_x:センサxの混合ガス中での出力 (x=1,2,・・・N) a_x,b_x,・・・n_x:あらかじめ求めておい
た、センサxの構成々分a,b ・・・nに対する出力定数 c_a,c_b,・・・c_n:構成々分a,b,・・
・nの構成割合
[Claims] The composition ratio of a mixed gas consisting of N components a, b...n is determined by installing diaphragms with different gas permeability coefficients, and determining the output characteristics for each component in advance. A method for analyzing a mixed gas using an electrochemical gas sensor, characterized in that the outputs of N electrochemical gas sensors in a mixed gas expressed by the following equation are determined simultaneously. Y_x=a_x・c_a+b_x・c_b+...n_
x・c_n where, Y_x: Output of sensor x in mixed gas (x=1, 2,...N) a_x, b_x,...n_x: Predetermined components of sensor x Output constants c_a, c_b, ... c_n for a, b ... n: components a, b, ...
・Composition ratio of n
JP1328969A 1989-12-19 1989-12-19 Analysis method of mixed gas by electrochemical gas sensor Expired - Lifetime JPH07117517B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1328969A JPH07117517B2 (en) 1989-12-19 1989-12-19 Analysis method of mixed gas by electrochemical gas sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1328969A JPH07117517B2 (en) 1989-12-19 1989-12-19 Analysis method of mixed gas by electrochemical gas sensor

Publications (2)

Publication Number Publication Date
JPH03188366A true JPH03188366A (en) 1991-08-16
JPH07117517B2 JPH07117517B2 (en) 1995-12-18

Family

ID=18216141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1328969A Expired - Lifetime JPH07117517B2 (en) 1989-12-19 1989-12-19 Analysis method of mixed gas by electrochemical gas sensor

Country Status (1)

Country Link
JP (1) JPH07117517B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6689272B2 (en) 2001-04-17 2004-02-10 Nova Biomedical Corporation Acetate detecting sensor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01250751A (en) * 1988-03-31 1989-10-05 Toshiba Corp Measuring method of concentration of organic acid and measuring apparatus used therefor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01250751A (en) * 1988-03-31 1989-10-05 Toshiba Corp Measuring method of concentration of organic acid and measuring apparatus used therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6689272B2 (en) 2001-04-17 2004-02-10 Nova Biomedical Corporation Acetate detecting sensor

Also Published As

Publication number Publication date
JPH07117517B2 (en) 1995-12-18

Similar Documents

Publication Publication Date Title
Knoche Chemical reactions of CO 2 in water
US20060049048A1 (en) Gas sensor
Gough et al. Effect of coreactants on electrochemical glucose oxidation
KR101484551B1 (en) NOx GAS SENSOR
LaConti et al. Electrochemical detection of H2, CO, and hydrocarbons in inert or oxygen atmospheres
US4321113A (en) Electronic calibration of electrochemical sensors
Bolzan et al. Determination of the volatile products during urea oxidation on platinum by on line mass spectroscopy
US5403452A (en) Method for determining gas concentrations and gas sensor with a solid electrolyte
Zhang et al. Electrochemical characterization of electrodes in the electrochemical Bunsen reaction of the sulfur–iodine cycle
JPH03188366A (en) Method for analyzing mixed gas using electrochemical gas sensor
JP2004526966A (en) Method and apparatus for determining concentration of oxygen-containing compound in measurement gas
Canterford et al. Surfactant analysis with differential pulse tensammetry
Mizutani et al. Improvement of electrochemical NO2 sensor by use of carbon–fluorocarbon gas permeable electrode
US4469562A (en) Carbon dioxide sensor
van den Brink et al. Hydrogen peroxide as an intermediate in electrocatalytic reduction of oxygen. A new method for the determination of rate constants
Pfenning et al. Electrochemical investigation of amperometric ammonia gas sensors
Mascini et al. Evaluation of measuring range and interferences for gas-sensing potentiometric probes
Raspi et al. Voltammetric behaviour of chlorites and chlorine dioxide on a platinized-platinum microelectrode with periodical renewal of the diffusion layer and its analytical applications
US3314863A (en) Gas analysis
Sykut et al. The catalysis of the reduction of BiIII ions by methionine
SU940044A1 (en) Electrochemical method for determination of steam partial pressure in gases and device for performing the same
JP3561149B2 (en) NOx gas concentration measurement method
JP3025076B2 (en) Acid gas measuring device
Chiu et al. Electrochemical CO 2 Sensor Based on CO 2 Reduction and Subsequent CO Oxidation on Pt/WO 3 Electrode
JPS6236554A (en) Electrochemical type acid gas detector