JPS60114538A - Production of permanent magnet alloy - Google Patents

Production of permanent magnet alloy

Info

Publication number
JPS60114538A
JPS60114538A JP22002883A JP22002883A JPS60114538A JP S60114538 A JPS60114538 A JP S60114538A JP 22002883 A JP22002883 A JP 22002883A JP 22002883 A JP22002883 A JP 22002883A JP S60114538 A JPS60114538 A JP S60114538A
Authority
JP
Japan
Prior art keywords
permanent magnet
oxide
rare earth
magnet alloy
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22002883A
Other languages
Japanese (ja)
Inventor
Kenichi Kawana
川名 憲一
Kazunori Tawara
田原 一憲
Shigeo Tanigawa
茂穂 谷川
Kimio Uchida
内田 公穂
Takayoshi Sato
隆善 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP22002883A priority Critical patent/JPS60114538A/en
Publication of JPS60114538A publication Critical patent/JPS60114538A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To produce a permanent magnet alloy having an excellent magnetic characteristic at a low cost by mixing oxide of rare earth metals, metals such as Co, Fe and Cu or the oxide thereof, metal such as Si, etc. or the oxide thereof and reducing agent such as Ca, etc. and reducing the mixture composed thereof by heating. CONSTITUTION:Prescribed amts. of oxide of R (>=1 kind among rare earth metals such as Sm, Ce, Pr, etc.), metals such as Co, Fe and Cu or the oxide thereof, metal M (>=1 kind among Si, Ti, Zr, Mn, V, Nb, Cr, Mo, Hf) or the oxide thereof, etc. and a reducing agent of >=1 kind among Ca, CaH2 and Mg are mixed and the resulted mixture is heated in a temp. range of 1,100-1,300 deg.C, more preferably 1,150-1,200 deg.C in a reducing atmosphere to cause reduction diffusing reaction. The permanent magnet alloy which is expressed by R(Co1-x-y-z FexCuyMz)A (where 0.01<=x<=0.40, 0.02<=y<=0.25, 0.005<=z<=0.15, 6<=A<=8.5) and has an excellent magnetic characteristic is obtd.

Description

【発明の詳細な説明】 本発明はCu置換型R2C017系の希土類金属同化合
物からなる永久磁石合金の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a permanent magnet alloy comprising a Cu-substituted R2C017-based rare earth metal compound.

希土類コバルト金属間化合物は希土類金属の含有量によ
り種々のRCO相(以下Rは希土類金属を表わ1−)を
形成することはよく知られているが、現在実用化されて
いるのはRCO5系J5よびR2C017系永久磁石で
ある。
It is well known that rare earth cobalt intermetallic compounds form various RCO phases (hereinafter R represents a rare earth metal 1-) depending on the content of rare earth metals, but the one currently in practical use is the RCO5 phase. J5 and R2C017 series permanent magnets.

RCO5系永久磁石(たとえば特開昭46〜6503号
、同46−6504号および同4G−650!i号の各
公報参J5よび最大エネルギー積[(BH)max]の
点で一方R2C017系永久磁石は残留。密U J3J
、び最大エネルギー積が高く、特に最近では最大上ネル
ギー槓が25Mg0e以上のものが開発され、その用途
が拡大している。
RCO5-based permanent magnets (for example, JP-A-46-6503, JP-A-46-6504, and JP-A-4G-650!i) and R2C017-based permanent magnets in terms of maximum energy product [(BH)max] remains.Mister U J3J
In particular, recently, those with a maximum energy product of 25 Mg0e or more have been developed, and their uses are expanding.

このR2C01?系永久磁石にも種々の組成のものが知
られているが(たとえば特開昭50−1115998、
同52−1150(10号、同56−156734号、
同57−128905Qの各公報参照)、特にR(Co
 + −x−y−zFe CuVMz ) A (但し
、R:Sn+ 、 Ce 、 Pr等の希土類金属の1
+!Ti又は2種以上の組み合わせ、M:Si、Ti、
Zr、M++、V、Nb、Clo、Mo、l−Hの群か
ら選ばれた1種又は2種以りの組み合わl!、0.01
 ≦x ≦0.40.0.02≦y≦0.25.0.0
05≦7 ≦0.15.6≦A≦8.5) テ表わされ
る組成を右りる永久磁石(持分[1f)55−5010
0号公報参照)は高性能(実験室的には30 M GO
(!程度の最大」Lネルギー梢が得られる)を自りるこ
とが知られている。
This R2C01? Permanent magnets of various compositions are known (for example, JP-A-50-1115998,
52-1150 (No. 10, No. 56-156734,
57-128905Q), especially R (Co
+ -x-y-zFe CuVMz) A (However, R: 1 of rare earth metals such as Sn+, Ce, Pr, etc.
+! Ti or a combination of two or more, M: Si, Ti,
One type or a combination of two or more selected from the group of Zr, M++, V, Nb, Clo, Mo, l-H l! , 0.01
≦x ≦0.40.0.02≦y≦0.25.0.0
05≦7 ≦0.15.6≦A≦8.5) Permanent magnet (equity [1f) that depends on the expressed composition 55-5010
(Refer to Publication No. 0) has high performance (in the laboratory, 30 M GO
It is known that the maximum L energy can be obtained.

このようなR2Co17系永久磁石合金の製造方法どし
ては、希土類金属、Co 、Fe等の合金成分の純金属
を原石どし、高周波溶解しついC金型にvJ造し、そし
て得られた合金インボッ1〜の粉砕、磁場中成形、焼結
、溶体化処理および時効処理を行なうのが一般的である
The method for producing such an R2Co17-based permanent magnet alloy is as follows: pure metals containing alloy components such as rare earth metals, Co, and Fe are made into rough stones, and then VJ molded into a C mold that is subjected to high frequency melting. Generally, the alloy ingot 1 is subjected to crushing, forming in a magnetic field, sintering, solution treatment, and aging treatment.

しかして希土、類金属は、一般的ににち価であることか
ら上述した溶解法では原石が高く、このことが製造コス
トを上げる大きな要因となっ−Cいる。
However, rare earths and similar metals generally have low prices, so the above-mentioned melting method requires high raw materials, which is a major factor in increasing manufacturing costs.

そこで溶解法の上記欠点を改善り−るために、安価な(
純金属の約1/4以下)希土類酸化物を原料として還元
剤<ca 、Ca R2、Muが一般的)を用いて、C
01Feその他の金属成分と拡散反応により合金化させ
る直接還元拡散法が提案され′(いる(例えば特公昭4
9−7296号、同53−16798号、同55−30
575号および同55−27602号の各公報参照)。
Therefore, in order to improve the above-mentioned drawbacks of the dissolution method, an inexpensive (
C
A direct reduction diffusion method has been proposed in which 01Fe and other metal components are alloyed by diffusion reaction (for example,
No. 9-7296, No. 53-16798, No. 55-30
575 and 55-27602).

しかしながら従来の直接還元拡散法ぐは、特開昭54−
102271号公報に記載されているように、1シCO
b系等の二元系永久磁石についでは、高周波溶解法によ
り製造した場合と同等の磁気特性を得られるものの、C
u置換型R2C017系永久磁右にJ3いては、高周波
溶解法によるものより磁気特性が劣っている等の問題が
あっIこ。
However, the conventional direct reduction diffusion method is
As described in Publication No. 102271, one CO
Regarding binary permanent magnets such as B series, magnetic properties equivalent to those produced by high frequency melting method can be obtained, but C
The u-substituted R2C017 permanent magnet J3 has problems such as inferior magnetic properties compared to those made by high-frequency melting.

本発明の目的は、上述の従来技術の問題点を解消し、低
コストでかつ磁気特性の優れたCLI置換型R2GO+
7系永久磁石を得ることができる製造方法を提供づるこ
とである。
An object of the present invention is to solve the problems of the prior art described above, and to provide a CLI replacement type R2GO+ which is low cost and has excellent magnetic properties.
It is an object of the present invention to provide a manufacturing method capable of obtaining a 7-series permanent magnet.

本発明の永久磁石合金の製造方法は、R(C017’x
−y−zFe CuyMz > A (但し、R:Sm
、Ce、Pr、等の希土類金属の1種又は2種以上の組
合わせ、M:Si 、 l−i 、Zr 、 Mn 、
VSNb、Or、Mo、l−1117)群から選ばれた
1種又ハ2種以上の組合わけ、0.01≦X≦0.40
.0.02≦V ≦0.25.0.005≦2≦0.1
5.6≦A≦8.5)で表わされる組成をイjづる永久
磁石合金の製造方法におい′C1前記希土類金属の酸化
物、co 、Fe 、Cuの金属ないしはこれらの酸化
物、M金属粉ないしはこれらの酸化物およびc’a、c
aH2、Milの中から選ばれた1種又は2種以上の中
から選ばれた1種又は2種以上の還元剤を混合し、得ら
れた混合物を還元性雰囲気中で1100〜1300℃の
温度範囲C加熱して還元拡散反応を行なわしめることを
特徴としている。
The method for producing a permanent magnet alloy of the present invention is R(C017'x
-y-zFe CuyMz > A (However, R: Sm
, one kind or a combination of two or more kinds of rare earth metals such as Ce, Pr, etc., M: Si, li, Zr, Mn,
VSNb, Or, Mo, l-1117) combination of one or more types selected from the group, 0.01≦X≦0.40
.. 0.02≦V≦0.25.0.005≦2≦0.1
5.6≦A≦8.5) In the method for producing a permanent magnet alloy having a composition represented by or these oxides and c'a, c
One or more reducing agents selected from aH2 and Mil are mixed, and the resulting mixture is heated at a temperature of 1100 to 1300°C in a reducing atmosphere. It is characterized by heating in range C to carry out a reduction-diffusion reaction.

以下本発明の訂細をCI置換型5II12C017系永
久磁石を製造1−る場合を例にとって説明り゛る。
The details of the present invention will be explained below by taking as an example the case of manufacturing a CI replacement type 5II12C017 permanent magnet.

まり“本発明では希土類酸化物(lことえば5II12
03)とFe 、Co 、Cuの金属ないしはその酸剤
(例えばCa)と共に各々所定量秤取し、V型混合機等
の公知の混合機中の投入して十分に攪拌混合づる。次に
得られl〔混合物を反応容器中に投入し、還元性ガス(
例えば水素ガス)雰囲気中、1100〜1300℃の温
度範囲で加熱して還元拡散反応を行なわしめる。還元拡
散反応が順調に進行しIζζ会合、希土類酸化物(31
11203,)およびM酸化物、例えばZr 02は還
元剤(Ca 、 M(+ 、CaH2)k−より還元さ
れ、Cu 、Co 、FOがそれぞれの酸化物例えばC
u o、Co 203、α−Fe203の場合には、R
2ガスにより還元される。ついで相互拡散により合金化
され(ウーキ状の反応生成物が形成される。この反応を
詳述りると次の通りである。
"In the present invention, rare earth oxides (for example, 5II12
03) and metals such as Fe, Co, and Cu or their acid agents (eg, Ca) are weighed out in predetermined amounts, and placed in a known mixer such as a V-type mixer and thoroughly stirred and mixed. Next, the obtained l [mixture was put into a reaction vessel, and the reducing gas (
For example, in a hydrogen gas atmosphere, the material is heated in a temperature range of 1,100 to 1,300° C. to carry out a reduction-diffusion reaction. The reduction-diffusion reaction proceeded smoothly, resulting in Iζζ association and rare earth oxide (31
11203,) and M oxides, e.g. Zr 02, are reduced by reducing agents (Ca, M(+, CaH2)k-, Cu, Co, FO are reduced by their respective oxides e.g. C
In the case of u o, Co 203, α-Fe203, R
It is reduced by 2 gases. Then, they are alloyed by interdiffusion (a woolly-shaped reaction product is formed). This reaction is detailed as follows.

第1図は本反応過程をCa 、Sm 203、l二e、
COおよびCuを用いて示差熱分析装置(D T A 
)で調べた結果である。F(! 、GO、おJ、びCL
Iの中の1種又は2種以上を酸化物とし−C用いる場合
には、1」2中で400−600℃で保持Jることによ
り、これらはいずれもR2によって還元され次式に従っ
てそれぞれl:e、CoJ3よびCuが生成り−る。
Figure 1 shows the reaction process of Ca, Sm 203, l2e,
A differential thermal analyzer (DTA) using CO and Cu
) is the result of the investigation. F(!, GO, OJ, biCL
When one or more of I is used as an oxide and -C is used, by holding it at 400-600°C in 12, both of them are reduced by R2 and each becomes l according to the following formula. :e, CoJ3 and Cu are produced.

Fe 203 +382−’>3H20+FeCO2O
3+31−+2→31−(20+(:、 。
Fe 203 +382-'>3H20+FeCO2O
3+31-+2→31-(20+(:, .

CLI O+H2−ICU−1−1120したがって、
第1図では、直接還元拡散の反応状況により明確に調査
するために、Sm2O3以外の出光物は金属粉を用いて
いる。800℃近傍に図中aで示すようなCaの融点に
相当ケる吸熱ピークが認められ、液相状態のCaが5l
l1203を還元づる<sm 203−1−3 Ca 
−128pl +3 Ca )ことによる発熱ビークb
が830〜900°Cに認められる。このにうにして還
元された3 mとFe、Go 、CIJとが相互拡散り
ることにより略900℃以上で僅かな吸熱反応Cを伴い
なから5lll −co −Fe−Cuの合金化へと拡
散反応が進行していくことがわかる。
CLI O+H2-ICU-1-1120 Therefore,
In FIG. 1, metal powder is used as the luminous material other than Sm2O3 in order to more clearly investigate the reaction situation of direct reduction and diffusion. An endothermic peak corresponding to the melting point of Ca, as shown by a in the figure, was observed near 800°C, and Ca in the liquid phase reached 5 liters.
Reduce l1203<sm 203-1-3 Ca
-128pl +3 Ca) Possible fever peak b
is observed between 830 and 900°C. The thus-reduced 3m and Fe, Go, and CIJ mutually diffuse to form an alloy of 5lll-co-Fe-Cu with a slight endothermic reaction C at approximately 900°C or above. It can be seen that the diffusion reaction progresses.

また第1図に′おいて、図中dおよびで示づようにCa
の融点より低い側で僅かな発熱反応が認められるが、こ
の反応はCuの7部とCaとの間に低融点合金が生成す
るためであり、これらのピークはl−1anscn 、
 Co5L1tu口On 0fBinaryΔ110y
Sの中に記載された(:、a−Cu二元系合金の状態図
の結果とよく一致している1、このCLI−Ca合金の
生成により、3m 2 Co I 7系磁石合金中のC
u量の低下が生じて保磁)Jの低下を(f、(いCしよ
う。しかしながら、CaおよびCulを必要といる化学
量論組成に対して 1.1〜1.5倍の範囲で添加する
ことにより、上記保磁力の低下を有効に防止Jるこ゛と
ができる。
In addition, in Figure 1', as shown in d and in the figure, Ca
A slight exothermic reaction is observed below the melting point of , but this reaction is due to the formation of a low melting point alloy between 7 parts of Cu and Ca, and these peaks are
Co5L1tu mouth On 0fBinaryΔ110y
1, which is in good agreement with the result of the phase diagram of the a-Cu binary alloy described in S.
However, if Ca and Cul are added in a range of 1.1 to 1.5 times the stoichiometric composition, By doing so, the reduction in the coercive force can be effectively prevented.

また第1図から明らかなように1000℃以上の温度で
あれば拡散反応は進行づるが、その反応を十分に行なわ
しめるためには、1100℃以上(好ましくは1150
℃以上)で加熱りる必要がある。tJなわちSm2O3
から生成する3+11(金属)の融点は1052℃以上
であることから、1000℃以上の加熱温度では還元さ
れてSmは固層状態で他の金属元素(Co 、 Fe 
、 Cu )と拡散する。これに対しく加熱温度が11
00℃以上では、3mの融点より十分に高いたqsll
lは液相状態になって他の金属粒子の表面を濡らして、
拡散反応は十分に進行り゛る。
Furthermore, as is clear from Fig. 1, the diffusion reaction will proceed at a temperature of 1000°C or higher;
(℃ or higher). tJ that is Sm2O3
Since the melting point of 3+11 (metal) produced from
, Cu). On the other hand, the heating temperature is 11
At temperatures above 00℃, the melting point of 3m is sufficiently higher than that of qsll.
l becomes a liquid phase and wets the surface of other metal particles,
The diffusion reaction progresses satisfactorily.

ただし加熱温度はあまり高くても拡散反応の進行にほと
んど変化がないので、1300℃以下Dlrましくは1
250’C以下)の温度で十分である。還元拡散反応を
行なうIこめの保持時間は1〜511の範囲が適当であ
る。
However, even if the heating temperature is too high, there is almost no change in the progress of the diffusion reaction.
A temperature of 250'C or lower) is sufficient. It is appropriate that the retention time for I to carry out the reduction-diffusion reaction is in the range of 1 to 511 hours.

次に本発明では、−[述の還元拡散反応によって得られ
た反応生成物を水中に投じで生成したCaO(M(] 
O)余剰のCa (Mal >をCa (OH2)(M
(1(OH)2 )として排除し、ついで酸洗しC残存
するCa−Cu合金およびこれらの酸化物を強制的に溶
解排除しそして水洗を行なって酸を除去する。水洗後の
反応生成物は真空中で乾燥した後ジエン1〜ミル等の公
知の粉砕機により平均粒径数μ以下に微粉砕して合金粉
末が1nられる。
Next, in the present invention, -[CaO(M(]
O) Surplus Ca (Mal > Ca (OH2) (M
(1(OH)2), followed by acid washing to forcibly dissolve and remove the remaining Ca-Cu alloy and their oxides, and washing with water to remove the acid. The reaction product after washing with water is dried in vacuum and then pulverized to an average particle size of several μm or less using a known pulverizer such as Diene 1-mill to obtain 1n alloy powder.

この合金粉末を用いることにより、通常の工程を経て溶
解・鋳造法ににつて得られたものと同等bt、<はそれ
以上の磁気特性を右するCu買換型R2Co 1を系永
久磁石が得られる。例えば上記合金粉末を金型に充填し
、5〜20KOcの磁場中で2〜10tO1l /Cl
l12の圧力を加えて圧縮成型し、得られた成型体をA
r、He、XcSKr等の不活性ガス又は水素ガス雰囲
気中、もしくは真空中(10〜10 torr)で11
50〜125(1’cの温度ぐ焼結づる。次に焼結体を
1100〜1200℃の温度で0.5〜4時間保持して
溶体化処理を行ない、しかる後油又は水等の冷却媒体中
に投じて急冷し、そしC800・〜950℃の温度で0
.5〜4時間保持後0.3〜3’C/minの速度で4
00℃まで冷Ml t、そこで0.5〜3時間保持して
時効処理を行なう。
By using this alloy powder, it is possible to obtain a Cu-replacement type R2Co 1 type permanent magnet, which has magnetic properties equivalent to or greater than those obtained by melting and casting through normal processes. It will be done. For example, the above alloy powder is filled into a mold and heated in a magnetic field of 5 to 20 KOc at 2 to 10 tO1l/Cl.
Compression molding is performed by applying a pressure of 112 mm, and the resulting molded body is A.
11 in an inert gas or hydrogen gas atmosphere such as r, He, XcSKr, or in vacuum (10 to 10 torr)
The sintered body is sintered at a temperature of 50 to 125°C (1'c).Then, the sintered body is held at a temperature of 1100 to 1200°C for 0.5 to 4 hours to perform solution treatment, and then cooled with oil or water. It was poured into a medium and rapidly cooled, and then cooled to 0 at a temperature of C800-950℃.
.. 4 at a rate of 0.3-3'C/min after holding for 5-4 hours.
Aging treatment is performed by cooling Mlt to 00°C and holding there for 0.5 to 3 hours.

以下、本発明の比較例および実施例を説明J ’7)が
本実施例により本発明の範囲が限定されるしのではない
Hereinafter, comparative examples and examples of the present invention will be explained.J'7) However, the scope of the present invention is not limited by these examples.

比較例 3111130.2g、C0251,0(1、F C7
(1,0ミ)、Cu4(1,(Ig、Z r9.Ogを
各々秤mし、これ等をアーク溶解力」中に投入し、10
 Torrまで1112気後Arガス雰囲気中で溶解し
、ついで金型に鋳造しIC9J5fられたインゴットを
粉砕した後台金わ)の組成分481をtJ<i・ノたと
ころ第1表に示づように目標組成に相当する磁石合金を
得られた。
Comparative Example 3111130.2g, C0251,0(1, F C7
Weigh (1,0 mm), Cu4 (1, (Ig, Z r9.0 g), put them into the arc melting power,
After melting to 1112 Torr in an Ar gas atmosphere, then casting into a mold and crushing the IC9J5f ingot, the composition of the base metal (481) was found to be tJ<i・, as shown in Table 1. A magnet alloy corresponding to the target composition was obtained.

(単位は小m%) 上記の合金粉をボールミルで平均粒径的II 、 7 
flmの粒子に微J))砕した。微粉砕粉を10KOO
の磁場中(横Wti ’M )で約21on /G I
ll 2 ノ圧力t−7’ L/ス成形し、i5Jられ
た成形体を112ガス雰囲気中で1150〜1200℃
x 1.5hの条件で焼結した後、1150〜1190
℃で1 、 !i l+像保持て溶体化処理を行なった
(The unit is small m%) The above alloy powder was milled in a ball mill to obtain an average particle diameter of II, 7.
Finely ground J)) into flm particles. 10KOO of finely ground powder
Approximately 21on/G I in the magnetic field (horizontal Wti 'M)
The molded product was molded at a pressure of t-7' L/s at 112°C and heated at 1150 to 1200°C in a 112 gas atmosphere.
x After sintering under the conditions of 1.5 h, 1150 to 1190
1 in °C! Solution treatment was carried out while maintaining the i l+ image.

III体化処理後1300〜900 ’CまでFf?濡
しその温度で111保持しついで 1’C/n+inの
速Iα’r’ 400℃まC冷ノJI L にC111
保持して時効処理を行なった。
Ff from 1300 to 900'C after III conversion treatment? Wet it and hold it at that temperature, then heat it at a rate of 1'C/n+in to 400°C and cool it to C111.
It was kept and subjected to aging treatment.

得られた永久磁Gの磁気特性は、Brが10,1ioO
G、■1−1cが70500 e 、< B l−1)
 InaXが27.3M G OeC(ら つ Iご 
The magnetic properties of the obtained permanent magnet G are such that Br is 10,1ioO
G, ■1-1c is 70500 e, < B l-1)
InaX is 27.3M G OeC
.

実施例 3m 203 151.H、Co 203 353,2
gr、「e 203 100.Igr、Z C9,Og
r、CIJ38.!+ gr、Ca8B、Ogrを各々
秤量し、V型混合I幾にU30分間乾式混合した。なお
、Ccz13よびCaは目標とりる化学m論組成の1.
3倍を配合した。得られたff2合物をH2ガス雰囲気
中で1170°Cの温度で311加熱しC還元拡散反応
を行なった。
Example 3m 203 151. H, Co 203 353,2
gr, “e 203 100. Igr, Z C9, Og
r, CIJ38. ! +gr, Ca8B, and Ogr were each weighed and dry mixed in a V-type mixer for 30 minutes. Note that Ccz13 and Ca are 1.0% of the target chemical composition.
Three times the amount was added. The obtained ff2 compound was heated at a temperature of 1170°C in an H2 gas atmosphere for 311 hours to carry out a C reduction diffusion reaction.

次に得られたケーキを水中に2h投じる操作を繰返して
洗浄を行なった。洗浄後Pi−12〜5の範囲C塩酸に
より酸洗いして水に難)d性の残渣を溶解除去してから
、PH6,5〜7になるまで水洗しイして真空中で80
°CX12+)の条件で乾燥した。得られた合金の組成
分析を行なったところ、第2表に示すように目標組成に
相当する磁イj合金を1.H1′、 7.:。
Next, the resulting cake was washed by repeatedly throwing it into water for 2 hours. After washing, pickle with Pi-12 to 5 range C hydrochloric acid to dissolve and remove the d-type residue, then wash with water until the pH becomes 6.5 to 7, and then in a vacuum at 80°C.
It was dried under the conditions of (°CX12+). A compositional analysis of the obtained alloy revealed that as shown in Table 2, the magnetic alloy corresponding to the target composition was 1. H1′, 7. :.

第2表 (単位は小fQ%) 上記合金粉を、比較例と同様の条(’IC微粉砕、磁場
中成型、焼結J3よび熱処理を施して永久磁石7.2 
M G Ob<得られ、溶解・鋳造法による場合と比較
して同等の磁気時1イ1を右することが61c F、l
され
Table 2 (unit: small fQ%) The above alloy powder was subjected to the same process as in the comparative example (IC pulverization, molding in a magnetic field, sintering J3 and heat treatment to form a permanent magnet of 7.2
61c F, l
Been

【図面の簡単な説明】[Brief explanation of drawings]

第1図は5I11203−Fe −Co −Cu −C
:、aによる還元拡散反応の示差熱分析結果を示づ図で
ある。
Figure 1 shows 5I11203-Fe -Co -Cu -C
: is a diagram showing the results of differential thermal analysis of the reduction-diffusion reaction by a.

Claims (1)

【特許請求の範囲】 1 、R(Co i −x−V−IFX CuVMZ 
) A NIJL/、R:5IIl、Ce、Pr等の希
土類金属の1種又は2種以上の組合t!、M:Si 、
−ri 、Zr 、Mn、V、Nii、Or、Mo、)
−1fの群から選ばれた1種又は2種以上の組合せ、0
.01≦X≦0.40.0.02≦y≦0.25.0.
005≦l≦0.15.6≦A≦8.5)で表される組
成を有する永久磁石合金の製造方法において、前記希土
類金属の酸化物、前記GO、FO、CLIの金属、ない
しはこれらの酸化物M金属ないしはこれらの酸化物J3
よびCy a、Ca l−12、Milの中から選ばれ
た1種又は2種以」−の還元剤を混合し、得られた混合
物を還元(’l雰囲気中?″1100〜1300℃の温
度範囲で加熱してjλ元拡散反応を行なわしめることを
特徴とりる永久磁石合金の製造方法。 2、 11’i0〜1200℃の温度範囲で加熱−して
還元拡散反応をbなわしめることを特徴とする特許請求
の範囲第1項記載の永久磁石合金の製造方法。
[Claims] 1, R(Co i -x-V-IFX CuVMZ
) A NIJL/, R: 5III, Ce, Pr, etc., or a combination of two or more rare earth metals t! , M:Si,
-ri, Zr, Mn, V, Nii, Or, Mo,)
-1 type or combination of two or more types selected from the group of 1f, 0
.. 01≦X≦0.40.0.02≦y≦0.25.0.
005≦l≦0.15.6≦A≦8.5), in which the rare earth metal oxide, the GO, FO, CLI metal, or these Oxide M metal or these oxides J3
and one or more reducing agents selected from Cy a, Cal-12, and Mil, and the resulting mixture is reduced (in an atmosphere at a temperature of 1100 to 1300°C). 2. A method for producing a permanent magnet alloy, characterized by heating in a temperature range of 0 to 1200°C to cause a reduction diffusion reaction. A method for producing a permanent magnet alloy according to claim 1.
JP22002883A 1983-11-22 1983-11-22 Production of permanent magnet alloy Pending JPS60114538A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22002883A JPS60114538A (en) 1983-11-22 1983-11-22 Production of permanent magnet alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22002883A JPS60114538A (en) 1983-11-22 1983-11-22 Production of permanent magnet alloy

Publications (1)

Publication Number Publication Date
JPS60114538A true JPS60114538A (en) 1985-06-21

Family

ID=16744797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22002883A Pending JPS60114538A (en) 1983-11-22 1983-11-22 Production of permanent magnet alloy

Country Status (1)

Country Link
JP (1) JPS60114538A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS497296A (en) * 1972-05-27 1974-01-22
JPS5029414A (en) * 1973-04-19 1975-03-25
JPS5229420A (en) * 1975-03-27 1977-03-05 Philips Nv Producing method of compounds consist of rare earth metals and at least one element selected from cobalt* nickel* iron and copper
JPS5873733A (en) * 1981-10-29 1983-05-04 Hitachi Metals Ltd Manufacture of permanent magnet alloy

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS497296A (en) * 1972-05-27 1974-01-22
JPS5029414A (en) * 1973-04-19 1975-03-25
JPS5229420A (en) * 1975-03-27 1977-03-05 Philips Nv Producing method of compounds consist of rare earth metals and at least one element selected from cobalt* nickel* iron and copper
JPS5873733A (en) * 1981-10-29 1983-05-04 Hitachi Metals Ltd Manufacture of permanent magnet alloy

Similar Documents

Publication Publication Date Title
US4681623A (en) Process for producing alloy powder containing rare earth metals
JPH0257663A (en) Magnetic anisotropy material and its manufacture
JPS60114538A (en) Production of permanent magnet alloy
JP2869966B2 (en) Manufacturing method of alloy powder
JP2985546B2 (en) Manufacturing method of alloy powder
JP2985545B2 (en) Manufacturing method of alloy powder
CN101210294B (en) Preparation method of A5B19 type alloy
JP2718314B2 (en) Method for producing alloy powder containing rare earth metal
JPH0435548B2 (en)
JPS60125338A (en) Production of permanent magnet alloy
JP2905043B2 (en) Manufacturing method of permanent magnet powder material
JP2001181713A (en) Pare earth metal-transition metal alloy powder and producing method therefor
JPS62262406A (en) Manufacture of powder for permanent magnet alloy
JPH06124815A (en) Manufacture of material powder of r-tm-b group permanent magnet
JPS60106930A (en) Manufacture of permanent magnet alloy
JPS619534A (en) Manufacture of permanent magnet alloy
JPS62261101A (en) Manufacture of alloy powder for permanent magnet
JPH08188803A (en) Production of powdery rare earth-transition metal alloy
JPS60121239A (en) Manufacture of permanent magnet alloy
JPH0623401B2 (en) Heavy rare earth alloy powder
JPS63227740A (en) Production of alloy for permanent magnet
JPS6263645A (en) Production of permanent magnet material
JPH01289101A (en) Manufacture of rare earth transition metallic magnet alloy powder
JPS60218406A (en) Production of permanent magnet alloy
JPH0765083B2 (en) Method for producing alloy powder for permanent magnet alloy