JPS60114407A - Drill - Google Patents
DrillInfo
- Publication number
- JPS60114407A JPS60114407A JP22099683A JP22099683A JPS60114407A JP S60114407 A JPS60114407 A JP S60114407A JP 22099683 A JP22099683 A JP 22099683A JP 22099683 A JP22099683 A JP 22099683A JP S60114407 A JPS60114407 A JP S60114407A
- Authority
- JP
- Japan
- Prior art keywords
- cutting edge
- drill
- diameter
- rake angle
- drill diameter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23B—TURNING; BORING
- B23B51/00—Tools for drilling machines
- B23B51/02—Twist drills
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23B—TURNING; BORING
- B23B2251/00—Details of tools for drilling machines
- B23B2251/18—Configuration of the drill point
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23B—TURNING; BORING
- B23B2251/00—Details of tools for drilling machines
- B23B2251/24—Overall form of drilling tools
- B23B2251/241—Cross sections of the diameter of the drill
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23B—TURNING; BORING
- B23B2251/00—Details of tools for drilling machines
- B23B2251/40—Flutes, i.e. chip conveying grooves
- B23B2251/406—Flutes, i.e. chip conveying grooves of special form not otherwise provided for
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Drilling Tools (AREA)
Abstract
Description
【発明の詳細な説明】
(イ)産業上の利用分野
本発明は鋳鉄、あるいは鋼材料等の穴あけ加工に用いる
ドリル、特に素材に超硬合金を使用した超硬ドリルに関
する。DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a drill used for drilling holes in cast iron or steel materials, and particularly to a cemented carbide drill using cemented carbide as a material.
(ロ) 従来技術とその問題点
一般鋼材や鋳鉄などの穿孔作業には従来より高速度鋼製
のドリルが使用されてきたが穿孔作業の高能率化が強く
要求されだした昨今は、ドリルの回転数を高めてその要
求に応えるケースが増えており、それにともなって耐摩
耗性に優れる超硬合金をドリル材料として使用すること
が多くなってきた。しかしながら超硬合金は高速度鋼に
比べて抗折力に劣るなど強度的に満足のいく材料ではな
いために用途が限定されると共に、切削抵抗、摩耗の面
でも必ずしも充分のものではなかっ7j0(ハ)問題点
を解決するための手段及び実施例、効果。(b) Conventional technology and its problems Traditionally, high-speed steel drills have been used for drilling in general steel materials and cast iron. Increasingly, the number of rotational speeds is increased to meet these demands, and along with this, cemented carbide, which has excellent wear resistance, is increasingly being used as drill material. However, cemented carbide is not a material with satisfactory strength, such as inferior transverse rupture strength compared to high-speed steel, so its uses are limited, and its cutting resistance and wear are not necessarily sufficient. c) Means, examples, and effects for solving the problem.
本発明は上記問題点を解消しようとするものである。即
ち、ドリルの強度はそのねじれ剛性と曲げ剛性によって
左右されるが、その強さの要因となるのは芯厚と、溝巾
比である。第1図にその値を変化させた時のねじれ剛性
の値を示している。The present invention attempts to solve the above problems. That is, the strength of a drill depends on its torsional rigidity and bending rigidity, but the factors that determine this strength are the core thickness and the groove width ratio. Figure 1 shows the torsional rigidity values when the values were changed.
ねじれ剛性比は溝がない円形断面を100%としてその
値との比率で示している。第1図からも明らかなように
芯厚を厚くしかつ溝巾比を小さくしたものがその強度は
向上する。しかしながら第2図に示す従来のドリル形状
で芯厚を厚くし、溝巾比を小さくしただけでは切削抵抗
(トルク、スラスト)が大巾に増加するだけでなく切り
くずの排出も困難で芯厚、溝巾比はおのずと限界があり
、一般的には芯厚はドリル径の15〜23%、溝巾比は
1〜1.3:1にとられていた。第2図中B:Aが溝巾
比でありCは芯厚を示す。切削抵抗の増大の1因は第2
図に示す、切刃1の半径方向の任意の位置どの点であっ
ても半径方向のすくい角θ、が負であることによる。ま
た負の位置にあってそれと相対する溝壁との相対距13
Ii (第2図中愛、で示す)は当然のことながら大き
くなり第3図に示すように排出される切りくず2は完全
に溝壁に当らない場合もおこり、加工された穴壁にも及
ぶことがある。3は切りくずの当接部を示す。The torsional stiffness ratio is expressed as a ratio of the circular cross section without grooves as 100%. As is clear from FIG. 1, the strength is improved when the core thickness is increased and the groove width ratio is decreased. However, simply increasing the core thickness and decreasing the flute width ratio with the conventional drill shape shown in Figure 2 not only greatly increases cutting resistance (torque, thrust), but also makes it difficult to eject chips. There is a limit to the groove width ratio, and generally the core thickness is set to 15 to 23% of the drill diameter and the groove width ratio is set to 1 to 1.3:1. In FIG. 2, B:A is the groove width ratio, and C is the core thickness. One of the reasons for the increase in cutting force is the second
This is because the rake angle θ in the radial direction is negative at any point in the radial direction of the cutting edge 1 shown in the figure. Also, the relative distance 13 between the groove wall and the opposite groove wall at a negative position
Ii (indicated by A in Fig. 2) naturally becomes larger, and as shown in Fig. 3, the ejected chips 2 may not completely hit the groove wall, and may also cause damage to the machined hole wall. It may extend. 3 indicates the chip contact area.
本発明はかかる問題点を解決するためになされたもので
ある。即ち超硬質材料製のドリルにおいて芯厚をドリル
直径の25〜35%、溝巾比を0.4〜0.8:1にす
るどともに、少なくともドリル直径の2/3より外周部
の切刃@面直視形状を半径方向のすくい角が−5°〜正
になるように直線または凹曲線で結び、切刃と相対する
溝壁との相対距離即ち切刃先端直視形状において、ドリ
ル直径の少なくとも2/3より外側の切刃を基準線とし
て、溝刃の外周部より該M準線へ垂線をたてたと仮定し
た時、その垂線と切端外周部の距離3−
をドリル直径の47%以下に近づけたことを第1の特徴
とする。第2の特徴は少なくともドリル直径の2/3よ
り外周部の切端端面直視形状のすくい角が−5°〜正に
なるように凹曲線で結ぶことを特徴とし、第3に切刃部
の一部または全部を薄膜で被覆したことを特徴とする。The present invention has been made to solve such problems. That is, in a drill made of ultra-hard material, the core thickness should be 25 to 35% of the drill diameter, the groove width ratio should be 0.4 to 0.8:1, and the cutting edge should be at least 2/3 of the drill diameter at the outer periphery. @ Directly viewed shape is connected with a straight line or concave curve so that the rake angle in the radial direction is -5° to positive. Assuming that a perpendicular line is drawn from the outer periphery of the groove blade to the M directrix using the cutting edge outside 2/3 as the reference line, the distance 3- between the perpendicular line and the outer periphery of the cutting edge should be 47% or less of the drill diameter. The first feature is that it is close to . The second feature is that at least 2/3 of the diameter of the drill is connected with a concave curve so that the rake angle of the outer circumference when viewed directly from the incisal end is -5° to positive. It is characterized by being partially or entirely covered with a thin film.
また付加的には外径部のマージンを切刃位置に設けると
ともに、切刃の反対側にも設けたことをも特徴としてい
る。Additionally, a margin of the outer diameter portion is provided at the cutting edge position, and is also provided on the opposite side of the cutting edge.
芯厚をドリル直径の25%以下とした場合にはネジレ剛
性が不足するとともに、35%を越えると切りくずの排
出が悪くなる。また溝巾比0.4〜0.8:1の範囲外
にした場合には切りくずのカールや折断がうまくいかな
い。またすくい角が一5″以下では切削抵抗が高くなり
、剛性不足を示す。If the core thickness is less than 25% of the drill diameter, torsional rigidity will be insufficient, and if it exceeds 35%, chip evacuation will be poor. Further, if the groove width ratio is outside the range of 0.4 to 0.8:1, the curling and breaking of chips will not work properly. Furthermore, when the rake angle is 15'' or less, the cutting resistance becomes high, indicating insufficient rigidity.
範囲としては−5°〜正が適しているが、望ましくはO
〜20°の範囲とすることでさらに切れ味がよくなる。A range of -5° to positive is suitable, but preferably O
By setting the angle in the range of ~20°, the sharpness becomes even better.
第9図、第10図は本発明における被覆層の効果を示す
もので、ドリル径12mmの本発明形状のドリルにおい
て、切刃部を被覆したちの0、再研4−
磨して先端端面側の被覆層がないもの・、被覆層が全く
ないものの3種類により、S 48 CH5220材を
V=50m/分で穴明は加工した結果を比較図示したも
のである。図により了解される様に被覆層を設けたもの
は、切削力が抑えられ摩耗も少ない。被覆層はイオンプ
レーディング法や化学蒸着法によって緻密に薄層が形成
される。Figures 9 and 10 show the effect of the coating layer in the present invention. In a drill having the shape of the present invention with a drill diameter of 12 mm, the cutting edge was coated and the cutting edge was coated and the tip end face was polished. This is a comparative diagram of the results of drilling holes in S 48 CH5220 material at V = 50 m/min using three types: one with no side coating layer, and one with no coating layer at all. As can be understood from the figure, those provided with a coating layer have less cutting force and less wear. The coating layer is formed into a dense thin layer by ion plating or chemical vapor deposition.
第11図は半径方向のすくい角を正にしたことによる切
れ味の良さと切刃と相対する溝壁との相対距離を近づけ
たことによる切くずの流れを比較した図で、本発明のA
において切りくず11が小さく折曲げられ、穴壁12に
当たらず、穴壁を傷つけることはないが、B、Cと距離
が大きくなるにつれて大きくなり、穴壁に当り、また大
きく切断されるので排出もスムーズでない。また、従来
のドリルの先端角は一般に118〜130°で、この場
合すくい角は負となる。本発明においいては先端角は1
35〜145°ですくい角は−5°〜正となる。正に大
きい方がトルク減少効果が大きいが、過ぎると、刃先の
強度が低下する。Figure 11 is a diagram comparing the sharpness achieved by making the rake angle positive in the radial direction and the flow of chips produced by reducing the relative distance between the cutting edge and the facing groove wall.
At , the chips 11 are bent into small pieces and do not hit the hole wall 12 and do not damage the hole wall, but as the distance from B and C increases, they become larger and hit the hole wall and are cut into large pieces again, so they are ejected. It's not smooth either. Further, the tip angle of a conventional drill is generally 118 to 130 degrees, and in this case, the rake angle is negative. In the present invention, the tip angle is 1
The rake angle is -5° to positive at 35° to 145°. The more positive the torque reduction effect is, but if it is too large, the strength of the cutting edge will decrease.
従って、切れ味と強電の両面よりO〜20°が好ましい
。Therefore, from the viewpoint of both sharpness and strong electric current, a range of 0 to 20° is preferable.
なお、芯厚が約30%であれば切刃Cの長さは第12図
に示す様に+十十“(になる。従って切刃Cの丁以上が
正のすくい角であれば充分な効果を発揮するので、少な
くともドリル直径の了より外側との前記条件を設けたの
である。なお本発明と従来ドリルとの形状の対比を明確
にするため、第13図及び第1表を記載する。If the core thickness is approximately 30%, the length of the cutting edge C will be +10" (as shown in Figure 12). Therefore, if the cutting edge C has a positive rake angle, it is sufficient. In order to achieve this effect, the above-mentioned condition of at least the outer side of the drill diameter was set.In order to clearly compare the shapes of the present invention and the conventional drill, Fig. 13 and Table 1 are shown. .
表 1
以上の構成とすることにより以下の効果を得ることがで
きる。Table 1 With the above configuration, the following effects can be obtained.
(1)第1図に示したように大巾にねじれ剛性が向上す
る。また曲げ剛性についても同様である。(1) As shown in FIG. 1, torsional rigidity is greatly improved. The same applies to bending rigidity.
(2)第6図は被削材が550C,H6240,切削速
度50m/n+inでφ8.5のドリルを用いた7−
例であるが、本発明で得たドリルは従来ドリルに近いト
ルク、スラストであり半径方向のす(い角が負である従
来型ドリルで芯厚大、溝巾比を大としたドリルに較べれ
ば格段の低下を示している。(2) Figure 6 shows an example in which the work material is 550C, H6240, the cutting speed is 50 m/n+in, and a φ8.5 drill is used. This is a significant decrease compared to a conventional drill with a negative radial angle, which has a large core thickness and a large groove width ratio.
(3) ドリルの外周部での切刃と溝壁との相対距離を
近ずけたことにより切りくずの切断排出がドリル溝穴内
だけでおこなえるようになり排出性が向上する。第4図
、第5図に示した実施例は半径方向のすくい角がOaの
場合であるが、第7図には従来ドリルと逆にθよが正の
すくい角をもった例を示している。その効果は前述した
効果をさらに高める。また第8図には切刃の形状がドリ
ル外周部で一5°〜正となるような凹曲線状に形成され
たものを示している。この場合切りくずの生成はより長
い切刃で分担されるためスムーズにおこなわれ、かつ切
刃長が長くなるため切刃の単位長さ当りの仕事量が減り
、耐摩耗性の向上が可能となる。(3) By shortening the relative distance between the cutting edge and the groove wall at the outer periphery of the drill, chips can be cut and discharged only within the drill slot, improving the discharge performance. The embodiments shown in Figs. 4 and 5 are cases in which the rake angle in the radial direction is Oa, but Fig. 7 shows an example in which θ has a positive rake angle, contrary to the conventional drill. There is. The effect further enhances the above-mentioned effect. Further, FIG. 8 shows a cutting edge formed in a concave curved shape with an angle of 15° to positive at the outer circumference of the drill. In this case, the generation of chips is shared by the longer cutting edge, so it is done more smoothly, and since the cutting edge length is longer, the amount of work per unit length of the cutting edge is reduced, making it possible to improve wear resistance. Become.
また第7図にはダブルマージン即ちマージン部4.5を
持った実施例を示しているが、この結果穴精度が向上す
るだけでなく外周2番部へ切りく8−
ずの流入を防止し、切削がスムーズにおこなえる。Furthermore, Fig. 7 shows an embodiment with a double margin, that is, a margin section 4.5, which not only improves hole accuracy but also prevents chips from flowing into the second outer circumference. , cutting can be done smoothly.
然して、これらの効果は切刃がTLCN、TLC。However, these effects are achieved when the cutting edge is TLCN or TLC.
A920J等薄膜によって被覆されていることにより、
より効果的に発揮され超硬質合金の利点が十二分に生か
される。By being coated with a thin film such as A920J,
It is more effective and the advantages of super hard alloys are fully utilized.
第1図はねじれ剛性に及ぼ1−芯厚と溝中比の関連を示
す。第2図は従来のドリルの断面図であり、第3図は従
来のドリルの切りくずの動きを示す。
第4図、第5図は本発明によって得たドリルの横断面図
および横視図を示す。第6図は各種形状のドリルにおけ
るスラスト、トルクと送りの関連を示す図である。第7
図、第8図は本発明の他の実施例の横断面図である。図
中1は切刃、2は切りくずを示す。i、、 9−は切刃
と相対するする溝壁の相対距離を示す。第9図、第10
図は被覆層の影響を示す図表、第11図は切りくずの流
れを示す比較図、第12図はドリル直径と切刃の長さを
示す説明図、第13図は本発明と従来型のドリルの対比
を示す説明図である。
uJ’−6)I に’Hf @γt、1− 苓1+ 1
1米9q
手続ネ甫正書(自発)
昭和60年2月19日
ドリル
名 称 (213>住友電気工業株式会社明細書および
図 面
6、補正の内容
別紙の通り
補正の内容
1、明細書全文を別紙の通り補正します。
2、図面第9図を削除します。
3、図面第10図、第13図を別紙の通り訂正します。
4、図面中の図面番号
「第1図」を「第2図」に、
「第2図」を1第1図」に、
「第6図」を「第11図」に、
「第7図」を「第6図」に、
「第8図」をI−第7図」に、
「第11図」を「第8図」に、
「第12図」を「第9図」に、
それぞれ訂正します。
5、図面第12図を別紙の通り追加します。
明 細 書
1、発明の名称
ドリル
2、特許請求の範囲
(1)超硬質材料製のドリルにおいて、芯厚はドリル直
径の25〜35%、溝巾比は0.4〜0.8:1、切刃
端面直視形状の半径方向すくい角は少なくともドリル直
径の2/3より外側においては一5°〜正、切刃端面直
視形状にお【プるドリル直径より少なくとも2/3より
外側の切刃を基準線として満壁の外周部より該基準線へ
垂線をたてたと仮定したとき、その垂線と切刃外周部の
距離がドリル直径の47%以下であり、かつ切刃部の一
部または全部がTLN、Tic、TLCNまたはA&2
03の1種またはそれ以上が直接または他の層を介して
被覆されてなることを特徴とするドリル。
(2)芯厚部よりドリル外周部に至る部分の切刃端面直
視形状を少なくともドリル直径の2/3より外側の切刃
部分の半径方向のすくい角が−O。
〜正になるように凹曲線で結ばれてなることを特徴とす
る特許請求の範囲第1項記載のドリル。
(3)外径部のマージンを切刃位置に設【プるとともに
、切刃の反対側にも設けたことを特徴とする特許請求の
範囲第1項または第2項記載のドリル。
(4)被覆された切刃部の一部は少なくともすくい面、
マージンであることを特徴とする特許請求の範囲第1項
、第2項または第3項記載のドリル。
3、発明の詳細な説明
〈産業上の利用分野〉
本発明は鋳鉄あるいは鋼材料等の穴あ【プ加工に用いる
ドリル、特に素材に超硬合金を使用した超硬ドリルに関
するものである。
〈従来の技術とその問題点〉
一般鋼材や鋳鉄などの穿孔作業には従来より高速度鋼製
のドリルが使用されてきたが、穿孔作業の高能率化が強
く要求されだした昨今は、ドリルの回転数を高めてその
要求に応えるケースが増えており、それに伴なって耐摩
耗性に優れる超硬合金をドリル材料として使用すること
が多くなってぎた。
しかしながら超硬合金は高速度鋼に比へて抗折力に劣る
など強度的に満足できる材料ではないために用途が限定
されると共に、切削抵抗、摩耗の面でも必ずしも充分と
はいえなかった。
ドリルの強度は材質のねじれ剛性と、曲げ剛性によって
左右されるが、その強さの要因となるのは、第1図に示
す芯厚Cと溝巾比B:Aである。
第2図にその値を変化させた時のねじれ剛性の値を示し
ている。
ねじれ剛性比は溝がない円形断面を100%としてぞの
値との比率で示している。第2図からも明らかなように
芯厚Cを厚くし、かつ溝巾比B:Aを小さくしたものが
、その強度は向上する。しかしながら第1図に示す従来
のドリル形状て芯厚Cを厚くし、溝巾比B:Aを小さく
しただけでは切削抵抗(トルク、スラス1へ)が大巾に
増加するだけでなく切りくずの排出も困難で、芯厚、溝
巾比はおのずと限界があり、一般的には芯厚はドリル径
の15〜23%、溝巾比は1〜1.3:1にとられてい
た。
又、切削抵抗増大の一因は、第1図に示す切刃1の半径
方向における任意の位置、どの点であっても半径方向の
すくい角θ1が負であることによる。
また負の位置にあって、それと相対する溝壁との相対距
離(第1図中の9.1で示す)は当然のことながら大き
くなり、第3図に示すように排出される切りくず2は完
全の溝壁に当らない場合もおこり、加工された穴壁に達
することがある。図中3は切りくず2の当接部を示す。
く問題点を解決するための手段〉
本発明はかかる問題点を解決するためになされたもので
超硬質性材料製のドリルにおいて芯厚Cをドリル直径の
25〜35%、溝巾比B:Aを0.4〜0.8:1にす
るとともに、少くともドリル直径の2/3より外周部の
切刃端面直視形状を、半径方向のすくい角が−5°〜正
になるようにし、切刃1と相対する溝壁との相対距離、
即ち切刃先端直視形状【こおいて、ドリル直径の少くと
も2/3より外側の切刃を基準線として、溝壁の外周部
より該基準線へ垂線をたてたと仮定した時、その−3−
垂線と、切刃外周部の距離をドリル直径の47%以下に
近づ【プたことを第1の特徴とする。
第2の特徴は少くともドリル直径の2/3より外周部の
切刃端面直視形状のすくい角かO°〜正になるように凹
曲線で結、5くことを特徴とし、第3に切刃部の一部又
は全部を薄膜で被覆したことを特徴とする。
また付加的には外径部のマージンを切刃位置に設けると
共に、切刃の反対側にも設けたことを特徴としている。
〈実施例およびその効果〉
超硬質性の材料で作られ、芯厚Cをドリル直径の25〜
35%、溝巾比BAAを0.4〜0.8:1にすると共
に、上記のすくい角は少くともドリル直径の2/3より
も外周部の切刃端面直視形状を半径方向のすくい角が−
5°〜正になるように直線又は凹曲線で結び、切刃1と
相対する溝壁との相対距離、即ち切刃先端直視形状にお
いて、ドリル直径の少くとも2/3よりも外側の切刃を
基準線として、溝壁の外周部より該基準線へ垂線を立−
4−
でたと仮定したとき、その垂線と切刃外周部の距離を、
ドリル直径の47%、以下に近づけ、切刃部の全部又は
一部をTLCN、 TLc、 Al2O3等の薄膜によ
って被覆する。
第4図、第5図の示した実施例は半径方向のすくい角が
Ooの場合、第6図は、従来のドリルとは逆にすくい角
が正の角度θ2を持った例であり、第7図は切刃1の形
状がドリル外周部で−5°〜正となるような凹曲線状に
形成された例である。
又第6図に示すように外径部のマージンを切刃位置4と
切刃の反対側5にも設ける。
以上の各要件は次のような理由に塞づく。
第8図は半径方向のすくい角を正にしたことによる切れ
味の良さと、切刃に相対する溝壁との相対距離を近づ【
プだことによる切りくずの流れを比較した図で、同図へ
は上記相対距離が小さい場合で切りくず11が小さく折
り曲げられ、穴壁]2に当らず、穴壁を傷付けることは
ないが、B、Cと距離が大きくなるに従い切りくずの曲
がりが大きくなり、穴壁に当たり、又大きく切断される
ので排出もスムーズでない。また従来のドリルの先端角
は一般に118〜130°で、この場合すくい角は負と
なる。本発明においては先端角は135〜145°です
くい角は一5°〜正となり、正に大ぎい方がトルク減少
効果が大きいが、大き過ぎると、刃先の強度が低下する
。
従って切れ味と、強度の両面よりO〜20’が好ましい
。
第10図は下記表1に示す従来のドリルAの例a′、b
′、C′、dと本発明によるドリルBの例a−fの相違
を図示したもので、図中Cはドリル径口に対する%で示
した芯厚、θはすくい角、Rは溝巾比を示し、従来の技
術ではすくい角は一角となって、溝巾比、芯厚のすべて
において相違することが明らかである。
表 1
またすくい角が一5°以下では切削抵抗が高くなり、剛
性不足となるため一5°〜正が適しているが、0〜20
’の範囲とすることが切れ味と強度の両面から望ましい
。
なお芯厚が30%であれば切刃の長さは、第9図に示す
ように1/3+1/3=2/3になる。
従って切刃の1/2以上が正のすくい角であれば充分な
効果を発揮するので、少くともドリル直径の2/3より
外側との課外を設りた。
また芯厚Cをドリル直径の25%以下とした場合にはね
じれ剛性が不足すると共に35%を超えると切りくずの
排出が悪くなる。溝巾比も0.4〜o、a:1の範囲外
にした場合には切りくずのカールや切断がうまく行かな
い。
第11図は被削材が550C,HB240、切削速度5
0m/minでφ8.5mmの本発明ドリルと、従来ド
リルとの特性の比較図であるが、本発明に係るドリルは
、従来ドリルに近いトルク、スラストであり、半径方向
のすくい角が負である従来型ドリルで芯厚穴、溝巾比を
大としたドリルに較べれば格段の低下を示している。
又添附図面第12図、第13図は、本発明における被覆
層の効果を示す曲線で、ドリル径12履のドリルにおい
て、切削部を被覆したちの・、再研摩して先端4面側の
被覆層がないものの1被覆層が全くないものOlの3種
類により、548C1HB220材をV=50m/mi
rrr穴明は加工した結果を比較図示した。図により
了解されるように、被覆層を設けたものは、切削力が抑
えられ、摩耗が少いことが示されている。
以上の構成とすることにJ:す、以下の効果を得ること
ができる。
(1)第2図に示したように大巾にねじれ剛性が向上す
る。又曲げ剛性についても同様である。
(2)第11図は被削材が550C,HB240゜切削
速度50m/minでφ8.5のドリルを用いた例であ
るが、本発明で得たドリルは従来ドリルに近いトルク、
スラストであり、半径方向のすくい角が負である従来形
ドリルで芯厚穴、溝巾比を人としたドリルに較べればそ
のトルク、スラストは格段の低下を示している。
(3) ドリルの外周部での切刃と溝壁との相対距離を
近ずりたことにより、切りくずの切断排出がドリル溝穴
内だ(プで行なえるようになり、排出性が向上する。第
4図、第5図に示した実施例は半径方向のすくい角θが
Ooの場合であるが、第6図には従来ドリルと逆に62
が正のすくい角をもった例を示している。その効果は前
述した効果を更に高める。又第7図には切刃の形状がド
リル外周部で一5°〜正となるような凹曲線状に形成さ
れたものを示している。この場合切りくずの生成はより
長い切刃で分担されるためスムーズに行われ、かつ切刃
長さが長くなるため、切刃の単位長さ当りの仕事量が減
り、耐摩耗性の向上が可能となる。
また第6図にはダブルマージン、即ちマージン部4.5
を持った実施例を示しているが、その結果穴精度が向上
するだけでなく、外周2番部への切りくずの流入を防止
し、切削がスムーズに行える。
しかしてこれらの効果は切刃がTLCN、Tic。
11−
1・・・切刃 4.5・・・マージン
A& 203等薄膜によって被覆されていることにより
、より効果的に発揮され、超硬質合金の利点が十二分に
生かされる。
4、図面の簡単な説明
図面第1図はドリルの端面図、第2図はねじれ剛性に及
ぼす芯厚と溝巾比の関係を示す曲線、第3図は従来のド
リルにおける切り屑の状態を示す説明図、第4図は本発
明ドリルの端面図、第5図は第4図の側面図、第6図、
第7図は他の実施例の端面図、第8図は切りくずの流れ
を示す比較図、第9図はドリル直径と切刃長さの関係を
示す説明図、第10図は従来のドリルと本発明ドリルと
の相違を示す比較図、第11図は各種形状のドリルにお
けるスラスト、l・ルクと送りの関連を示す試験結果の
比較図、第12図は被覆層の有無によるスラスト、1〜
ルクと送りの関係を示す実験比較図、第13図は外周マ
ージンと穴あけ個数との関係を示す実験値を示す。
R・・・溝巾比 BAA C・・・芯厚D・・・ドリル
直径 θ・・・すくい角 12−
特許出願人 住友電気工業株式会社
代理人 弁理士用1)昭
第10図
r傷・ぺ9゛
特開昭GO−114407(10)
第12yA
C゛
/
一’N+−(・
、 −一
第13i!1
0% <
ull−[)4 Cst−161、−、c。
1111鑓■・1qFIG. 1 shows the relationship between core thickness and groove center ratio with respect to torsional rigidity. FIG. 2 is a cross-sectional view of a conventional drill, and FIG. 3 shows the movement of chips in the conventional drill. 4 and 5 show a cross-sectional view and a side view of a drill obtained according to the invention. FIG. 6 is a diagram showing the relationship between thrust, torque, and feed in drills of various shapes. 7th
8 are cross-sectional views of other embodiments of the present invention. In the figure, 1 indicates a cutting edge, and 2 indicates a chip. i, 9- indicates the relative distance between the cutting edge and the opposing groove wall. Figures 9 and 10
Figure 11 is a comparison diagram showing the influence of the coating layer, Figure 11 is a comparison diagram showing the flow of chips, Figure 12 is an explanatory diagram showing the drill diameter and cutting edge length, and Figure 13 is a diagram showing the difference between the present invention and the conventional type. It is an explanatory view showing comparison of drills. uJ'-6) I to'Hf @γt, 1- 蓓1+ 1
1 U.S. 9q Procedure Neho (self-motivated) February 19, 1985 Drill name (213>Sumitomo Electric Industries Co., Ltd. specification and drawings 6, contents of amendment Contents of amendment 1 as attached, full text of specification Correct as shown in the attached sheet. 2. Delete drawing No. 9. 3. Correct drawings No. 10 and 13 as shown on the attached sheet. 4. Change the drawing number "Fig. 1" in the drawing. "Fig. 2", "Fig. 2" into "Fig. 1", "Fig. 6" into "Fig. 11", "Fig. 7" into "Fig. 6", "Fig. 8"" to I-Figure 7,""Figure11" to "Figure 8," and "Figure 12" to "Figure 9." 5. Figure 12 of the drawing is revised to the attached sheet. Description 1, Name of the Invention Drill 2, Claims (1) A drill made of ultra-hard material, with a core thickness of 25 to 35% of the drill diameter and a groove width ratio of 0.4 to 0.4. 0.8:1, the radial rake angle of the shape viewed directly from the cutting edge is at least 15° to positive outside 2/3 of the drill diameter, and the radial rake angle of the shape viewed directly from the cutting edge is at least 2/3 Assuming that a perpendicular line is drawn from the outer periphery of the full wall to the reference line using the cutting edge outside of 3 as a reference line, the distance between the perpendicular line and the outer periphery of the cutting blade is 47% or less of the drill diameter, and Part or all of the blade part is TLN, Tic, TLCN or A&2
A drill characterized in that it is coated with one or more of the following: 03 directly or through another layer. (2) The rake angle in the radial direction of the cutting edge portion outside at least 2/3 of the drill diameter is −0 when viewed directly from the cutting edge end face of the portion from the core thickness to the outer periphery of the drill. The drill according to claim 1, characterized in that the drill bits are connected by concave curves so that the curves are positive. (3) The drill according to claim 1 or 2, characterized in that a margin of the outer diameter portion is provided at the cutting edge position and also provided on the opposite side of the cutting edge. (4) A portion of the coated cutting edge includes at least the rake face,
The drill according to claim 1, 2 or 3, which is a margin. 3. Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a drill used for drilling holes in cast iron or steel materials, and particularly to a cemented carbide drill using cemented carbide as the material. <Conventional technology and its problems> High-speed steel drills have traditionally been used for drilling work in general steel materials, cast iron, etc., but recently there has been a strong demand for higher efficiency in drilling work, and drills have become more popular. Increasingly, the number of rotations is increased to meet these demands, and as a result, cemented carbide, which has excellent wear resistance, is increasingly being used as drill material. However, since cemented carbide is not a material with satisfactory strength, such as inferior transverse rupture strength compared to high-speed steel, its applications are limited, and it has not necessarily been sufficient in terms of cutting resistance and wear. The strength of a drill depends on the torsional rigidity and bending rigidity of the material, but the factors that determine the strength are the core thickness C and the groove width ratio B:A shown in FIG. Figure 2 shows the torsional rigidity values when the values were changed. The torsional stiffness ratio is expressed as a ratio with the circular cross section without grooves being taken as 100%. As is clear from FIG. 2, the strength is improved by increasing the core thickness C and decreasing the groove width ratio B:A. However, with the conventional drill shape shown in Fig. 1, simply increasing the core thickness C and decreasing the flute width ratio B:A not only greatly increases the cutting force (torque, to the thrust 1) but also reduces the amount of chips. Ejection is also difficult, and there are limits to the core thickness and groove width ratio; generally, the core thickness is 15 to 23% of the drill diameter, and the groove width ratio is 1 to 1.3:1. Further, one of the reasons for the increase in cutting resistance is that the rake angle θ1 in the radial direction is negative at any position or point in the radial direction of the cutting edge 1 shown in FIG. In addition, the relative distance between the negative position and the opposing groove wall (indicated by 9.1 in Fig. 1) naturally increases, and as shown in Fig. 3, the ejected chips 2 This may occur even if the hole does not hit the complete groove wall, and may reach the machined hole wall. In the figure, numeral 3 indicates the contact portion of the chips 2. Means for Solving the Problems> The present invention has been made to solve these problems, and in a drill made of ultra-hard material, the core thickness C is 25 to 35% of the drill diameter, and the groove width ratio B: A is set to 0.4 to 0.8:1, and the shape of the cutting edge when viewed directly from the outer circumference of at least 2/3 of the drill diameter is such that the rake angle in the radial direction is -5° to positive. The relative distance between the cutting edge 1 and the opposing groove wall,
That is, the shape of the cutting edge when viewed directly [Here, assuming that the cutting edge outside at least 2/3 of the drill diameter is set as a reference line and a perpendicular line is drawn from the outer periphery of the groove wall to the reference line, the - 3- The first feature is that the distance between the perpendicular line and the outer periphery of the cutting edge is close to 47% or less of the drill diameter. The second feature is that at least 2/3 of the drill diameter is connected with a concave curve so that the rake angle of the cutting edge face directly viewed from the outer periphery is positive. It is characterized in that part or all of the blade part is coated with a thin film. Additionally, a margin of the outer diameter portion is provided at the cutting edge position, and is also provided on the opposite side of the cutting edge. <Example and its effects> Made of ultra-hard material, the core thickness C is 25 to 25 mm of the drill diameter.
35%, and the flute width ratio BAA is 0.4 to 0.8:1, and the above rake angle is a rake angle in the radial direction that is at least 2/3 of the diameter of the drill cutting edge when viewed directly from the outer circumference. Ga-
The cutting edge is connected by a straight line or a concave curve so that the angle is 5° to positive, and the relative distance between the cutting edge 1 and the opposing groove wall, i.e., the cutting edge is outside at least 2/3 of the drill diameter when viewed directly from the tip of the cutting edge. Using this as a reference line, draw a perpendicular line from the outer periphery of the groove wall to the reference line.
4- Assuming that it is, the distance between the perpendicular line and the outer circumference of the cutting edge is
Close to 47% or less of the drill diameter, and cover all or part of the cutting edge with a thin film of TLCN, TLc, Al2O3, etc. In the embodiment shown in FIGS. 4 and 5, the rake angle in the radial direction is Oo, and in FIG. 6, the rake angle is a positive angle θ2, contrary to the conventional drill. FIG. 7 shows an example in which the cutting edge 1 is formed in a concave curved shape with an angle of −5° to positive at the outer circumference of the drill. Further, as shown in FIG. 6, margins on the outer diameter portion are also provided at the cutting edge position 4 and at the opposite side 5 of the cutting edge. Each of the above requirements is hindered by the following reasons. Figure 8 shows the sharpness achieved by making the radial rake angle positive and the relative distance between the cutting edge and the groove wall facing the cutting edge.
This figure compares the flow of chips due to the hole wall. In the same figure, when the above relative distance is small, the chips 11 are bent small and do not hit the hole wall] 2 and do not damage the hole wall. As the distance between B and C increases, the bending of the chips increases, and the chips hit the hole wall and are cut into large pieces, making it difficult to eject them smoothly. Further, the tip angle of a conventional drill is generally 118 to 130 degrees, and in this case, the rake angle is negative. In the present invention, the tip angle is 135 to 145 degrees, and the rake angle is 15 degrees to positive. The more exactly the angle is large, the greater the torque reduction effect is, but if it is too large, the strength of the cutting edge is reduced. Therefore, from the viewpoint of both sharpness and strength, O to 20' is preferable. Figure 10 shows examples a' and b of conventional drills A shown in Table 1 below.
', C', d and examples a-f of drill B according to the present invention are illustrated, where C is the core thickness expressed as a percentage of the drill diameter, θ is the rake angle, and R is the groove width ratio. It is clear that in the conventional technology, the rake angle is one angle, and the groove width ratio and core thickness are all different. Table 1 Also, if the rake angle is less than 15°, the cutting force will be high and the rigidity will be insufficient.
It is desirable to have a range of ' from the viewpoint of both sharpness and strength. If the core thickness is 30%, the length of the cutting edge will be 1/3+1/3=2/3 as shown in FIG. Therefore, if 1/2 or more of the cutting edge has a positive rake angle, a sufficient effect will be exhibited, so an extra margin of at least 2/3 of the drill diameter was provided. Furthermore, if the core thickness C is less than 25% of the drill diameter, the torsional rigidity will be insufficient, and if it exceeds 35%, chip evacuation will be poor. If the groove width ratio is outside the range of 0.4 to o, a:1, the curling and cutting of chips will not be successful. In Figure 11, the work material is 550C, HB240, and the cutting speed is 5.
This is a comparison diagram of the characteristics of a drill of the present invention with a diameter of 8.5 mm at 0 m/min and a conventional drill.The drill of the present invention has torque and thrust similar to the conventional drill, and has a negative rake angle in the radial direction Compared to a conventional drill with a large core thickness hole and groove width ratio, this shows a significant decrease. 12 and 13 of the attached drawings are curves showing the effect of the coating layer in the present invention. In a drill with a drill diameter of 12 shoes, after coating the cutting part and re-polishing, the four sides of the tip are coated. 548C1HB220 material with V=50m/mi by three types: one without a coating layer, one with no coating layer, and one with no coating layer.
rrr Anaaki has shown a comparative diagram of the processing results. As can be understood from the figure, it has been shown that the cutting force provided with the coating layer is suppressed and wear is reduced. With the above configuration, the following effects can be obtained. (1) As shown in Fig. 2, torsional rigidity is greatly improved. The same applies to bending rigidity. (2) Figure 11 shows an example in which the work material is 550C, HB240°, cutting speed is 50m/min, and a φ8.5 drill is used.The drill obtained with the present invention has a torque close to that of conventional drills,
Compared to a conventional drill with a negative radial rake angle and a drill with a core thickness hole and groove width ratio, its torque and thrust are significantly lower. (3) By shortening the relative distance between the cutting edge and the groove wall at the outer periphery of the drill, chips can be cut and ejected from within the drill slot, improving evacuation efficiency. The embodiments shown in FIGS. 4 and 5 are for the case where the rake angle θ in the radial direction is Oo, but in FIG.
shows an example where has a positive rake angle. The effect further enhances the above-mentioned effect. Further, FIG. 7 shows a case in which the cutting edge is formed in a concave curved shape with an angle of 15° to positive at the outer circumference of the drill. In this case, the generation of chips is shared by the longer cutting edge, so it is carried out smoothly, and the longer cutting edge length reduces the amount of work per unit length of the cutting edge, improving wear resistance. It becomes possible. Also, in Figure 6 there is a double margin, that is, a margin part 4.5.
As a result, not only the hole accuracy is improved, but also chips are prevented from flowing into the second outer circumference part, and cutting can be performed smoothly. However, these effects are due to the fact that the cutting edge is TLCN and Tic. 11-1... Cutting edge 4.5... Margin A & By being coated with a thin film such as 203, it is more effective and the advantages of the super hard alloy are fully utilized. 4. Brief explanation of the drawings Figure 1 is an end view of the drill, Figure 2 is a curve showing the relationship between core thickness and groove width ratio on torsional rigidity, and Figure 3 is a diagram showing the state of chips in a conventional drill. 4 is an end view of the drill of the present invention, FIG. 5 is a side view of FIG. 4, FIG.
Figure 7 is an end view of another embodiment, Figure 8 is a comparison diagram showing the flow of chips, Figure 9 is an explanatory diagram showing the relationship between drill diameter and cutting edge length, and Figure 10 is a conventional drill. Figure 11 is a comparison diagram of test results showing the relationship between thrust, l-lux and feed in drills of various shapes, Figure 12 is the thrust with and without a coating layer, 1 ~
Fig. 13 is an experimental comparison diagram showing the relationship between torque and feed, and shows experimental values showing the relationship between the outer peripheral margin and the number of holes drilled. R...Groove width ratio BAA C...Core thickness D...Drill diameter θ...Rake angle 12- Patent applicant Sumitomo Electric Industries Co., Ltd. agent For patent attorney 1) Showa 10 r scratches Pe9゛ JP-A-114407 (10) 12th yA C゛/ 1'N+-(・ , -1 1st 13i! 1 0% < ull-[)4 Cst-161, -, c. 1111 Sword ■・1q
Claims (4)
径の25〜35%、溝巾比は0.4〜0,8:1、切刃
端面直視形状の半径方向すくい角は少なくともドリル直
径の2/3より外側においては一56〜正、切刃端面直
視形状におけるドリル直径より少なくとも2/3より外
側の切刃を基準線として溝壁の外周部より該基準線へ垂
線をたてたと仮定したとき、その垂線と切刃外周部の距
離がドリル直径の47%以下であり、かつ切刃部の一部
または全部がTLN、TLC,TLCNまたはM 20
jの1種またはそれ以上が直接または他の層を介して被
覆されてなることを特徴とするドリル。(1) In a drill made of ultra-hard material, the core thickness is 25 to 35% of the drill diameter, the groove width ratio is 0.4 to 0.8:1, and the radial rake angle of the cutting edge when viewed directly from the end is at least the drill diameter. On the outside of 2/3 of the groove wall, a perpendicular line is drawn from the outer periphery of the groove wall to the reference line using the cutting edge that is at least 2/3 outside of the drill diameter when viewed directly from the cutting edge as a reference line. Assuming that the distance between the perpendicular line and the outer periphery of the cutting edge is 47% or less of the drill diameter, and part or all of the cutting edge is TLN, TLC, TLCN or M20.
A drill characterized in that one or more types of j are coated directly or through another layer.
視形状を少なくともドリル直径の2/3より外側の切刃
部分の半径方向のすくい角がσ〜正になるように凹曲線
で結ばれてなることを特徴とする特許請求の範囲第(1
)項記載のドリル。(2) The shape of the cutting edge in direct view from the core thickness to the outer periphery of the drill is a concave curve so that the rake angle in the radial direction of the cutting edge outside 2/3 of the drill diameter is at least positive. Claim No. 1 (1) characterized in that
) Drill described in section.
切刃の反対側にも設けたことを特徴とする特許請求の範
囲第(1)項または第(2)項記載のドリル。(3) In addition to providing a margin on the outer diameter at the cutting edge position,
The drill according to claim 1 or 2, characterized in that the drill is also provided on the opposite side of the cutting edge.
マージンであることを特徴とする特許請求の範囲第(1
)項、第(2)項または第(3)項記載のドリル。(4) A portion of the coated cutting edge includes at least the rake face,
Claim No. 1 characterized in that it is a margin.
), the drill described in paragraph (2) or paragraph (3).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22099683A JPS60114407A (en) | 1983-11-24 | 1983-11-24 | Drill |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22099683A JPS60114407A (en) | 1983-11-24 | 1983-11-24 | Drill |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60114407A true JPS60114407A (en) | 1985-06-20 |
JPS6158246B2 JPS6158246B2 (en) | 1986-12-10 |
Family
ID=16759831
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22099683A Granted JPS60114407A (en) | 1983-11-24 | 1983-11-24 | Drill |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60114407A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0320881A2 (en) * | 1987-12-14 | 1989-06-21 | Mitsubishi Materials Corporation | Twist drill |
GB2184046B (en) * | 1985-12-13 | 1990-01-24 | Skf & Dormer Tools | Twist drill |
JPH0624810U (en) * | 1986-06-07 | 1994-04-05 | ヘルテル アクチェンゲゼルシャフト ヴェルクツォイゲ ウント ハルトシュトッフェ | Twist drill |
US5888036A (en) * | 1990-02-27 | 1999-03-30 | Hitachi Seiko, Ltd. | Drill bit and step feeding method |
WO2004078393A1 (en) * | 2003-03-05 | 2004-09-16 | Honda Motor Co., Ltd. | Deep hole boring drill |
GB2406814A (en) * | 2003-08-28 | 2005-04-13 | Dormer Tools | Coated bore cutting tools |
US6916139B2 (en) | 2001-07-10 | 2005-07-12 | Mitsubishi Materials Corporation | Drill |
JP5374502B2 (en) * | 2008-05-23 | 2013-12-25 | 京セラ株式会社 | Drill, cutting insert and method of manufacturing workpiece |
WO2024150374A1 (en) * | 2023-01-12 | 2024-07-18 | 住友電工ハードメタル株式会社 | Drill |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08232276A (en) * | 1995-02-28 | 1996-09-10 | Marutaka Concrete Kogyo Kk | Method for constructing retaining-wall performance body, and block |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5414089A (en) * | 1977-07-05 | 1979-02-01 | Caterpillar Mitsubishi Ltd | Drill with chip breaker for high hardness |
JPS5548511A (en) * | 1978-10-02 | 1980-04-07 | Sumitomo Electric Ind Ltd | Drill |
JPS563118A (en) * | 1979-06-25 | 1981-01-13 | Mitsubishi Metal Corp | Coated miniature drill made of hard alloy metal |
JPS563117A (en) * | 1979-06-25 | 1981-01-13 | Mitsubishi Metal Corp | Coated miniature drill made of hard alloy metal |
JPS57132908A (en) * | 1981-02-10 | 1982-08-17 | Asahi Malleable Iron Co Ltd | Drill |
JPS5840309U (en) * | 1981-07-21 | 1983-03-16 | 住友電気工業株式会社 | drilling tool |
JPS5866607A (en) * | 1981-10-16 | 1983-04-20 | Toshiba Corp | Drill |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA982223A (en) * | 1972-05-10 | 1976-01-20 | John P. Cestaro | Light-weight lead-acid battery |
-
1983
- 1983-11-24 JP JP22099683A patent/JPS60114407A/en active Granted
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5414089A (en) * | 1977-07-05 | 1979-02-01 | Caterpillar Mitsubishi Ltd | Drill with chip breaker for high hardness |
JPS5548511A (en) * | 1978-10-02 | 1980-04-07 | Sumitomo Electric Ind Ltd | Drill |
JPS563118A (en) * | 1979-06-25 | 1981-01-13 | Mitsubishi Metal Corp | Coated miniature drill made of hard alloy metal |
JPS563117A (en) * | 1979-06-25 | 1981-01-13 | Mitsubishi Metal Corp | Coated miniature drill made of hard alloy metal |
JPS57132908A (en) * | 1981-02-10 | 1982-08-17 | Asahi Malleable Iron Co Ltd | Drill |
JPS5840309U (en) * | 1981-07-21 | 1983-03-16 | 住友電気工業株式会社 | drilling tool |
JPS5866607A (en) * | 1981-10-16 | 1983-04-20 | Toshiba Corp | Drill |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2184046B (en) * | 1985-12-13 | 1990-01-24 | Skf & Dormer Tools | Twist drill |
JPH0624810U (en) * | 1986-06-07 | 1994-04-05 | ヘルテル アクチェンゲゼルシャフト ヴェルクツォイゲ ウント ハルトシュトッフェ | Twist drill |
US4983079A (en) * | 1987-12-14 | 1991-01-08 | Mitsubishi Kinzoku Kabushiki Kaisha | Twist drill |
US5088863A (en) * | 1987-12-14 | 1992-02-18 | Mitsubishi Materials Corporation | Twist drill |
EP0320881A2 (en) * | 1987-12-14 | 1989-06-21 | Mitsubishi Materials Corporation | Twist drill |
US5888036A (en) * | 1990-02-27 | 1999-03-30 | Hitachi Seiko, Ltd. | Drill bit and step feeding method |
US6916139B2 (en) | 2001-07-10 | 2005-07-12 | Mitsubishi Materials Corporation | Drill |
WO2004078393A1 (en) * | 2003-03-05 | 2004-09-16 | Honda Motor Co., Ltd. | Deep hole boring drill |
US7201544B2 (en) | 2003-03-05 | 2007-04-10 | Honda Motor Co., Ltd. | Deep hole boring drill |
GB2406814A (en) * | 2003-08-28 | 2005-04-13 | Dormer Tools | Coated bore cutting tools |
GB2406814B (en) * | 2003-08-28 | 2005-11-30 | Dormer Tools | Coated bore cutting tools |
US7922428B2 (en) | 2003-08-28 | 2011-04-12 | Dormer Tools Limited | Coated bore cutting tools |
JP5374502B2 (en) * | 2008-05-23 | 2013-12-25 | 京セラ株式会社 | Drill, cutting insert and method of manufacturing workpiece |
US8840346B2 (en) | 2008-05-23 | 2014-09-23 | Kyocera Corporation | Drill, cutting insert, and method of manufacturing cut product |
WO2024150374A1 (en) * | 2023-01-12 | 2024-07-18 | 住友電工ハードメタル株式会社 | Drill |
Also Published As
Publication number | Publication date |
---|---|
JPS6158246B2 (en) | 1986-12-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS59219108A (en) | Drill | |
JP5762547B2 (en) | drill | |
JP5816364B2 (en) | 3-flute drill | |
JPS60114407A (en) | Drill | |
JPH08155713A (en) | Twist drill | |
JP2012056069A (en) | Three-bladed twist drill | |
US20200198025A1 (en) | Rotating tool | |
JPS63318208A (en) | Twist drill | |
JP4239414B2 (en) | Drill | |
JP4961061B2 (en) | Ball end mill | |
JP2018176360A (en) | Rotary cutting type drilling tool | |
JPH10156613A (en) | Eddy-shaped thinning drill with chisel | |
JP3933044B2 (en) | Drill | |
JP4561054B2 (en) | Ball end mill | |
JPS6260202B2 (en) | ||
US20230364684A1 (en) | Cutting insert, rotary tool, and method for manufacturing machined product | |
JP3318020B2 (en) | Ball end mill | |
JP2001328016A (en) | Twist drill | |
JP2538864Y2 (en) | Hard film coated drill for difficult-to-cut materials | |
JP2004261930A (en) | Drill | |
JP2010030044A (en) | Ball end mill | |
JP2003136317A (en) | Drill | |
JPH02237711A (en) | Twist drill | |
JP2000210808A (en) | End mill | |
JP2005186247A (en) | Twist drill |