JPH01289101A - Manufacture of rare earth transition metallic magnet alloy powder - Google Patents

Manufacture of rare earth transition metallic magnet alloy powder

Info

Publication number
JPH01289101A
JPH01289101A JP63117121A JP11712188A JPH01289101A JP H01289101 A JPH01289101 A JP H01289101A JP 63117121 A JP63117121 A JP 63117121A JP 11712188 A JP11712188 A JP 11712188A JP H01289101 A JPH01289101 A JP H01289101A
Authority
JP
Japan
Prior art keywords
oxide
powder
rare earth
cobalt
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63117121A
Other languages
Japanese (ja)
Inventor
Akira Fujita
明 藤田
Yasutaka Fukuda
泰隆 福田
Michio Shimotomai
道夫 下斗米
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP63117121A priority Critical patent/JPH01289101A/en
Publication of JPH01289101A publication Critical patent/JPH01289101A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0573Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes obtained by reduction or by hydrogen decrepitation or embrittlement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/0553Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 obtained by reduction or by hydrogen decrepitation or embrittlement

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To enhance the corrosion resistance and the temperature characteristics without deteriorating the magnetic characteristics by a method wherein a mixture in the specific composition containing rare earth oxide is heat-treated and then washed away to remove any by-product of reaction. CONSTITUTION:A mixture meeting the following requirements is prepared i.e. a material powder comprising respective powders such as rare earth element (Rem) oxide containing Y, ferroboron, boron oxide, iron, cobalt, nickel, ferrocobalt alloy, cobalt nickel alloy, ferronickel, iron oxide, cobalt oxide and nickel oxide is properly selected so that the mixture may contain Rem:8-30 at.%, B:2-20at.% with the residual parts substantially comprising Fe, Co, Ni subject to respective blended amount of Fe:10-75at.%, Co:7-50at.%, Ni:8-30at.% as well as (Fe+Co+Ni):50-90at.%. Then, metallic Ca or CaH2 is blended with the mixture to be heated in inert gas atmosphere up to 800-1200 deg.C causing reduction.diffusion reaction and after being cooled down, a reaction product is washed away to remove any by-product of the reaction.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、希土類遷移金属磁石合金粉末の製造方法に
関し、とくに安価な希土類酸化物を出発原料として耐食
体に優れた合金粉末を得ようとするものである。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a method for producing a rare earth transition metal magnet alloy powder, and in particular aims to obtain an alloy powder with excellent corrosion resistance using an inexpensive rare earth oxide as a starting material. It is something to do.

(従来の技術) 現在、市場を占めている主な磁石材料としては、アルニ
コ磁石、フェライト磁石および希土類磁石などがあげら
れる。中でも希土類磁石は、他の磁石に比べて磁気特性
が勝っていることから電気電子機器等の小型化、高性能
化という時代の要請に適合し、その生産量は増加の一途
をたどっている。
(Prior Art) The main magnet materials currently occupying the market include alnico magnets, ferrite magnets, and rare earth magnets. Among them, rare earth magnets have superior magnetic properties compared to other magnets, and therefore meet the demands of the times for miniaturization and higher performance of electrical and electronic equipment, and their production continues to increase.

かかる希土MN石としては、Sm−Co[石が初めに開
発されたが、このSm −Co磁石は資源的に乏しいS
11と供給が不安定なCoとを主成分としているため、
高価な磁石とならざるを得す、その傾向は、最近のSI
Iの価格上昇によってますます高まりつつある。そこで
SaIやCoを大量に用いない新しい希土類磁石の開発
がさかんに行なわれ、その結果、抜用らは焼結法による
三元系で安定な合金(特公昭61−34242号公報)
を、またJ、J、 Croatらは準安定相、非平衡相
に着目し、液体急冷法による保磁力の高い合金(特開昭
59−64739号公報)をそれぞれ開発した。これら
は希土類−Fe−Bからなる合金で、その磁気特性は従
来のSm −Co(4石を凌ぐ優れたものである。
As such rare earth MN stone, Sm-Co [stone was first developed, but this Sm-Co magnet is made of S which is scarce in resources.
11 and Co, whose supply is unstable, as the main components.
The recent SI
This is increasing due to the rise in the price of I. Therefore, development of new rare earth magnets that do not use large amounts of SaI or Co has been actively carried out, and as a result, magnets have been developed using ternary and stable alloys made by the sintering method (Japanese Patent Publication No. 61-34242).
, J. J. Croat et al. focused on metastable phases and non-equilibrium phases, and developed alloys with high coercive force by liquid quenching (Japanese Patent Application Laid-Open No. 59-64739). These are alloys made of rare earth elements-Fe-B, and their magnetic properties are superior to those of conventional Sm-Co (4 stones).

しかしながら、かような希土類−Fe −B系磁石合金
は、その成分中に非常に活性の高い希土類金属および錆
易い鉄を多量に含んでいるため、酸化され易く、かかる
酸化により磁気特性が大きく劣化するという問題があっ
た。
However, such rare earth-Fe-B magnet alloys contain a large amount of extremely active rare earth metals and rust-prone iron in their components, so they are easily oxidized, and such oxidation greatly deteriorates the magnetic properties. There was a problem.

ところでかような希土類磁石合金粉末の製造方法として
は、希土類金属を始めとする金属あるいは合金を目的組
成になるよう配合し、溶解して得られたインゴットを粉
砕する方法(特開昭59−215460号公報)や、安
価な希土類酸化物等を出発原料として、金属Caなとの
還元剤を加えて還元拡散反応を行なわせ、目的組成の磁
石合金粉末を得る方法(特開昭54−102271号公
報)が提案されている。
By the way, as a method for producing such rare earth magnet alloy powder, there is a method in which rare earth metals and other metals or alloys are blended to a desired composition, melted, and the resulting ingot is crushed (Japanese Patent Laid-Open No. 59-215460). (Japanese Patent Application Laid-Open No. 102271/1983), a method of obtaining a magnet alloy powder with a desired composition by using an inexpensive rare earth oxide as a starting material, adding a reducing agent such as metal Ca, and causing a reduction diffusion reaction Public bulletin) has been proposed.

ここに希土類−Fe−B磁石合金においては、磁石合金
中に酸素が含まれると前述したとおり磁気特性が著しく
低下するので、磁石製造工程においては勿論のこと、原
料である合金粉末の製造過程においても酸素の混入は極
力回避する必要がある。
In rare earth-Fe-B magnet alloys, as mentioned above, if oxygen is included in the magnet alloy, the magnetic properties will be significantly degraded, so it is important not only in the magnet manufacturing process but also in the manufacturing process of the alloy powder that is the raw material. It is also necessary to avoid contamination with oxygen as much as possible.

(発明が解決しようとする課題) しかしながら従来法に従って合金粉末を製造する場合、
とくに還元拡散法を用いて希土類元素−Be−B(i石
合金粉末を製造する場合には、第1図に示す製造工程中
とくに水洗、乾燥の工程で著しい酸化を生じ、その結果
磁気特性の劣化が免れ得なかった。
(Problem to be solved by the invention) However, when producing alloy powder according to the conventional method,
In particular, when producing rare earth element -Be-B (i-stone alloy powder) using the reduction diffusion method, significant oxidation occurs during the manufacturing process shown in Figure 1, especially during the water washing and drying steps, resulting in a change in magnetic properties. Deterioration was inevitable.

(課題を解決するための手段) さて発明者らは、希土類−Fe−B系磁石の耐食性の向
上を図るべく鋭意検討を行った結果、合金中のFe @
 NiさらにはCOで一部置換することにより、磁気特
性をほとんど劣化させることなしに、耐食性ならびに温
度特性を著しく高め得ることを見だした。
(Means for Solving the Problems) The inventors conducted intensive studies to improve the corrosion resistance of rare earth-Fe-B magnets, and found that Fe@ in the alloy
It has been found that by partially substituting Ni and further CO, corrosion resistance and temperature characteristics can be significantly improved without substantially deteriorating magnetic properties.

さらにかかる組成を有する合金は、微粉化しても、耐食
性が損われず、従って安価な希土類酸化物粉末等を出発
原料とし、しかも還元反応により上記組成の合金粉末を
製造する場合であっても特殊な酸化防止処理を必要とす
ることなしに安価でしかも磁気特性のすぐれた磁石合金
粉末が得られることの知見を得た。
Furthermore, alloys with such compositions do not lose their corrosion resistance even when they are pulverized, so even when using inexpensive rare earth oxide powders as starting materials and producing alloy powders with the above compositions through reduction reactions, special We have found that a magnetic alloy powder with excellent magnetic properties can be obtained at low cost without requiring extensive oxidation prevention treatment.

この発明は、上記の知見に立脚するものである。This invention is based on the above knowledge.

すなわちこの発明は、Rem(Yを含む希土類元素)酸
化物、フェロボロン、ボロン酸化物、鉄、コバルト、ニ
ッケル、鉄コバルト合金、コバルトニッケル合金、フェ
ロニッケル、酸化鉄、酸化コバルトおよび酸化ニッケル
の各粉末よりなる原料粉末の中から適宜に選択して、 ReIII:8〜30at%。
That is, this invention provides powders of Rem (a rare earth element containing Y) oxide, ferroboron, boron oxide, iron, cobalt, nickel, iron-cobalt alloy, cobalt-nickel alloy, ferronickel, iron oxide, cobalt oxide, and nickel oxide. Re III: 8 to 30 at%.

B : 2〜20 at% を含み、残部は実質的にFe、 CoおよびNiからな
り、これらFe、 Co、 Lの配合量がそれぞれFe
  :  1.0〜75 at%。
B: Contains 2 to 20 at%, the remainder substantially consists of Fe, Co, and Ni, and the blending amounts of Fe, Co, and L are respectively Fe
: 1.0-75 at%.

Co  :  7〜50at%。Co: 7 to 50 at%.

Ni:8超〜30at% でかつ (Fe+Co+Ni)  :  50〜10 at%を
満足する組成の混合粉に調合したのち、金属Ca又はC
aH,を添加混合してから、不活性ガス雰囲気中におい
て800〜1200℃まで加熱して還元拡散反応を生じ
させたのち、冷却し、ついで得られた反応生成物を水洗
して、反応副生成物を除去することからなる希土類遷移
金属磁石合金粉末の製造方法である。
Ni: More than 8 to 30 at% and (Fe+Co+Ni): After blending into a mixed powder with a composition satisfying 50 to 10 at%, metallic Ca or C is mixed.
After adding and mixing aH, the mixture is heated to 800-1200°C in an inert gas atmosphere to cause a reduction-diffusion reaction, then cooled, and the resulting reaction product is washed with water to remove reaction by-products. This is a method for producing rare earth transition metal magnet alloy powder, which comprises removing materials.

以下この発明を具体的に説明する。This invention will be explained in detail below.

さてこの発明では、原料粉末として主に、上記したよう
な安価な酸化物粉末を用いるわけであるが、かような原
料粉末を用いて調合すべき混合粉の成分組成を上記の範
囲に限定したのは、次の理由による。
Now, in this invention, the above-mentioned inexpensive oxide powder is mainly used as the raw material powder, but the composition of the mixed powder to be prepared using such raw material powder is limited to the above range. This is due to the following reasons.

Rem(Yを含む希土類元素):8〜30at%Rel
1lは、高保磁力を得る上で必須の元素であるが、含有
量が8at%に満たないとその添加効果に乏しく、一方
30 at%を超えると非磁性相の割合が増し、残留磁
束密度が低下すまので、8〜30a t%の範囲で添加
するものとした。
Rem (rare earth element including Y): 8 to 30 at% Rel
1L is an essential element for obtaining high coercive force, but if the content is less than 8 at%, its addition effect will be poor, while if it exceeds 30 at%, the proportion of non-magnetic phase will increase and the residual magnetic flux density will decrease. Therefore, it was added in an amount of 8 to 30 at%.

B : 2〜20 at% Bは、強磁性を生み出す主相の形成と十分な保磁力を発
現させるために不可欠な元素であるが、2at%未満で
は高保磁力が得られず、一方20a t%を超えると残
留磁束密度が低下するので、2〜20at%の範囲で含
有させるものとした。
B: 2 to 20 at% B is an essential element for forming the main phase that produces ferromagnetism and for expressing sufficient coercive force, but if it is less than 2 at%, high coercive force cannot be obtained, whereas at 20 at% Since the residual magnetic flux density decreases when the content exceeds 2 to 20 at%.

Fe : 10〜75 at% Feは、高飽和磁束密度を得るために必要不可欠であり
10at%に満たないとその効果に乏しく、一方75 
at%を超えると相対的にRem、  Bの量が減り保
磁力が低下するので、IO〜75at%の範囲に限定し
た。
Fe: 10 to 75 at% Fe is essential to obtain high saturation magnetic flux density, and if it is less than 10 at%, the effect is poor;
If it exceeds at%, the amounts of Rem and B will be relatively reduced and the coercive force will be lowered, so it was limited to a range of IO to 75 at%.

Ni:8at%超〜30at%、Coニアat%〜50
at%Njは、磁粉の酸素含有量を抑制して耐食性の向
上に有効に寄与するが、含有量が8at%以下ではその
添加効果に乏しく、一方30at%を超えると保磁力や
残留磁束密度が急激に劣化するので、8at%超〜30
 at%の範囲で添加する必要がある。
Ni: more than 8 at% to 30 at%, Co Ni at% to 50
At%Nj effectively contributes to improving corrosion resistance by suppressing the oxygen content of magnetic powder, but if the content is less than 8at%, the addition effect is poor, while if it exceeds 30at%, the coercive force and residual magnetic flux density will decrease. Because it deteriorates rapidly, more than 8 at% ~ 30
It is necessary to add it within the range of at%.

Coは、Ni添加による耐食性の向上効果を劣化させる
ことなしに磁気特性とくに保磁力を効果的に向上させる
有用元素であるだけでなく、キエリー温度の向上従って
温度特性の改善にも有効に寄与する。しかしながら含有
量が7at%に満たないとその添加効果に乏しく、一方
50at%を超える多量添加はかえって保磁力や残留磁
束密度の低下を招くので、7〜50 at%の範囲に限
定した。
Co is a useful element that not only effectively improves the magnetic properties, especially the coercive force, without deteriorating the corrosion resistance improvement effect of Ni addition, but also effectively contributes to improving the Chierly temperature and therefore the temperature characteristics. . However, if the content is less than 7 at%, the effect of addition is poor, and on the other hand, if it is added in a large amount exceeding 50 at%, the coercive force and residual magnetic flux density will be reduced, so it is limited to a range of 7 to 50 at%.

(Fe+Ni+Co)  : 50〜10 at%Fe
、 NiおよびCoの如き遷移金属元素の総量は、相対
的に希土類元素の量と係わり、遷移金属の量が多いと必
然的に希土類元素の量が少なくなって高保磁力が得難く
、一方遷移金属の量が少ないと逆に希土類元素の多い非
磁性相の占める割合が増加して残留磁束密度の低下を招
くので、Pe、 NiおよびCoの合計量は、各元素が
それぞれ上記の適合範囲を満足した上で、かつ50〜1
0 at%の範囲で含有させるものとした。
(Fe+Ni+Co): 50-10 at%Fe
The total amount of transition metal elements such as , Ni and Co is relatively related to the amount of rare earth elements, and if the amount of transition metals is large, the amount of rare earth elements will inevitably be small, making it difficult to obtain high coercive force. Conversely, if the amount of Pe, Ni and Co is small, the proportion occupied by the non-magnetic phase rich in rare earth elements will increase, leading to a decrease in the residual magnetic flux density. and 50~1
The content was set to be in the range of 0 at%.

次にこの発明の製造方法について説明する。Next, the manufacturing method of this invention will be explained.

さてこの発明ではまず、原料粉末の中から適宜に選択し
て、上記したような好適成分組成の合金粉末が得られる
ように配合し、混合粉とする。
Now, in this invention, first, an appropriate selection is made from raw material powders and blended so as to obtain an alloy powder having a preferable component composition as described above to obtain a mixed powder.

さらにこの混合粉に還元剤としてCaまたはCaH,を
加える。還元剤の添加量は、混合粉に含まれる希土類酸
化物や、酸化鉄、酸化コバルト、酸化ニッケル、ボロン
酸化物などの酸化物を還元するために必要な化学量論的
必要量の1.5倍から4.0倍程度とするのが好ましい
Furthermore, Ca or CaH is added to this mixed powder as a reducing agent. The amount of reducing agent added is 1.5 of the stoichiometric amount necessary to reduce rare earth oxides, iron oxide, cobalt oxide, nickel oxide, boron oxide, and other oxides contained in the mixed powder. It is preferable to set it to about 4.0 times to 4.0 times.

というのは還元剤の量が、化学量論的必要量の1.5倍
に満たないと原料混合粉中の酸化物が十分には還元され
ず、合金中の残存酸素量が多くなり、また4、0倍を超
えると合金中にCaが多くなってかえって磁気特性が低
下してしまうからである。
This is because if the amount of reducing agent is less than 1.5 times the stoichiometric amount, the oxides in the raw material mixture will not be reduced sufficiently, and the amount of oxygen remaining in the alloy will increase. This is because if it exceeds 4.0 times, the amount of Ca increases in the alloy and the magnetic properties deteriorate on the contrary.

上記の原料混合粉および還元剤を所定量配合した後不活
性ガス雰囲気中で混合する。
After a predetermined amount of the above raw material mixed powder and reducing agent are blended, they are mixed in an inert gas atmosphere.

ついで混合した粉末を、不活性ガス雰囲気中で加熱して
、800〜1200℃の温度範囲に1〜40時間保持し
、かかる均熱処理時に還元反応を行なわせ、併せて還元
された希土類元素等を他の成分元素と相互拡散させて合
金化を進める。かような均熱処理において、保持温度が
800’C未満では酸化物の還元が不十分で多量の酸素
が残留するだけでなく、拡散が十分には進まず目的とす
る組成の合金粉末が得られない。一方1200℃を超え
ると、反応生成物中のCa残存量が多くなるため高特性
磁石合金粉末が得られない。したがって還元拡散反応を
行なわせるための保持温度は800〜1200℃とする
必要がある。
Next, the mixed powder is heated in an inert gas atmosphere and held at a temperature range of 800 to 1200°C for 1 to 40 hours, and during the soaking treatment, a reduction reaction is carried out, and the reduced rare earth elements, etc. Proceed with alloying by interdiffusing with other component elements. In such a soaking process, if the holding temperature is lower than 800'C, not only will the reduction of the oxide be insufficient and a large amount of oxygen will remain, but also the diffusion will not proceed sufficiently and an alloy powder with the desired composition will not be obtained. do not have. On the other hand, if the temperature exceeds 1200°C, the amount of Ca remaining in the reaction product increases, making it impossible to obtain a high-performance magnetic alloy powder. Therefore, the holding temperature for carrying out the reduction-diffusion reaction needs to be 800 to 1200°C.

還元拡散反応終了後は、同じく不活性ガス雰囲気中で反
応生成物を室温まで冷却する。
After the reduction-diffusion reaction is completed, the reaction product is cooled to room temperature in the same inert gas atmosphere.

ついで冷却された反応生成物を水中に投じて副生成分で
あるCaOさらには残存CaをH2Oと反応させてCa
 (OH) zとし、リーチングを繰り返して除去する
。リーチングを繰り返す際に水に弱酸を加えることは、
合金粉末の表面を酸洗処理して酸素含有量を低減するの
に有効ではあるが、あまりに過剰に加えることは、製品
の歩留りを下げるので逆効果である。
The cooled reaction product is then poured into water to react the by-product CaO and the remaining Ca with H2O to convert Ca.
(OH) z and remove by repeating leaching. Adding a weak acid to water when repeating leaching
Although it is effective in reducing the oxygen content by pickling the surface of the alloy powder, adding too much of it has the opposite effect as it lowers the yield of the product.

得られた合金粉末はスラリー状となっているが、このス
ラリーを低沸点の有機溶媒で洗浄し、ついで室温で真空
乾燥することによって磁石合金粉末が得られるのである
The obtained alloy powder is in the form of a slurry, and a magnet alloy powder is obtained by washing this slurry with a low boiling point organic solvent and then drying it under vacuum at room temperature.

(実施例) 実施貫土 純度99.7 wt%の NdzOi粉末:124.6
 g、 B含有量が20 wt%のフェロボロン粉末:
21.8g、純度99 wt%の酸化ニッケル粉末: 
38.1 g、純度99.9 wt%のコバルト粉末:
92.1gおよび純度99.9 wt%の酸化鉄粉:1
22.Og−t−混合した混合粉に、純度:99ht%
のCa粉末:329.3gを加えたのち、Arガス中に
て、■型混合機にて混合し、ついでArガス雰囲気の電
気炉にて5’C/minで加熱昇温し、1080℃に 
1.5時間保持して還元拡散反を行なわせたのち、室温
まで炉冷した。
(Example) NdzOi powder with soil purity of 99.7 wt%: 124.6
g, ferroboron powder with B content of 20 wt%:
21.8 g, 99 wt% pure nickel oxide powder:
38.1 g, 99.9 wt% pure cobalt powder:
92.1 g and 99.9 wt% purity iron oxide powder: 1
22. Purity: 99ht% to Og-t-mixed powder
After adding 329.3 g of Ca powder, the mixture was mixed in Ar gas using a type mixer, and then heated at 5'C/min in an electric furnace under Ar gas atmosphere to 1080°C.
After holding for 1.5 hours to perform a reduction-diffusion reaction, the mixture was cooled to room temperature in the furnace.

得られた反応生成物を水中に投じ撹拌してから上ずみ液
を除去し、また水を加えリーチングを繰り返したやその
後0.1vo1%以下に稀釈した酢酸にて酸洗し、水洗
の後、アルコール洗浄を数回繰り返し、このスラリーを
室温で36時間真空乾燥して磁石合金粉末を得た。
The obtained reaction product was poured into water and stirred, the supernatant liquid was removed, water was added and leaching was repeated, and then pickled with acetic acid diluted to 0.1 vol 1% or less, and after washing with water, Alcohol washing was repeated several times, and the slurry was vacuum dried at room temperature for 36 hours to obtain a magnet alloy powder.

この合金粉末をN2中ジエツトミルで微粉砕し平均粒径
4,0μmの粉末とした。得られた粉末の成分組成を第
1表に示す。
This alloy powder was finely pulverized with a jet mill in N2 to obtain a powder with an average particle size of 4.0 μm. Table 1 shows the composition of the powder obtained.

次にこの合金粉末を、12.5 kOeの磁場中で配向
させなから2L/cI112で加圧成形し、その後真空
中において1060℃11時間ついでArガス気流中に
おいて1時間の焼結を施し、室温まで冷却した。
Next, this alloy powder was oriented in a magnetic field of 12.5 kOe and then pressure-molded at 2 L/cI112, and then sintered in a vacuum at 1060°C for 11 hours and then in an Ar gas stream for 1 hour. Cooled to room temperature.

その後Arガス中にて600℃で1時間の熱処理を施し
たのち、室温まで冷却し、永久磁石体を得た。
Thereafter, it was heat-treated at 600° C. for 1 hour in Ar gas, and then cooled to room temperature to obtain a permanent magnet.

かくして得られた永久磁石の磁気特性を第1表に併せて
示す。
The magnetic properties of the permanent magnet thus obtained are also shown in Table 1.

裏旌拠l 純度99.7讐t%のNd2O3扮末: 136.5 
g、純度99.8 wt%のD)’gos粉末:16.
1g、純度99.9 wL%の鉄粉:123.8g、純
度99.9 wt%のニッケル粉末: 12.0 g 
、純度99.8 wt%のB2O3粉末=15.9 g
およびNi含有量が20.Owt%のCo −Ni粉末
:129.1gを混合した混合粉に、純度99 wt%
の金属Ca粉末:1B2.8gを加えたものを実施例1
と同様にして(ただし還元拡散反応は、800゛C12
時間ついで1080℃12時間)合金粉末とした。
Nd2O3 powder with purity of 99.7%: 136.5
g, purity 99.8 wt% D)'gos powder: 16.
1 g, 99.9 wL% purity iron powder: 123.8 g, 99.9 wt% purity nickel powder: 12.0 g
, B2O3 powder with purity 99.8 wt% = 15.9 g
and Ni content is 20. Owt% Co-Ni powder: 129.1g of pure powder was added to the mixed powder with a purity of 99wt%.
In Example 1, 2.8 g of 1B metal Ca powder was added.
(However, the reduction-diffusion reaction is performed at 800゛C12
Then, the mixture was heated to 1080° C. for 12 hours) to obtain an alloy powder.

かくして得られた合金粉末の成分組成を第1表に示す、
またこの合金粉末を実施例1と同様な方法で、成形、焼
結して得た永久磁石の磁気特性を第1表に示す。
The composition of the alloy powder thus obtained is shown in Table 1.
Table 1 shows the magnetic properties of permanent magnets obtained by molding and sintering this alloy powder in the same manner as in Example 1.

災旌桝主 純度99.7 wt%のNd、0.粉末:I38.1g
、純度99.8 wt%のPrzO= : 18.Og
、純度99%の酸化コバルト粉末=139.5 g、 
B含有量が20.0賀t%のフェロボロン粉末:23.
1gおよびNi含有量が20wt%のフエロニンケル粉
末:144.4gの混合粉にさらに純度99−t%の金
属Ca粉末:312.5 gを加えたのち、実施例1と
同様な方法(ただし還元拡散反応は100℃11時間つ
いで1100℃11時間)によって合金粉末とした。
Disaster control purity 99.7 wt% Nd, 0. Powder: I38.1g
, purity 99.8 wt% PrzO=: 18. Og
, 99% pure cobalt oxide powder = 139.5 g,
Ferroboron powder with B content of 20.0gt%: 23.
After further adding 312.5 g of metallic Ca powder with a purity of 99-t% to the mixed powder of 144.4 g of Ferroninkel powder with a Ni content of 20 wt% and 20 wt% of Ni content, The reaction was carried out at 100°C for 11 hours and then at 1100°C for 11 hours) to obtain an alloy powder.

かくして得られた合金粉末の成分組成を第1表に示す。The composition of the alloy powder thus obtained is shown in Table 1.

またこの合金粉末を実施例1と同様な方法で成形、焼結
して得た永久磁石の磁気特性を第1表に示す。
Table 1 shows the magnetic properties of permanent magnets obtained by molding and sintering this alloy powder in the same manner as in Example 1.

ル較■ 純度99.7 wt%のNdZOn粉末: 140.4
9 g、純度99.9賀t%の鉄粉:220.8 g、
 B含有量が20縁t%のフェロボロン粉末: 23.
7 gおよび純度99−t%の金属Ca粉末:110.
4 gの混合粉を、実施例1と同様に処理して合金粉末
とした。
Comparison ■ NdZOn powder with purity 99.7 wt%: 140.4
9 g, iron powder with purity of 99.9 t%: 220.8 g,
Ferroboron powder with B content of 20 t%: 23.
7 g and 99-t% purity metallic Ca powder: 110.
4 g of the mixed powder was treated in the same manner as in Example 1 to obtain an alloy powder.

得られた合金粉末の成分組成ならびにこの合金粉末を実
施例1と同様な方法で成形焼結して得た永久磁石の磁気
特性を第1表に示す。
Table 1 shows the composition of the obtained alloy powder and the magnetic properties of a permanent magnet obtained by shaping and sintering this alloy powder in the same manner as in Example 1.

同表より明らかなように、この発明に従って得られた永
久磁石はいずれも、従来法によって得られた比較材より
も磁気特性が大幅に向上している。
As is clear from the table, all of the permanent magnets obtained according to the present invention have significantly improved magnetic properties than the comparative materials obtained by the conventional method.

(発明の効果) かくしてこの発明によれば、酸素含有量の少ない希土類
遷移金属磁石合金粉末を、安価な希土類酸化物を出発原
料として容易に製造することができる。
(Effects of the Invention) Thus, according to the present invention, a rare earth transition metal magnet alloy powder with a low oxygen content can be easily produced using an inexpensive rare earth oxide as a starting material.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、還元拡散法による合金粉末の製造工程を示す
フローチャートである。
FIG. 1 is a flowchart showing the process of manufacturing alloy powder by the reduction diffusion method.

Claims (1)

【特許請求の範囲】[Claims] 1.Rem(Yを含む希土類元素)酸化物、フェロボロ
ン、ボロン酸化物、鉄、コバルト、ニッケル、鉄コバル
ト合金、コバルトニッケル合金、フェロニッケル、酸化
鉄、酸化コバルトおよび酸化ニッケルの各粉末よりなる
原料粉末の中から適宜に選択して、 Rem:8〜30at%, B:2〜20at% を含み、残部は実質的にFe,CoおよびNiからなり
、これらFe,Co,Niの配合量がそれぞれ Fe:10〜75at%, Co:7〜50at%, Ni:8超〜30at% でかつ (Fe+Co+Ni):50〜10at% を満足する組成の混合粉に調合したのち、金属Ca又は
CaH_2を添加混合してから、不活性ガス雰囲気中に
おいて800〜1200℃まで加熱して還元拡散反応を
生じさせたのち、冷却し、ついで得られた反応生成物を
水洗して、反応副生成物を除去することを特徴とする希
土類遷移金属磁石合金粉末の製造方法。
1. Raw material powder consisting of Rem (rare earth element containing Y) oxide, ferroboron, boron oxide, iron, cobalt, nickel, iron-cobalt alloy, cobalt-nickel alloy, ferronickel, iron oxide, cobalt oxide and nickel oxide powder. Rem: 8 to 30 at%, B: 2 to 20 at%, selected appropriately from among them, and the remainder substantially consists of Fe, Co, and Ni, and the blending amounts of Fe, Co, and Ni are respectively Fe: After preparing a mixed powder with a composition satisfying 10 to 75 at%, Co: 7 to 50 at%, Ni: more than 8 to 30 at%, and (Fe + Co + Ni): 50 to 10 at%, metal Ca or CaH_2 is added and mixed. is heated to 800-1200°C in an inert gas atmosphere to cause a reduction-diffusion reaction, then cooled, and then the resulting reaction product is washed with water to remove reaction by-products. A method for producing rare earth transition metal magnet alloy powder.
JP63117121A 1988-05-16 1988-05-16 Manufacture of rare earth transition metallic magnet alloy powder Pending JPH01289101A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63117121A JPH01289101A (en) 1988-05-16 1988-05-16 Manufacture of rare earth transition metallic magnet alloy powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63117121A JPH01289101A (en) 1988-05-16 1988-05-16 Manufacture of rare earth transition metallic magnet alloy powder

Publications (1)

Publication Number Publication Date
JPH01289101A true JPH01289101A (en) 1989-11-21

Family

ID=14703950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63117121A Pending JPH01289101A (en) 1988-05-16 1988-05-16 Manufacture of rare earth transition metallic magnet alloy powder

Country Status (1)

Country Link
JP (1) JPH01289101A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05243025A (en) * 1992-02-26 1993-09-21 Nichia Chem Ind Ltd Permanent magnet material and manufacture thereof
JP2017226885A (en) * 2016-06-23 2017-12-28 住友金属鉱山株式会社 Production method for rare earth-iron-nitrogen system magnet powder

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05243025A (en) * 1992-02-26 1993-09-21 Nichia Chem Ind Ltd Permanent magnet material and manufacture thereof
JP2017226885A (en) * 2016-06-23 2017-12-28 住友金属鉱山株式会社 Production method for rare earth-iron-nitrogen system magnet powder

Similar Documents

Publication Publication Date Title
KR101855530B1 (en) Rare earth permanent magnet and their preparation
JP5742776B2 (en) Rare earth permanent magnet and manufacturing method thereof
JP2007284738A (en) Method for producing rare earth permanent magnet material
KR20080084717A (en) Rare earth permanent magnet and its preparation
US5281250A (en) Powder material for rare earth-iron-boron based permanent magnets
JPWO2002103719A1 (en) Rare earth permanent magnet material
JP2746818B2 (en) Manufacturing method of rare earth sintered permanent magnet
JP2008235343A (en) Rare earth permanent magnet and manufacturing method
JP2002038245A (en) Rare earth alloy powder for rermanent magnet and method for manufacturing rare earth permanent magnet
JPH0372124B2 (en)
CN114223044B (en) Method for producing sintered magnet
JPH01289101A (en) Manufacture of rare earth transition metallic magnet alloy powder
JPH0461042B2 (en)
JPH061726B2 (en) Method of manufacturing permanent magnet material
JP2994684B2 (en) Production method of raw material for rare earth permanent magnet
JPS59218705A (en) Permanent magnet material and manufacture thereof
JP3715331B2 (en) Method for producing raw powder for anisotropic bonded magnet
JPH045737B2 (en)
JP2000252108A (en) Rare-earth sintered magnet and its manufacture
JPH0320044B2 (en)
JPS6014407A (en) Permanent magnet material
JP3184355B2 (en) Alloy powder for sintered magnet and method for producing the same
JPH0586441B2 (en)
JPS58157941A (en) Permanent magnet alloy
JPS624806A (en) Production of alloy powder for rare earth magnet