JP4561054B2 - Ball end mill - Google Patents

Ball end mill Download PDF

Info

Publication number
JP4561054B2
JP4561054B2 JP2003208305A JP2003208305A JP4561054B2 JP 4561054 B2 JP4561054 B2 JP 4561054B2 JP 2003208305 A JP2003208305 A JP 2003208305A JP 2003208305 A JP2003208305 A JP 2003208305A JP 4561054 B2 JP4561054 B2 JP 4561054B2
Authority
JP
Japan
Prior art keywords
end mill
cutting
cutting edge
diameter
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003208305A
Other languages
Japanese (ja)
Other versions
JP2005066701A (en
Inventor
精一郎 北浦
太一 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2003208305A priority Critical patent/JP4561054B2/en
Publication of JP2005066701A publication Critical patent/JP2005066701A/en
Application granted granted Critical
Publication of JP4561054B2 publication Critical patent/JP4561054B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、エンドミル本体先端部に軸線回りの回転軌跡が半球状をなす少なくとも一対の切刃が形成されたボールエンドミルに関するものである。
【0002】
【従来の技術】
この種のボールエンドミルとしては、例えば特許文献1に、先端の半球状部(エンドミル本体先端部)に軸心(軸線)に対して対称的に一対のボール刃(切刃)が設けられた非鉄金属用ボールエンドミルであって、半球状部の中心部で一対のボール刃が存在しない円形領域(心厚円)の直径寸法は0.02〜0.08mmの範囲内で、該中心部における一対のボール刃の重なり寸法(切刃の行き違い量)は0〜0.08mmの範囲内で、該一対のボール刃の刃直角すくい角は10°〜20°の範囲内としたものが提案されている。
【0003】
そして、特許文献1によれば、このようなボールエンドミルでは、上記円形領域の直径寸法が小さいために切削作用が得られない領域が極僅かであり、かつボール刃の刃直角すくい角が大きいため、切れ味が向上して優れた切削性能が得られる一方、一対のボール刃の重なり寸法が上記範囲内であるため、円形領域の収縮に係わらずボール刃の機械的強度が著しく低下するおそれはなく、アルミ等の軟質材に対しては実用上十分な強度を確保できるとされている。
【0004】
【特許文献1】
特開2000−334614号公報
【0005】
【発明が解決しようとする課題】
しかしながら、この特許文献1記載のボールエンドミルでは、切刃の外径(切刃が軸線回りになす半球の直径)に関わらず心厚円の直径が一定の範囲内であるため、切刃の外径が大きい場合には相対的に心厚円の直径が小さくなりすぎてエンドミル本体先端の軸線周辺の強度が損なわれ、このような切刃外径の大きなボールエンドミルが多用される比較的負荷の大きい加工ではこのエンドミル本体先端が欠損するおそれがある一方、逆に切刃の外径が小さい場合には相対的に心厚円の直径が大きくなりすぎて良好な切れ味を得ることが困難となるおそれがあった。
【0006】
また、上記ボールエンドミルでは切刃の行き違い量も切刃外径に関わらず一定であるため、切刃の外径が大きい場合には相対的に行き違い量が小さくなり、これに伴い切刃によって生成された切屑を排出するためのチップポケットも小さくなって切屑排出性が損なわれるおそれがある一方、切刃外径が小さい場合には相対的に切刃の行き違い量が大きくなりすぎてチップポケットも大きくなり、これに伴いエンドミル本体先端の剛性確保が困難となってやはりその欠損を招いたりするおそれがある。
【0007】
本発明は、このような背景の下になされたもので、切刃の外径が10mm以上の比較的大径のボールエンドミルでもエンドミル本体先端の耐欠損性と切刃の切れ味および切屑排出性とを両立することが可能なボールエンドミルを提供することを目的としている。
【0008】
【課題を解決するための手段】
上記課題を解決して、このような目的を達成するために、本発明におけるボールエンドミルは、軸線回りに回転されるエンドミル本体の先端部に、上記軸線回りの回転軌跡が略半球状をなす少なくとも一対の切刃が、上記エンドミル本体先端において上記軸線を挟んで互いに反対側に形成されてなるボールエンドミルであって、上記切刃の外径Dが10(mm)以上とされ、上記軸線方向先端視において、該軸線を中心として上記一対の切刃に内接する心厚円の直径δ(mm)を該切刃の外径D(mm)に対してδ=0.03×D1/2〜δ=0.06×D1/2の範囲内とするとともに、これらの一対の切刃が上記心厚円との接点を越えて互いに行き違う切刃の行き違い量H(mm)をH=0.05×D1/2−0.04〜H=0.09×D1/2の範囲内としたことを特徴とする。
【0009】
従って、このようなボールエンドミルにおいては、上記心厚円の直径δおよび切刃の行き違い量Hが、いずれも切刃の外径Dの平方根に基づく範囲内に設定されるため、切刃外径Dが10mm以上の比較的大径のボールエンドミルでは、その上記心厚円の直径を大きくしてエンドミル本体先端における切刃強度を確保しつつも、該心厚円直径が必要以上に大きくなりすぎるのを防いで切刃の切れ味が鈍化するのを防ぐとともに、切刃の行き違い量Hも大きくなるのに伴いチップポケット容量を確保して良好な切屑排出性を得、ただしこの行き違い量についても必要以上に大きくなるのは防いでエンドミル本体先端の剛性を維持することができる。
【0011】
ここで、さらに上記切刃の行き違い量H(mm)は上記心厚円の直径δ(mm)に対してH=2×δ以下の範囲内とされるのが望ましいただし外径Dが大きくて心厚円直径δも大きくされる大径のボールエンドミルでは、エンドミル本体先端の剛性や切刃強度は確保されるものの切刃の切れ味が鈍く、切屑が毟れ状に生成されてその排出性が悪いので、行き違い量Hδ−0.03(mm)以上大きくしてチップポケットを大きく確保することが望ましい。
【0012】
さらに、このようなボールエンドミルにおいては、上記エンドミル本体の先端にギャッシュが形成されて、このギャッシュのエンドミル回転方向を向く壁面と上記エンドミル本体先端の逃げ面との交差稜線部に上記切刃が形成されることになるが、この切刃と、上記ギャッシュのエンドミル回転方向後方側を向く壁面と上記逃げ面との交差稜線部とが交差するギャッシュコーナ部は、上記軸線方向先端視において曲率半径R(mm)が0.03(mm)以上で上記切刃の外径D(mm)に対してR=0.08×D1/2以下の範囲内とされた凹曲線状とされるのが望ましく、また切刃と、上記ギャッシュのエンドミル回転方向後方側を向く壁面と上記逃げ面との交差稜線部とは、上記軸線方向先端視において80°〜120°の範囲内の交差角αで交差する方向に形成されるのが望ましい。
【0013】
すなわち、上記ギャッシュコーナ部の曲率半径Rや上記交差角αが小さすぎると、このギャッシュコーナ部に応力が集中しやすくなって、特に小径のボールエンドミルではエンドミル本体に損傷が生じるおそれがある。また、逆に交差角αが大きすぎても、ギャッシュが大きくなりすぎてエンドミル本体先端が大きく切り欠かれてその剛性を確保することが困難となるおそれがあり、曲率半径Rが大きすぎると、ギャッシュに十分なチップポケット容量を確保することができなくなって良好な切屑排出性が損なわれるとともに、切刃の回転軌跡がなす半球の精度が損なわれるおそれも生じる。
【0014】
【発明の実施の形態】
図1ないし図3は、本発明の一実施形態を示すものである。本実施形態においてエンドミル本体1は、超硬合金等の硬質材料によって形成されて、その先端側に切刃部2が形成されるとともに後端部は略円柱軸状のシャンク部3とされ、このシャンク部3が工作機械の回転軸に把持されることにより中心軸線O回りにエンドミル回転方向Tに回転させられ、例えば金型等の加工に使用される。ここで、本実施形態では、上記切刃部2の外周に、該切刃部2の先端から後端側に向けてエンドミル回転方向Tの後方側に向かうように捩れる一対の切屑排出溝4,4が軸線Oを挟んで互いに反対側に対称に形成されており、これらの切屑排出溝4,4のエンドミル回転方向T側を向く壁面の辺稜部に外周刃5がそれぞれ形成されている。
【0015】
一方、切刃部2の先端すなわちエンドミル本体1の先端部には、上記切屑排出溝4,4に連通するチップポケット6がそれぞれ形成されており、各チップポケット6のエンドミル回転方向T側を向く壁面の辺稜部には、軸線O回りの回転軌跡が半球状をなす略1/4円弧状の切刃7が、やはり軸線Oを挟んで互いに反対側に対称に、かつエンドミル本体1先端の軸線O近傍から外周側に向かうに従い、やはり軸線O回りにエンドミル回転方向Tの後方側に捩れるように延びて、上記切刃5に連なるようにそれぞれ形成されている。従って、このように捩れて形成されることにより、本実施形態では上記切刃7,7は、軸線O方向先端視において図2に示すように緩やかに湾曲する概略S字状を呈することとなる。また、この切刃7のエンドミル回転方向T後方側に連なる切刃部2の先端外周面は、本実施形態ではこのエンドミル回転方向T後方側に向かうに従い多段に後退する逃げ面8とされている。
【0016】
ここで、両チップポケット6のエンドミル本体1先端における軸線O近傍部分はギャッシュ9とされ、従ってこの軸線O近傍において各切刃7は上記ギャッシュ9のエンドミル回転方向T側を向く壁面と上記逃げ面8との交差稜線部に形成されることとなる。これらのギャッシュ9,9は、本実施形態では図3に示すように軸線O方向先端視において、該軸線Oを含む仮想平面Pに対して該仮想平面Pと交差することなく互いに反対側に位置し、かつこの仮想平面Pに沿って軸線Oを僅かに越え互いに行き違うように形成されている。従って、このエンドミル本体1先端における軸線Oの近傍における切刃7,7も、軸線O方向先端視において互いに平行かつ仮想平面Pに対しても平行に外周側から該軸線Oを越えて行き違うように延びた後、ギャッシュ9のエンドミル回転方向T後方側を向く壁面と他方の切刃7に連なる逃げ面8(第1逃げ面8a)との交差稜線部10に交差することとなる。
【0017】
このように切刃7,7が形成されることにより、エンドミル本体1先端の軸線O近傍には、一対の切刃7,7の間に、ギャッシュ9が形成されずに両切刃7,7に連なる逃げ面8,8がそのまま延びる心厚部11が残されることとなり、この心厚部11上において軸線O方向先端視に該軸線Oを中心として両切刃7,7に内接する円が心厚円Cとされ、従って切刃7,7は外周側からこの心厚円Cとの接点を越えて該接点における上記エンドミル回転方向Tの接線方向に互いに行き違うこととなる。また、該心厚部11においては、上記逃げ面8,8同士がチゼル12を介して互いに鈍角に交差させられ、本実施形態ではこのチゼル12は、軸線O方向先端視においては該軸線Oを通って両切刃7,7に鈍角に交差する直線状に、また上記仮想平面Pに直交する側面視には略凸円弧状に形成されている。
【0018】
そして、この心厚円Cの直径δ(mm)は、切刃7が軸線O回りの回転軌跡においてなす上記半球の直径、すなわち切刃7の外径D(mm)に対して、δ=0.03×D1/2δ=0.06×D1/2の範囲内とされるとともに、上記一対の切刃7,7が上述のようにこの心厚円Cとの接点を越えて互いに行き違う切刃7の行き違い量H(mm)はH=0.05×D1/2−0.04〜H=0.09×D1/2の範囲内とされている。さらに、本実施形態では、この切刃7の行き違い量H(mm)は、上記心厚円の直径δ(mm)に対して2×δ以下とされ、望ましくはδ−0.03(mm)以上とされている。ただし、この行き違い量Hは、図3に示すように軸線O方向先端視において、上記一対の切刃7,7の上記第1逃げ面8aとこれに連なる第2逃げ面8bとの交差稜線Lと上記ギャッシュ9との交点Qにおける上記交差稜線部10の接線S同士の間隔を、上記心厚円Cと切刃7との接線方向に測った長さとされている。
【0019】
さらに、本実施形態では、この切刃7と上記交差稜線部10とが交差するギャッシュ9の隅のギャッシュコーナ部13が、軸線O方向先端視において曲率半径R(mm)が0.03(mm)以上で上記切刃7の外径D(mm)に対して0.08×D1/2以下の範囲内とされた凹曲線状とされていて、切刃7と交差稜線部10(ギャッシュ9と第1逃げ面8aとの交差稜線部)とは軸線O方向先端視においてこのギャッシュコーナ部13がなす凹曲線の両端に滑らかに接して連なる直線状とされている。さらにまた、こうしてギャッシュコーナ部13を介して連なる切刃7と上記交差稜線10とは、やはり軸線O方向先端視において80°〜120°の範囲内の交差角αで交差する方向に形成されている。
【0020】
従って、このように構成されたボールエンドミルでは、まずエンドミル本体1先端の軸線O近傍に、この軸線O近傍にまで延びる切刃7,7の逃げ面8,8同士がチゼル12を介して交差する心厚部11が残されており、これにより特に切削速度が0となることでより高い負荷が作用するこの軸線O近傍におけるエンドミル本体1の剛性や切刃7の強度を確保して、例えば比較的負荷の大きい鋼材や硬質合金材料の高速加工を行う場合や、切削の進行によって摩耗が増大した場合などにおいても、この先端の軸線O近傍においてエンドミル本体1に欠損が生じたりするのを防ぐことができる。また、これら軸線O近傍に延びる一対の切刃7,7が互いにこの軸線Oを中心とする心厚円Cとの接点を越えて行き違うように形成されており、これに伴い該切刃7に連なってチップポケット6に連通するギャッシュ9も互いに行き違うように大きく確保されているので、良好な切屑排出性を得ることができる。
【0021】
そして、上記構成のボールエンドミルでは、上記心厚部11における心厚円Cの直径δ(mm)と、切刃7,7の行き違い量H(mm)とが、いずれも切刃7の外径D(mm)に対してそれぞれδ=0.03×D1/2〜δ=0.06×D1/2の範囲内およびH=0.05×D1/2−0.04〜H=0.09×D1/2の範囲内とされており、すなわちこの外径Dの平方根に基づいて設定されている。このため切刃7の外径Dが10mm以上の比較的大径のボールエンドミルにおいて外径Dが大きくなるのに伴い上記心厚円Cの直径δも増大して心厚部11が厚くなり、従ってエンドミル本体1先端における剛性の向上を図って切刃7の強度を確保し、このような大径のボールエンドミルによる加工において作用しがちな大きな負荷に対しても、切刃7の欠損やエンドミル本体1先端の破損等を防ぐことができる。ただし、その一方で、この外径Dの増大に伴う心厚円Cの直径δの増大は外径Dの平方根に基づくものであるので、例えば直径δが外径Dに比例して大きくなったりするのと比べては、大径のボールエンドミルでも心厚円Cが必要以上に大きくなるのを避けることができ、これにより切刃7の切れ味が鈍化してしまうのを防いで加工精度の劣化を防止することが可能となる。
【0022】
また、切刃7,7の行き違い量Hについても、大径のボールエンドミルではその切刃外径Dが大きくなるのに従い行き違い量Hは増大し、従ってギャッシュ9,9が行き違う大きさも大きくなってこのギャッシュ9に連なるチップポケット6に大きな容量を確保することが可能となり、大径ボールエンドミルで生成される大量の切屑に対してもこれを確実に収容して円滑に排出することが可能となる。ただし、この行き違い量Hも外径Dの平方根に基づいて増大するので、必要以上に行き違い量Hが大きくなることはなく、従ってギャッシュ9やチップポケット6が大きくなりすぎて心厚円Cの直径δが増大したにも拘わらず却ってエンドミル本体1先端の剛性が損なわれたりするのを防ぐことが可能となる。
【0023】
なお、ちなみに、逆に例えば切刃7の外径Dが2mmを下回るような小径のボールエンドミルにおいても、外径Dが小さくなるに従い心厚円Cの直径δも小さくなって切刃7がよりエンドミル本体1先端の軸線O近傍に近づくので、エンドミル本体1先端において切刃7が形成されずに切削に関与しない部分を少なくするとともに、この軸線O近傍に至るまで切刃7に鋭い切れ味を与えることができ、高い加工精度を得ることが可能となる。これは、特にこのような小径のボールエンドミルが多用される金型等の精密加工において効果的である。
【0024】
また、こうして切刃7の外径Dが小さくなるのに従い、切刃7,7の行き違い量Hも小さく抑えられるので、上述のように心厚円Cの直径δが小さくなることに伴うエンドミル本体1先端の剛性の不足を補うことができ、すなわち行き違い量Hが小さくなるのに伴ってギャッシュ9やチップポケット6によりエンドミル本体1先端が切り欠かれる部分を小さく抑えて剛性を確保するとともに、心厚部11の上記仮想平面Pに沿った方向の幅も小さく抑えることができるため、エンドミル本体1先端のこの心厚部11の破損等を防止することが可能となる。
【0025】
ただし、このような小径のボールエンドミルにおいては、これら心厚円Cの直径δや切刃7,7の行き違い量Hが上述のように切刃7の外径Dの平方根に基づいて設定されることにより、例えばやはりこれらが外径Dに比例して小さくなるような場合に比べ、大径の場合とは逆に必要以上に小さくなってしまうのを避けることができる。従って、小径のボールエンドミルでも心厚円Cには最小限必要な直径δを確保しておくことができるので、行き違い量Hが抑えられることとも相俟ってより確実にエンドミル本体1先端の剛性確保を図ることができる一方、この行き違い量Hも必要以上に小さくなりすぎることがないので、小径であってもギャッシュ9やチップポケット6には切屑排出に十分な容量を確保することが可能となる。すなわち、上記構成のボールエンドミルによれば、このように大径から小径に至るまで、切刃7の外径Dに関わりなくエンドミル本体1先端の耐欠損性と切刃7の切れ味および切屑排出性とを両立することができ、円滑かつ高精度の加工を行うことが可能となる。
【0026】
ところで、切刃7の外径Dが比較的小さい上記小径のボールエンドミルでは、上述のように心厚円Cの直径δが最小限必要な範囲で小さくされて切刃7に良好な切れ味が与えられるのに伴い、切屑も一定形状の排出性の良いものが生成されるので、ギャッシュ9やチップポケット6にはそれほど大きな容量を確保する必要はなく、むしろ行き違い量Hを極力小さく抑えてエンドミル本体1先端の剛性および切刃7の強度を確実に確保するのがより望ましい。一方、切刃7の外径Dが大きい大径のボールエンドミルでは、逆にこれらエンドミル本体1先端の剛性や切刃7の強度は確保しやすい反面、外径Dの平方根に基づくとはいえ心厚円Cの直径δが大きくなるのに伴い、エンドミル本体1先端の切削を行わない部分が大きくなり、この部分によって毟れ状の排出され難い切屑が生成されるため、行き違い量Hが小さくなりすぎてギャッシュ9やチップポケット6容量が削減されるのは望まれない傾向となる。
【0027】
そこで、これに対して本実施形態では、上述のように心厚円Cの直径δと切刃7,7の行き違い量Hとが切刃7の外径Dの平方根に基づく範囲内に設定されるのに加え、さらにこれら心厚円Cの直径δ(mm)と切刃7,7の行き違い量H(mm)との関係も、Hが2×δ以下となるように設定され、また望ましくはHがδ−0.03(mm)以上となるようにされている。従って、このように心厚円Cの直径δに対する行き違い量Hの上下限が設定されることにより、上記小径のボールエンドミルにおいては、この行き違い量Hが必要以上に大きくなるのをさらに確実に避けることができ、一層の剛性や切刃強度の確保を図ることができる一方、大径のボールエンドミルにあっては必要な行き違い量Hを確保して上述のような毟れ状の切屑に対しても良好な排出性を得ることが可能となる。
【0028】
さらに、本実施形態では、上記ギャッシュ9のエンドミル回転方向T側を向く壁面と逃げ面8との交差稜線部に形成されることとなる切刃7と、このギャッシュ9のエンドミル回転方向T後方側を向く壁面と逃げ面8(第1逃げ面8a)との交差稜線部10とが、軸線O方向先端視において凹曲線状をなすギャッシュコーナ部13を介して交差するように形成されており、従ってこのギャッシュコーナ部13に切削時の応力が集中したりするのを抑制することができて、このような応力集中によるエンドミル本体1の損傷を防止することができる。また、特に外径Dが小さい場合において、最も剛性・強度が弱くなるエンドミル本体1最先端のチゼル12部分から軸線O方向後端側に向けて、該軸線Oに直交する断面における心厚を漸次大きくすることができるので、エンドミル本体1先端の強度の向上を図ることも可能となる。
【0029】
なお、このギャッシュコーナ部13が軸線O方向先端視においてなす凹曲線の曲率半径R(mm)は、小さすぎると上述のような効果を得ることができなくなるおそれがある一方、逆に大きすぎるとギャッシュ9のチップポケット容量が小さくなって却って切屑排出性を損ねるおそれが生じるとともに、切刃7が軸線O回りの回転軌跡においてなす半球の精度、いわゆるボールエンドミルにおける切刃のアール精度が悪化し易くなるので、本実施形態のように0.03mm以上で、上記切刃7の外径D(mm)に対して0.08×D1/2以下の範囲内とされるのが望ましい。ただし、本実施形態ではこのように切刃7とギャッシュ9の上記交差稜線部10とが交差する隅部に、軸線O方向先端視に凹曲線状をなすギャッシュコーナ部13を形成しているが、場合によっては図4に示すようにこのギャッシュコーナ部13を凹曲線状に形成せずに切刃7と交差稜線部10とが角度をもって交差するように形成してもよい。
【0030】
また、本実施形態では、こうしてギャッシュコーナ部13を介して交差する切刃7と、ギャッシュ9のエンドミル回転方向T後方側を向く壁面と逃げ面8との交差稜線10とが、やはり軸線O方向先端視において80°〜120°の範囲内の交差角α、すなわちギャッシュ9の開角で交差する方向に形成されているが、これは、この交差角αが小さすぎると、上記エンドミル回転方向T後方側を向く壁面が切刃7側に対向するように向けられることとなることにより、エンドミル本体1先端のチップポケットも小さくなり、切屑の流出を遮ってその円滑な排出を阻害するおそれがあるからである。その一方で、この交差角αが大きすぎると、ギャッシュ9が軸線O方向先端視に大きく開いた形状となってエンドミル本体1先端が大きく切り欠かれ、その剛性を確保することができなくなるおそれがあるので、この交差角αは本実施形態のように80°〜120°の範囲内に設定されるのが望ましい。
【0031】
また、本実施形態では、エンドミル本体1先端部(切刃部2)に軸線O回りの回転軌跡が半球状をなす一対の切刃7,7が形成された、2枚刃のボールエンドミルについて説明したが、刃数が2枚よりも多い、例えば図5に示すような4枚刃のボールエンドミル等に本発明を適用することも可能である。なお、この図5に示すボールエンドミルでは、軸線Oを挟んで互いに反対側に位置する一対の切刃7,7がエンドミル本体1先端の軸線O近傍から外周側に延びるように形成される一方、残りの2枚の切刃14,14はこれらの切刃7,7よりも外周側に離間した位置から外周側に延びるように形成され、これらの切刃7,7,14,14の回転軌跡が1つの半球状を呈するようにされている。
【0032】
【実施例】
次に、本発明の実施例を挙げて、本発明の効果についてより具体的に説明する。本実施例ではまず、図1ないし図3に示した上記実施形態に基づき、その切刃7の外径D(mm)、心厚円Cの直径δ(mm)、および切刃7,7の行き違い量H(mm)が異なる6種のボールエンドミルを用いて切削試験を行った。その結果を、それぞれのボールエンドミルについて、上記各寸法および行き違い量H(mm)と芯厚円Cの直径δ(mm)との比H/δとともに表1に実施例1−1、1−2、…3−2として示す。また、これに対する比較例として、各実施例のボールエンドミルと等しい切刃7の外径D(mm)であって、心厚円Cの直径δ(mm)や切刃の行き違い量H(mm)が異なる5種のボールエンドミルでも同様の切削条件の下で切削試験を行った。その結果についても表1に比較例1−1、2−1、…3−2として合わせて示す。
【0033】
【表1】

Figure 0004561054
【0034】
なお、これらの実施例および比較例のボールエンドミルは、いずれも超微粒超硬合金よりなるエンドミル本体の表面に(Al,Ti)Nコーティングを施したものであって、外周刃5も含めた切刃部2の長さ(刃長)はそれぞれ外径Dの2倍であった。また、切削試験に用いた被削材はSKD61(52HRC)であって、切削試験ではこの被削材に、実施例1−1、1−2、比較例1−1では回転速度10000rpm、送り速度1800mm/min、切込み深さ半径方向0.4mm、軸方向0.2mmで、実施例2−1、2−2、比較例2−1、2−2では回転速度10000rpm、送り速度2000mm/min、切込み深さ半径方向0.5mm、軸方向0.3mmで、実施例3−1、3−2、比較例3−1、3−2では回転速度10000rpm、送り速度2300mm/min、切込み深さ半径方向1.0mm、軸方向0.5mmで、ダウンカットおよびエアブローにより側面加工を行った。
【0035】
この表1の結果より、切刃の外径Dに対する心厚円の直径δや切刃の行き違い量Hが本発明に係わるボールエンドミルの範囲外であった比較例では、この範囲より心厚円Cの直径δが小さくされたり切刃の行き違い量Hが大きくされたりした比較例1−1、2−2、3−1にあっては、切刃の先端部(エンドミル本体1の先端)に欠損が生じて切削試験を中止せざるを得なかった。またその一方で、逆にこの範囲より心厚円Cの直径δが大きくされたり切刃の行き違い量Hが小さくされた比較例2−1、3−2にあっては、加工面の特に底部における仕上面が不良となった。
【0036】
ところが、これらの比較例に対して、本発明に係わる実施例のボールエンドミルでは、切刃7の外径Dの大小に関わらず切刃7に欠損が生じたりすることはなく、また円滑な切屑排出によって切削抵抗も低く抑えられるとともに、優れた加工精度および仕上面を得ることができた。特に、切刃7,7の行き違い量Hが心厚円Cの直径δに対して2×δよりも大きくされた(H/δが2よりも大きくされた)実施例1−2、3−1では、それぞれの切削試験の送り速度よりもさらに高送りで切削を試みたときには切刃7にチッピングが認められたのに対し、この行き違い量Hが心厚円Cの直径δに対して2×δ以下とされた(H/δが2以下とされた)実施例1−1、2−1、2−2、3−2のボールエンドミルでは、このようなチッピングは認められず、より高能率の切削加工が可能であった。
【0037】
次に、切刃7の外径D(mm)が3mmおよび5mmで、それぞれ心厚円Cの直径δ(mm)および切刃7,7の行き違い量H(mm)が互いに等しく、かつ本発明に係わるボールエンドミルの範囲内であって、軸線O方向先端視における切刃7と上記交差稜線部10との交差角α(°)やギャッシュコーナ部13の曲率半径R(mm)が異なるボールエンドミルを用いて同様に切削試験を行った。その結果を、それぞれのボールエンドミルについて上記各寸法とともに、切刃7の外径D(mm)が3mmのものを実施例4−1〜4−6として、また外径D(mm)が5mmのものを実施例5−1、5−2として、表2に示す。なお、切削条件は、実施例4−1〜4−6では回転速度10000rpm、送り速度2000mm/min、切込み深さ半径方向0.5mm、軸方向0.3mmであり、実施例5−1、5−2では回転速度10000rpm、送り速度2300mm/min、切込み深さ半径方向1.0mm、軸方向0.5mmであり、その他の条件は表1の切削試験と同様であった。
【0038】
【表2】
Figure 0004561054
【0039】
しかるに、これら実施例4−1〜4−6、5−1、5−2のボールエンドミルは、上述のようにその心厚円Cの直径δ(mm)および切刃7,7の行き違い量H(mm)はそれぞれ本発明の範囲内であり、通常の切削加工においては一般的な上記切削条件では表2に示したように良好な結果を得ることができたが、このうち曲率半径R(mm)が切刃7の外径D(mm)に対して0.08×D1/2を上回る大きさとされた実施例4−5、5−2では、実用上は問題ないものの他の実施例に比べて若干の加工面精度の悪化が認められた。また、逆に曲率半径R(mm)が0.03mmを下回る実施例4−6や、交差角α(°)が80°未満、あるいは120°を上回るようにされた実施例4−3、4−4では、上記切削条件では良好な結果が得られたものの、これよりも送り速度を上げて高送り切削を行うと切刃7にチッピングが生じるようになった。ところが、これらに対して、交差角α(°)が80°〜120°の範囲内、曲率半径R(mm)が0.03mm以上で切刃7の外径D(mm)に対して0.08×D1/2以下の範囲内とされた実施例4−1、4−2、および実施例5−1のボールエンドミルでは、加工面精度の悪化は認められず、また上記切削条件より送り速度を上げても切刃7にチッピングが発生することはなかった。
【0040】
【発明の効果】
以上説明したように、本発明によれば、切刃の外径が10mm以上の比較的大径のボールエンドミルでもエンドミル本体先端の剛性を確保することによりその軸線近傍の切刃に高い切刃強度を与えて優れた耐欠損性を得るとともに、該切刃の切れ味および切屑排出性を良好にして円滑かつ高精度の加工を図ることが可能となる。
【図面の簡単な説明】
【図1】 本発明の一実施形態を示す側面図である。
【図2】 図1に示す実施形態の切刃部2を軸線O方向先端視に見た拡大正面図である。
【図3】 図2における軸線O近傍の拡大正面図である。
【図4】 図1ないし図3に示した実施形態の変形例を示す軸線O近傍の拡大正面図である。
【図5】 図1ないし図3に示した実施形態の他の変形例を示す切刃部2を軸線O方向先端視に見た拡大正面図である。
【符号の説明】
1 エンドミル本体1
2 切刃部
6 チップポケット
7 切刃
8 逃げ面
9 ギャッシュ
10 ギャッシュ9のエンドミル回転方向T後方側を向く壁面と逃げ面8との交差稜線部
11 心厚部
12 チゼル
13 ギャッシュコーナ部
O エンドミル本体1の軸線
T エンドミル回転方向
C 心厚円
D 切刃7の外径
δ 心厚円Cの直径
H 切刃7の行き違い量
R ギャッシュコーナ部13の曲率半径
α 切刃7と交差稜線部10との交差角[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a ball end mill in which at least a pair of cutting blades whose rotational trajectory around an axis forms a hemisphere is formed at the end of an end mill main body.
[0002]
[Prior art]
As this type of ball end mill, for example, Patent Document 1 discloses a non-ferrous iron in which a pair of ball blades (cutting blades) are provided symmetrically with respect to an axis (axis) on a hemispherical portion (end portion of the end mill body) at the tip. In the ball end mill for metal, the diameter of a circular region (heart thick circle) where a pair of ball blades do not exist at the center of the hemispherical portion is within a range of 0.02 to 0.08 mm, and It has been proposed that the overlapping dimension of the ball blades (the amount of difference between the cutting blades) is in the range of 0 to 0.08 mm, and the right angle rake angle of the pair of ball blades is in the range of 10 ° to 20 °. Yes.
[0003]
According to Patent Document 1, in such a ball end mill, since the diameter of the circular region is small, there are very few regions where the cutting action cannot be obtained, and the ball blade rake angle is large. The sharpness is improved and excellent cutting performance is obtained. On the other hand, since the overlapping dimension of the pair of ball blades is within the above range, there is no possibility that the mechanical strength of the ball blade is remarkably lowered regardless of the shrinkage of the circular region. It is said that a practically sufficient strength can be secured for soft materials such as aluminum.
[0004]
[Patent Document 1]
JP 2000-334614 A
[0005]
[Problems to be solved by the invention]
However, in the ball end mill described in Patent Document 1, the diameter of the core thickness circle is within a certain range regardless of the outer diameter of the cutting edge (the diameter of the hemisphere formed by the cutting edge about the axis). When the diameter is large, the diameter of the core thick circle becomes relatively small and the strength around the axis of the end mill body tip is impaired, and such a ball end mill with a large cutting edge outer diameter is frequently used. On the other hand, there is a risk that the tip of the end mill main body may be lost in large processing, but conversely, when the outer diameter of the cutting edge is small, the diameter of the core thickness circle becomes relatively large and it becomes difficult to obtain a good sharpness. There was a fear.
[0006]
In the above ball end mill, the amount of crossing of the cutting edge is constant regardless of the outside diameter of the cutting edge. Therefore, when the outside diameter of the cutting edge is large, the amount of crossing becomes relatively small, and accordingly, generated by the cutting edge. There is a risk that the chip pocket for discharging the cut chips will be small and chip discharge performance may be impaired. As a result, the rigidity of the end mill main body becomes difficult to secure, and there is a risk that the chip will be lost.
[0007]
The present invention was made under such a background, and the outer diameter of the cutting blade. Even a ball end mill with a relatively large diameter of 10 mm or more An object of the present invention is to provide a ball end mill capable of satisfying both the chipping resistance of the end mill main body tip and the cutting edge sharpness and chip discharge.
[0008]
[Means for Solving the Problems]
In order to solve the above-mentioned problems and achieve such an object, the ball end mill according to the present invention has at least the end of the end mill main body rotated about the axis, and the rotation trajectory about the axis forms a substantially hemispherical shape. A pair of cutting blades are ball end mills formed on opposite sides of the axis at the end of the end mill body, The outer diameter D of the cutting blade is 10 (mm) or more, When viewed from the front in the axial direction, the diameter δ (mm) of the core thick circle inscribed in the pair of cutting edges around the axis is δ = 0.03 × D with respect to the outer diameter D (mm) of the cutting edges. 1/2 ~ Δ = 0.06 × D 1/2 And the difference H (mm) between the pair of cutting edges that cross each other beyond the contact point with the core thickness circle is H = 0.05 × D. 1/2 −0.04 to H = 0.09 × D 1/2 It is characterized by being within the range of.
[0009]
Accordingly, in such a ball end mill, the diameter δ of the core thick circle and the amount of difference H of the cutting edge are both set within a range based on the square root of the outer diameter D of the cutting edge. D is 10mm or more In a relatively large diameter ball end mill, the diameter of the core thick circle is increased to ensure the cutting edge strength at the end of the end mill body, while preventing the core thick circle diameter from becoming excessively large. In addition to preventing the sharpness of the blade from slowing down, the chip pocket capacity is secured as the cutting edge gap amount H increases, and good chip discharge performance is obtained. However, this gap amount also becomes larger than necessary. Can prevent the end mill body tip rigidity.
[0011]
Here, it is further desirable that the amount of difference H (mm) between the cutting edges be in a range of H = 2 × δ or less with respect to the diameter δ (mm) of the core thickness circle. . However, , A large-diameter ball end mill with a large outer diameter D and a larger core thickness circle diameter δ ensures the rigidity and cutting edge strength at the end of the end mill body, but the cutting edge is dull and chips are generated in a curled shape. Because the discharge is bad, the amount of crossing H Is δ-0.03 (mm) or more In It is desirable to ensure a large chip pocket by increasing the size.
[0012]
Further, in such a ball end mill, a gash is formed at the tip of the end mill body, and the cutting edge is formed at the crossing ridge line portion of the wall surface facing the end mill rotation direction of the gash and the flank of the end mill body tip. However, the cutting edge, the gash corner portion where the wall surface facing the rear side in the end mill rotation direction of the gasche and the intersecting ridge line portion of the flank surface has a radius of curvature R in the axial front end view. (Mm) is 0.03 (mm) or more and R = 0.08 × D with respect to the outer diameter D (mm) of the cutting edge. 1/2 It is desirable to have a concave curved shape within the following range, and the cutting edge, and the intersecting ridge line portion of the wall surface facing the rear side in the end mill rotation direction of the gasche and the flank face are in the axial front end view. In this case, the crossing angle α is preferably in a direction intersecting at a crossing angle α in the range of 80 ° to 120 °.
[0013]
That is, if the radius of curvature R of the gash corner and the crossing angle α are too small, stress tends to concentrate on the gash corner, and the end mill body may be damaged, particularly in a small-diameter ball end mill. On the other hand, if the crossing angle α is too large, the gash becomes too large and the end of the end mill main body may be greatly cut out to make it difficult to ensure its rigidity. If the curvature radius R is too large, Insufficient chip pocket capacity for the gasche cannot be secured, and good chip discharge performance is impaired, and the accuracy of the hemisphere formed by the rotation trajectory of the cutting edge may be impaired.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
1 to 3 show an embodiment of the present invention. In this embodiment, the end mill body 1 is formed of a hard material such as cemented carbide, a cutting edge portion 2 is formed on the tip side thereof, and a rear end portion thereof is a substantially cylindrical shaft-shaped shank portion 3. The shank portion 3 is gripped by the rotating shaft of the machine tool and is rotated in the end mill rotating direction T around the central axis O, and is used, for example, for machining a die or the like. Here, in the present embodiment, a pair of chip discharge grooves 4 that are twisted toward the rear side in the end mill rotation direction T from the front end of the cutting blade part 2 toward the rear end side on the outer periphery of the cutting blade part 2. , 4 are formed symmetrically on opposite sides with respect to the axis O, and outer peripheral blades 5 are respectively formed on the side ridges of the wall surfaces of the chip discharge grooves 4, 4 facing the end mill rotation direction T side. .
[0015]
On the other hand, tip pockets 6 communicating with the chip discharge grooves 4, 4 are formed at the tip of the cutting edge 2, that is, at the tip of the end mill body 1, and each tip pocket 6 faces the end mill rotation direction T side. On the side ridge portion of the wall surface, a substantially 1/4 arc-shaped cutting blade 7 whose rotational locus around the axis O forms a hemispherical shape is also symmetrically opposite to each other across the axis O, and at the end of the end mill body 1 tip. As it goes from the vicinity of the axis O toward the outer peripheral side, it extends so as to twist toward the rear side in the end mill rotation direction T around the axis O, and is formed so as to be continuous with the cutting edge 5. Therefore, by being formed to be twisted in this way, in the present embodiment, the cutting blades 7 and 7 have a generally S-shape that gently curves as shown in FIG. . In addition, in the present embodiment, the outer peripheral surface of the tip of the cutting edge 2 connected to the rear side in the end mill rotation direction T of the cutting edge 7 is a flank 8 that retreats in multiple steps toward the rear side in the end mill rotation direction T. .
[0016]
Here, the vicinity of the axis O at the tip of the end mill body 1 of both the tip pockets 6 is a gash 9, and therefore, in the vicinity of the axis O, each cutting edge 7 has a wall surface facing the end mill rotation direction T side of the gash 9 and the clearance surface. 8 will be formed at the intersection ridge line portion with 8. As shown in FIG. 3, these gashes 9 and 9 are positioned on opposite sides of the virtual plane P including the axis O without intersecting the virtual plane P when viewed from the front in the direction of the axis O. In addition, they are formed so as to cross each other slightly along the imaginary plane P over the axis O. Therefore, the cutting edges 7 and 7 in the vicinity of the axis O at the end of the end mill body 1 also cross over the axis O from the outer peripheral side in parallel to each other and parallel to the virtual plane P in the end view in the direction of the axis O. Then, the wall surface of the gash 9 facing the rear side in the end mill rotation direction T intersects the intersecting ridge line portion 10 of the flank 8 (first flank 8a) connected to the other cutting edge 7.
[0017]
By forming the cutting blades 7 and 7 in this way, no gash 9 is formed between the pair of cutting blades 7 and 7 in the vicinity of the axis O at the end of the end mill body 1, and both cutting blades 7 and 7 are formed. A core thick portion 11 extending as it is is left as it is, and a circle inscribed on both the cutting edges 7 and 7 about the axis O is seen on the core thick portion 11 when viewed from the front in the direction of the axis O. Therefore, the cutting blades 7 and 7 cross each other in the tangential direction of the end mill rotation direction T at the contact point from the outer peripheral side beyond the contact point with the center thick circle C. Further, in the core thick portion 11, the flank surfaces 8 and 8 intersect each other at an obtuse angle via a chisel 12, and in the present embodiment, the chisel 12 has the axis O in the end view in the axis O direction. It passes through both cutting edges 7 and 7 in a straight line intersecting at an obtuse angle, and is formed in a substantially convex arc shape in a side view perpendicular to the virtual plane P.
[0018]
The diameter δ (mm) of the thick core C is δ = 0 with respect to the diameter of the hemisphere formed by the cutting blade 7 in the rotation locus around the axis O, that is, the outer diameter D (mm) of the cutting blade 7. .03xD 1/2 ~ δ = 0.06 × D 1/2 In addition, the amount H (mm) of the cutting blades 7 that passes between the pair of cutting blades 7 and 7 beyond the contact point with the core thickness circle C as described above is H = 0. 05 x D 1/2 -0.04 ~ H = 0.09 × D 1/2 It is within the range. Furthermore, in this embodiment, the amount of difference H (mm) of the cutting edge 7 is 2 × δ or less with respect to the diameter δ (mm) of the core thickness circle, and preferably δ−0.03 (mm). That's it. However, as shown in FIG. 3, this crossing amount H is an intersection ridge line L between the first flank 8a of the pair of cutting blades 7 and 7 and the second flank 8b connected to the pair of cutting blades 7, 7 as shown in FIG. The distance between the tangent lines S of the intersecting ridge line portion 10 at the intersection point Q with the gasche 9 is a length measured in the tangential direction between the core thickness circle C and the cutting edge 7.
[0019]
Further, in this embodiment, the gash corner portion 13 at the corner of the gash 9 where the cutting edge 7 and the intersecting ridge line portion 10 intersect has a curvature radius R (mm) of 0.03 (mm) when viewed from the front in the axis O direction. ) Above, 0.08 × D with respect to the outer diameter D (mm) of the cutting edge 7 1/2 The cutting edge 7 and the intersecting ridge line portion 10 (intersecting ridge line portion between the gash 9 and the first flank 8a) are the gash corner portion in the front view of the axis O direction. 13 is a straight line that is in smooth contact with both ends of the concave curve formed by 13. Furthermore, the cutting edge 7 and the intersecting ridge line 10 that are continuous through the gasche corner 13 are formed in a direction that intersects at an intersecting angle α in the range of 80 ° to 120 ° in the front view of the axis O direction. Yes.
[0020]
Therefore, in the ball end mill configured as described above, first, the flank surfaces 8 of the cutting blades 7 and 7 extending to the vicinity of the axis O intersect each other via the chisel 12 near the axis O at the tip of the end mill body 1. The core thick portion 11 is left, and in particular, the rigidity of the end mill body 1 and the strength of the cutting edge 7 in the vicinity of the axis O in which a higher load acts when the cutting speed becomes 0, for example, are compared. To prevent the end mill body 1 from being damaged in the vicinity of the axis O at the tip, even when high-speed machining of a steel material or hard alloy material with a large mechanical load is performed or when wear increases due to the progress of cutting. Can do. Further, the pair of cutting blades 7 and 7 extending in the vicinity of the axis O are formed so as to cross each other beyond the contact point with the core circle C centered on the axis O, and accordingly the cutting blade 7 Since the gash 9 communicating with the chip pocket 6 in a row is also secured so as to cross each other, a good chip discharging property can be obtained.
[0021]
In the ball end mill having the above-described configuration, the diameter δ (mm) of the core thick circle C in the core thick portion 11 and the difference H (mm) between the cutting edges 7 and 7 are both the outer diameter of the cutting edge 7. Δ = 0.03 × D for D (mm) 1/2 ~ Δ = 0.06 × D 1/2 And H = 0.05 × D 1/2 −0.04 to H = 0.09 × D 1/2 In other words, it is set based on the square root of the outer diameter D. For this reason , The outer diameter D of the cutting edge 7 is 10 mm More than In a relatively large diameter ball end mill , As the outer diameter D increases, the diameter δ of the core thickness circle C also increases and the core thickness portion 11 becomes thick. Therefore, the rigidity of the end mill main body 1 is improved and the strength of the cutting edge 7 is secured. It is possible to prevent the cutting edge 7 from being damaged, the end mill body 1 from being damaged at the tip end, and the like, even for a large load that tends to act in machining with such a large diameter ball end mill. However, on the other hand, the increase in the diameter δ of the core thickness circle C accompanying the increase in the outer diameter D is based on the square root of the outer diameter D. For example, the diameter δ increases in proportion to the outer diameter D. Compared with this, even with a large-diameter ball end mill, the core thickness circle C can be prevented from becoming unnecessarily large, thereby preventing the sharpness of the cutting edge 7 from slowing down and deteriorating the machining accuracy. Can be prevented.
[0022]
Further, the amount of difference H between the cutting edges 7 and 7 increases as the cutting edge outer diameter D increases in a large-diameter ball end mill, and therefore the size of the difference between the gashes 9 and 9 increases. It is possible to secure a large capacity in the chip pocket 6 connected to the lever gash 9, and it is possible to securely accommodate and discharge a large amount of chips generated by a large-diameter ball end mill. Become. However, since this crossover amount H also increases based on the square root of the outer diameter D, the crossover amount H does not increase more than necessary, so that the gash 9 and the tip pocket 6 become too large and the diameter of the heart thickness circle C is increased. In spite of the increase in δ, it is possible to prevent the rigidity of the end of the end mill body 1 from being impaired.
[0023]
By the way, Conversely, for example, in a ball end mill with a small diameter such that the outer diameter D of the cutting edge 7 is less than 2 mm. Also, As the outer diameter D becomes smaller, the diameter δ of the core thick circle C also becomes smaller and the cutting edge 7 is closer to the vicinity of the axis O at the end of the end mill body 1, so that the cutting edge 7 is not formed at the end of the end mill body 1 and cutting is performed. It is possible to reduce the portion that is not involved, and to give the cutting edge 7 a sharp edge up to the vicinity of the axis O, and to obtain high machining accuracy. This is particularly effective in precision machining such as a mold in which such a small-diameter ball end mill is frequently used.
[0024]
Further, as the outer diameter D of the cutting edge 7 becomes smaller in this way, the amount of difference H between the cutting edges 7 and 7 is also reduced, so that the end mill body accompanying the decrease in the diameter δ of the core thickness circle C as described above. 1 The shortage of rigidity at the tip can be compensated, that is, as the crossing amount H becomes smaller, the portion where the tip of the end mill body 1 is notched by the gash 9 and the tip pocket 6 is suppressed to a small size and the rigidity is ensured. Since the width of the thick portion 11 in the direction along the virtual plane P can be reduced, it is possible to prevent the core thick portion 11 from being damaged at the tip of the end mill body 1.
[0025]
However, in such a small-diameter ball end mill, the diameter δ of the core thick circle C and the amount of difference H between the cutting edges 7 and 7 are set based on the square root of the outer diameter D of the cutting edge 7 as described above. Accordingly, it is possible to avoid becoming unnecessarily small as opposed to the case of the large diameter, as compared with the case where they are also reduced in proportion to the outer diameter D, for example. Therefore, even with a small-diameter ball end mill, the minimum necessary diameter δ can be secured for the core thick circle C, and the rigidity of the tip of the end mill body 1 is more reliably combined with the fact that the amount of crossing H can be suppressed. While this can be ensured, the crossing amount H does not become excessively small, and even with a small diameter, it is possible to secure a sufficient capacity for discharging chips in the gash 9 and the chip pocket 6. Become. That is, according to the ball end mill configured as described above, from the large diameter to the small diameter, regardless of the outer diameter D of the cutting edge 7, the chipping resistance of the end mill body 1 tip, the sharpness of the cutting edge 7 and the chip dischargeability. Both can be achieved and smooth and highly accurate processing can be performed.
[0026]
By the way, in the above-described small-diameter ball end mill having a relatively small outer diameter D of the cutting edge 7, the diameter δ of the core thickness circle C is reduced to the minimum necessary range as described above to give the cutting edge 7 a good sharpness. As a result, it is not necessary to secure a very large capacity for the gasche 9 and the chip pocket 6, and rather the cross-milling amount H is kept as small as possible. It is more desirable to ensure the rigidity of the tip 1 and the strength of the cutting edge 7 reliably. On the other hand, in the case of a large-diameter ball end mill with a large outer diameter D of the cutting edge 7, on the contrary, the rigidity of the end mill body 1 tip and the strength of the cutting edge 7 are easy to secure, but the heart is based on the square root of the outer diameter D. As the diameter δ of the thick circle C increases, the portion of the end mill body 1 where the tip is not cut increases, and this portion generates curled chips that are difficult to be discharged. Therefore, it is not desirable to reduce the capacity of the gasche 9 and the chip pocket 6.
[0027]
Accordingly, in the present embodiment, as described above, the diameter δ of the core thick circle C and the difference H between the cutting edges 7 and 7 are set within a range based on the square root of the outer diameter D of the cutting edge 7. In addition, the relationship between the diameter δ (mm) of the core thick circle C and the amount of difference H (mm) between the cutting edges 7 and 7 is set so that H is 2 × δ or less. H is set to be δ−0.03 (mm) or more. Therefore, by setting the upper and lower limits of the amount of difference H with respect to the diameter δ of the thick circle C in this way, in the small-diameter ball end mill, it is more reliably avoided that the amount of difference H becomes larger than necessary. While it is possible to secure further rigidity and cutting edge strength, a large-diameter ball end mill secures the necessary crossing amount H to prevent the above-mentioned curled chips. It is possible to obtain good discharge characteristics.
[0028]
Furthermore, in this embodiment, the cutting edge 7 which will be formed in the intersection ridgeline part of the wall surface which faces the end mill rotation direction T side of the said gash 9, and the flank 8 and the end mill rotation direction T back side of this gash 9 And the intersecting ridge line portion 10 of the flank 8 and the flank 8 (first flank 8a) intersect with each other via a gash corner portion 13 having a concave curve shape when viewed from the front in the direction of the axis O. Accordingly, it is possible to suppress the stress during cutting from being concentrated on the gash corner portion 13 and to prevent the end mill body 1 from being damaged due to such stress concentration. Further, particularly when the outer diameter D is small, the thickness of the core in the cross section orthogonal to the axis O is gradually increased from the chisel 12 at the most distal end of the end mill body 1 where the rigidity and strength become weakest toward the rear end side in the axis O direction. Since the size can be increased, the strength of the end of the end mill body 1 can be improved.
[0029]
If the radius of curvature R (mm) of the concave curve formed by the gasche corner portion 13 when viewed from the front in the direction of the axis O is too small, the above-described effects may not be obtained. The chip pocket capacity of the gash 9 becomes smaller and the chip discharge performance may be impaired, and the accuracy of the hemisphere formed by the cutting blade 7 on the rotation trajectory around the axis O, that is, the rounding accuracy of the cutting edge in a so-called ball end mill, is likely to deteriorate. Therefore, it is 0.03 mm or more as in this embodiment, and 0.08 × D with respect to the outer diameter D (mm) of the cutting edge 7. 1/2 It is desirable to be within the following range. However, in the present embodiment, the gash corner portion 13 having a concave curve shape when viewed from the front in the axis O direction is formed at the corner where the cutting edge 7 and the intersecting ridge line portion 10 of the gash 9 intersect as described above. In some cases, as shown in FIG. 4, the gash corner portion 13 may be formed so that the cutting edge 7 and the intersecting ridge line portion 10 intersect with each other without forming a concave curve.
[0030]
Further, in the present embodiment, the cutting edge 7 that intersects with the gash corner portion 13 in this way, and the intersecting ridge line 10 between the wall surface facing the rear side in the end mill rotation direction T of the gash 9 and the flank 8 are also in the direction of the axis O. In the front end view, the crossing angle α is in the range of 80 ° to 120 °, that is, in the direction of crossing at the opening angle of the gasche 9, but if the crossing angle α is too small, the end mill rotation direction T Since the wall surface facing the rear side is directed so as to face the cutting blade 7 side, the tip pocket at the end of the end mill body 1 is also reduced, and there is a possibility that the chip is prevented from flowing out and the smooth discharge thereof is hindered. Because. On the other hand, if the crossing angle α is too large, the end of the end mill main body 1 may be cut out largely due to the shape of the gash 9 that is wide open when viewed from the front in the direction of the axis O, and the rigidity may not be secured. Therefore, it is desirable that the crossing angle α is set within a range of 80 ° to 120 ° as in the present embodiment.
[0031]
Further, in the present embodiment, a two-blade ball end mill in which a pair of cutting blades 7 and 7 having a hemispherical rotation trajectory around the axis O is formed at the end portion (cutting blade portion 2) of the end mill body 1 will be described. However, it is also possible to apply the present invention to a four-blade ball end mill having more than two blades, for example, as shown in FIG. In the ball end mill shown in FIG. 5, a pair of cutting blades 7 and 7 positioned on opposite sides of the axis O are formed so as to extend from the vicinity of the axis O at the end of the end mill body 1 to the outer peripheral side. The remaining two cutting blades 14 and 14 are formed so as to extend to the outer peripheral side from a position separated from the outer peripheral side of these cutting blades 7 and 7, and the rotation trajectory of these cutting blades 7, 7, 14 and 14. Are supposed to exhibit one hemisphere.
[0032]
【Example】
Next, the effects of the present invention will be described more specifically with reference to examples of the present invention. In this example, first, based on the embodiment shown in FIGS. 1 to 3, the outer diameter D (mm) of the cutting edge 7, the diameter δ (mm) of the core thickness circle C, and the cutting edges 7 and 7. A cutting test was performed using six types of ball end mills with different crossing amounts H (mm). The results are shown in Table 1 for each ball end mill, as well as the ratios H / δ between the above dimensions and the difference H (mm) and the diameter δ (mm) of the core thickness circle C. , ... shown as 3-2. Further, as a comparative example for this, the outer diameter D (mm) of the cutting edge 7 equal to the ball end mill of each example, the diameter δ (mm) of the core thickness circle C, and the difference H (mm) of the cutting edge A cutting test was conducted under the same cutting conditions using five types of ball end mills having different values. The results are also shown in Table 1 as Comparative Examples 1-1, 2-1, ... 3-2.
[0033]
[Table 1]
Figure 0004561054
[0034]
Note that the ball end mills of these examples and comparative examples both have (Al, Ti) N coating on the surface of the end mill body made of ultra-fine cemented carbide, and include the outer peripheral blade 5. The length (blade length) of the blade part 2 was twice the outer diameter D. Moreover, the work material used for the cutting test was SKD61 (52HRC), and in the cutting test, the work material was rotated to 10,000 rpm and the feed speed in Examples 1-1 and 1-2 and Comparative Example 1-1. 1800 mm / min, cutting depth radial direction 0.4 mm, axial direction 0.2 mm, Examples 2-1 and 2-2, Comparative Examples 2-1 and 2-2 have a rotational speed of 10000 rpm, a feeding speed of 2000 mm / min, The cutting depth radius direction is 0.5 mm, the axial direction is 0.3 mm, and in Examples 3-1, 3-2 and Comparative Examples 3-1, 3-2, the rotational speed is 10000 rpm, the feed speed is 2300 mm / min, the cutting depth radius Side processing was performed by down-cutting and air blowing at a direction of 1.0 mm and an axial direction of 0.5 mm.
[0035]
From the results shown in Table 1, in the comparative example in which the diameter δ of the core thickness circle with respect to the outer diameter D of the cutting edge and the amount of difference H of the cutting edge were outside the range of the ball end mill according to the present invention, In Comparative Examples 1-1, 2-2, and 3-1 in which the diameter δ of C is reduced or the amount H of the cutting blade is increased, the tip of the cutting blade (the tip of the end mill body 1) is used. The chipping test occurred and the cutting test had to be stopped. On the other hand, in Comparative Examples 2-1 and 3-2 in which the diameter δ of the core thickness circle C is larger than this range or the difference H in the cutting edge is smaller, particularly the bottom of the machining surface The finished surface was poor.
[0036]
However, in comparison with these comparative examples, in the ball end mill of the embodiment according to the present invention, the cutting edge 7 is not damaged regardless of the outer diameter D of the cutting edge 7, and smooth chips are obtained. The cutting resistance was kept low by the discharge, and excellent machining accuracy and finished surface could be obtained. In particular, the amount H of the difference between the cutting edges 7 and 7 is set to be larger than 2 × δ with respect to the diameter δ of the core thickness circle C (H / δ is set to be larger than 2). In No. 1, when cutting was attempted at a higher feed rate than the feed rate of each cutting test, chipping was observed in the cutting edge 7, whereas this difference H was 2 with respect to the diameter δ of the heart thickness circle C. In the ball end mills of Examples 1-1, 2-1, 2-2, and 3-2, which were set to × δ or less (H / δ was set to 2 or less), such chipping was not observed, and the higher Cutting efficiency was possible.
[0037]
Next, the outer diameter D (mm) of the cutting edge 7 is 3 mm and 5 mm, the diameter δ (mm) of the core thickness circle C and the difference H (mm) of the cutting edges 7 and 7 are equal to each other, and the present invention. The ball end mills are different from each other in the range of the ball end mill in which the crossing angle α (°) between the cutting edge 7 and the crossing ridge line part 10 and the radius of curvature R (mm) of the gash corner part 13 are different when viewed from the front in the axis O direction. A cutting test was conducted in the same manner. The results are shown in Examples 4-1 to 4-6, in which the outer diameter D (mm) of the cutting blade 7 is 3 mm together with the above dimensions for each ball end mill, and the outer diameter D (mm) is 5 mm. These are shown in Table 2 as Examples 5-1 and 5-2. In Examples 4-1 to 4-6, the cutting conditions were a rotation speed of 10000 rpm, a feed rate of 2000 mm / min, a cutting depth radius direction of 0.5 mm, and an axial direction of 0.3 mm. -2 was a rotation speed of 10000 rpm, a feed speed of 2300 mm / min, a cutting depth radial direction of 1.0 mm, and an axial direction of 0.5 mm. The other conditions were the same as in the cutting test of Table 1.
[0038]
[Table 2]
Figure 0004561054
[0039]
However, in the ball end mills of Examples 4-1 to 4-6, 5-1, and 5-2, the diameter δ (mm) of the core thick circle C and the amount of difference H between the cutting edges 7 and 7 are as described above. (Mm) is within the scope of the present invention, and in normal cutting, good results were obtained as shown in Table 2 under the general cutting conditions. Of these, the radius of curvature R ( mm) is 0.08 × D with respect to the outer diameter D (mm) of the cutting edge 7 1/2 In Examples 4-5 and 5-2, which were larger than the above, there was no problem in practical use, but a slight deterioration of the machined surface accuracy was recognized as compared with other examples. Conversely, Examples 4-6 in which the radius of curvature R (mm) is less than 0.03 mm, and Examples 4-3, 4 in which the crossing angle α (°) is less than 80 ° or more than 120 °. In -4, good results were obtained under the above cutting conditions, but chipping occurred at the cutting edge 7 when high feed cutting was performed at a higher feed rate. However, in contrast, the crossing angle α (°) is in the range of 80 ° to 120 °, the radius of curvature R (mm) is 0.03 mm or more, and the outer diameter D (mm) of the cutting edge 7 is 0.00. 08 x D 1/2 In the ball end mills of Examples 4-1 and 4-2, and Example 5-1, which were within the following ranges, no deterioration of the machined surface accuracy was observed, and even if the feed rate was increased from the above cutting conditions, cutting was performed. No chipping occurred on the blade 7.
[0040]
【The invention's effect】
As explained above, according to the present invention, the outer diameter of the cutting edge Even a ball end mill with a relatively large diameter of 10 mm or more Ensuring the rigidity of the end mill body tip gives high cutting edge strength to the cutting edge in the vicinity of its axis to obtain excellent chipping resistance, as well as smoothness and high precision by improving the cutting performance and chip discharge performance of the cutting edge. Can be processed.
[Brief description of the drawings]
FIG. 1 is a side view showing an embodiment of the present invention.
FIG. 2 is an enlarged front view of the cutting edge portion 2 according to the embodiment shown in FIG.
FIG. 3 is an enlarged front view in the vicinity of an axis O in FIG. 2;
4 is an enlarged front view in the vicinity of an axis O showing a modification of the embodiment shown in FIGS. 1 to 3; FIG.
FIG. 5 is an enlarged front view of a cutting edge portion 2 showing another modification of the embodiment shown in FIGS. 1 to 3 when viewed from the front end in the direction of the axis O.
[Explanation of symbols]
1 End mill body 1
2 Cutting edge
6 Chip pocket
7 Cutting blade
8 flank
9 Gash
10 Crossing ridge line part of wall face and flank 8 facing end mill rotation direction T rear side of gash 9
11 Thick core
12 Chisel
13 Gash Corner
O Axis of end mill body 1
T End mill rotation direction
C heart thick circle
D Outer diameter of cutting edge 7
δ Diameter of core thick circle C
H Missing amount of cutting blade 7
R Curvature radius of Gash corner 13
α Crossing angle between cutting edge 7 and intersecting ridgeline 10

Claims (4)

軸線回りに回転されるエンドミル本体の先端部に、上記軸線回りの回転軌跡が略半球状をなす少なくとも一対の切刃が、上記エンドミル本体先端において上記軸線を挟んで互いに反対側に形成されてなるボールエンドミルであって、上記切刃の外径Dが10(mm)以上とされ、上記軸線方向先端視において、該軸線を中心として上記一対の切刃に内接する心厚円の直径δ(mm)が該切刃の外径D(mm)に対してδ=0.03×D1/2〜δ=0.06×D1/2の範囲内とされるとともに、これらの一対の切刃が上記心厚円との接点を越えて互いに行き違う切刃の行き違い量H(mm)がH=0.05×D1/2−0.04〜H=0.09×D1/2の範囲内とされていることを特徴とするボールエンドミル。At least a pair of cutting blades whose rotational trajectory around the axis forms a substantially hemispherical shape are formed on the tip of the end mill body rotated about the axis on opposite sides of the axis at the tip of the end mill body. A ball end mill, wherein an outer diameter D of the cutting edge is set to 10 (mm) or more, and a diameter δ (mm) of a core thick circle inscribed in the pair of cutting edges with the axis as a center in the axial front end view. ) Within the range of δ = 0.03 × D 1/2 to δ = 0.06 × D 1/2 with respect to the outer diameter D (mm) of the cutting blade, and the pair of cutting blades The crossing amount H (mm) of the cutting blades that cross each other beyond the contact point with the core thick circle is H = 0.05 × D 1/2 −0.04 to H = 0.09 × D 1/2 A ball end mill characterized by being within the range. 上記切刃の行き違い量H(mm)が上記心厚円の直径δ(mm)に対してδ−0.03(mm)以上2×δ以下の範囲内とされていることを特徴とする請求項1に記載のボールエンドミル。The difference H (mm) between the cutting edges is in the range of δ−0.03 (mm) to 2 × δ with respect to the diameter δ (mm) of the core circle. Item 2. The ball end mill according to Item 1. 上記エンドミル本体の先端部にはギャッシュが形成されていて、このギャッシュのエンドミル回転方向を向く壁面と上記エンドミル本体先端部の逃げ面との交差稜線部に上記切刃が形成されるとともに、この切刃と、上記ギャッシュのエンドミル回転方向後方側を向く壁面と上記逃げ面との交差稜線部とが交差するギャッシュコーナ部は、上記軸線方向先端視において曲率半径R(mm)が0.03mm以上で上記切刃の外径D(mm)に対して0.08×D1/2以下の範囲内とされた凹曲線状とされていることを特徴とする請求項1または請求項2に記載のボールエンドミル。A gash is formed at the tip of the end mill body, and the cutting edge is formed at a crossing ridge line portion between the wall surface facing the end mill rotation direction of the gash and the flank of the tip of the end mill body. The gash corner portion where the blade, the wall surface facing the rear side in the end mill rotation direction of the gasche and the ridge line intersecting the flank surface has a curvature radius R (mm) of 0.03 mm or more in the axial front end view. 3. The concave curve according to claim 1, wherein the shape is a concave curve that is 0.08 × D 1/2 or less with respect to the outer diameter D (mm) of the cutting edge. Ball end mill. 上記エンドミル本体の先端部にはギャッシュが形成されていて、このギャッシュのエンドミル回転方向を向く壁面と上記エンドミル本体先端部の逃げ面との交差稜線部に上記切刃が形成されるとともに、この切刃と、上記ギャッシュのエンドミル回転方向後方側を向く壁面と上記逃げ面との交差稜線部とが、上記軸線方向先端視において80°〜120°の範囲内の交差角αで交差する方向に形成されていることを特徴とする請求項1ないし請求項3のいずれかに記載のボールエンドミル。  A gash is formed at the tip of the end mill body, and the cutting edge is formed at a crossing ridge line portion between the wall surface facing the end mill rotation direction of the gash and the flank of the tip of the end mill body. The blade, the wall surface facing the rear side in the end mill rotation direction of the gasche and the intersecting ridge line portion of the flank face are formed in a direction intersecting at an intersecting angle α in the range of 80 ° to 120 ° in the axial front end view. The ball end mill according to any one of claims 1 to 3, wherein the ball end mill is provided.
JP2003208305A 2003-08-21 2003-08-21 Ball end mill Expired - Fee Related JP4561054B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003208305A JP4561054B2 (en) 2003-08-21 2003-08-21 Ball end mill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003208305A JP4561054B2 (en) 2003-08-21 2003-08-21 Ball end mill

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2009263208A Division JP5126205B2 (en) 2009-11-18 2009-11-18 Ball end mill

Publications (2)

Publication Number Publication Date
JP2005066701A JP2005066701A (en) 2005-03-17
JP4561054B2 true JP4561054B2 (en) 2010-10-13

Family

ID=34401643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003208305A Expired - Fee Related JP4561054B2 (en) 2003-08-21 2003-08-21 Ball end mill

Country Status (1)

Country Link
JP (1) JP4561054B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4992460B2 (en) * 2007-02-21 2012-08-08 三菱マテリアル株式会社 End mill
JP5577771B2 (en) * 2010-03-15 2014-08-27 三菱マテリアル株式会社 End mill
JP5984777B2 (en) * 2013-10-23 2016-09-06 三菱マテリアル株式会社 Ball end mill
KR102089858B1 (en) * 2018-06-25 2020-03-16 한국야금 주식회사 End mill
CN111745200B (en) * 2019-03-29 2023-04-21 京瓷株式会社 Milling cutter head and ball end mill
CN112584953B (en) * 2019-06-03 2024-01-05 Osg株式会社 Ball end mill and cutting insert
WO2021141116A1 (en) * 2020-01-09 2021-07-15 株式会社Moldino Ball end mill

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02135116U (en) * 1989-04-10 1990-11-09
JPH09150305A (en) * 1995-09-28 1997-06-10 Rikagaku Kenkyusho High speed cutting work method for die and superhigh speed milling device using this method
JP2000334614A (en) * 1999-05-26 2000-12-05 Osg Corp Ball end mill for nonferrous metal
JP2001009624A (en) * 1999-07-02 2001-01-16 Hitachi Tool Engineering Ltd End mill
JP2001293609A (en) * 2000-04-11 2001-10-23 Hitachi Tool Engineering Ltd Finishing ball end mill

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02135116U (en) * 1989-04-10 1990-11-09
JPH09150305A (en) * 1995-09-28 1997-06-10 Rikagaku Kenkyusho High speed cutting work method for die and superhigh speed milling device using this method
JP2000334614A (en) * 1999-05-26 2000-12-05 Osg Corp Ball end mill for nonferrous metal
JP2001009624A (en) * 1999-07-02 2001-01-16 Hitachi Tool Engineering Ltd End mill
JP2001293609A (en) * 2000-04-11 2001-10-23 Hitachi Tool Engineering Ltd Finishing ball end mill

Also Published As

Publication number Publication date
JP2005066701A (en) 2005-03-17

Similar Documents

Publication Publication Date Title
US9308591B2 (en) Optimization of cutting edge geometry in rounded nose end mills
WO2010050391A1 (en) Ball end mill
WO2014069453A1 (en) Ball end mill
WO2014017576A1 (en) Multi-edge end mill
WO2007013447A1 (en) Radius end mill and cutting method
JP5842708B2 (en) Ball end mill
WO2014057783A1 (en) Ball end mill and insert
WO2018037804A1 (en) Cutting insert, and indexable rotational cutting tool
JP5845218B2 (en) Ball end mill
JP2012091306A (en) End mill made of cemented carbide
JP4125909B2 (en) Square end mill
JP4561054B2 (en) Ball end mill
JP7137107B2 (en) ball end mill
JP5126205B2 (en) Ball end mill
JP6604437B2 (en) Cutting insert and cutting edge exchangeable rotary cutting tool
JP2674124B2 (en) Twist drill
WO2018074542A1 (en) Cutting insert and cutting edge-interchangeable rotary cutting tool
JP2021146486A (en) Processing method and metal mold manufacturing method
JP3270999B2 (en) Indexable end mill
JP3754010B2 (en) Ball end mill
JP6825400B2 (en) Taper ball end mill
JPH10151511A (en) Multiblade ball end mill
JP2000334614A (en) Ball end mill for nonferrous metal
JP7419060B2 (en) ball end mill
JPH11156623A (en) Spherical blade end mill

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050407

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080520

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090210

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090818

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091118

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20091125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100706

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100719

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4561054

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees