JPS60114035A - A/d converter - Google Patents

A/d converter

Info

Publication number
JPS60114035A
JPS60114035A JP22161583A JP22161583A JPS60114035A JP S60114035 A JPS60114035 A JP S60114035A JP 22161583 A JP22161583 A JP 22161583A JP 22161583 A JP22161583 A JP 22161583A JP S60114035 A JPS60114035 A JP S60114035A
Authority
JP
Japan
Prior art keywords
voltage
circuit
charge
output
gate electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22161583A
Other languages
Japanese (ja)
Inventor
Masahisa Nemoto
正久 根本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP22161583A priority Critical patent/JPS60114035A/en
Publication of JPS60114035A publication Critical patent/JPS60114035A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/34Analogue value compared with reference values
    • H03M1/36Analogue value compared with reference values simultaneously only, i.e. parallel type
    • H03M1/361Analogue value compared with reference values simultaneously only, i.e. parallel type having a separate comparator and reference value for each quantisation level, i.e. full flash converter type
    • H03M1/362Analogue value compared with reference values simultaneously only, i.e. parallel type having a separate comparator and reference value for each quantisation level, i.e. full flash converter type the reference values being generated by a resistive voltage divider
    • H03M1/365Analogue value compared with reference values simultaneously only, i.e. parallel type having a separate comparator and reference value for each quantisation level, i.e. full flash converter type the reference values being generated by a resistive voltage divider the voltage divider being a single resistor string

Abstract

PURPOSE:To attain simplicity of the circuit and integration of the circuit by using a charge transfer element so as to use a voltage comparator with a simple constitution. CONSTITUTION:A reference voltage VREF is divided into 8 ways of voltages by a voltage dividing circuit and outputted in a 3-bit (bit) A/D converter. Resistors each having a resistance value R and resistors each having a resistance value of R/2 are connected in series in the voltage dividing circuit 1 and an output voltage from the n-th connecting point is set so as to form VREFX(2n-1)/16. When an input signal voltage VSIG is zero, since the relation of the 1st and 2nd gate electrodes 18, 19 is VG1>VG2 in all charge injection sections 2-9, no electric charge is injected to all the electric charge injection sections 2-9. Since no electric charge is transferred to an electric charge detecting electrode 13 over 8 times transfer cycles, an output of an output amplifier 14 is ''00000000'', a binary data ''000'' is latched to a data latch circuit 15. Thus, an input signal voltage is converted into a digital quantity of, e.g., VREF/8 steps and the 3-bit A/D conversion is conducted.

Description

【発明の詳細な説明】 本発明はA/D変換装置に関するものである。[Detailed description of the invention] The present invention relates to an A/D conversion device.

A/D変換装置に関しては、従来よル種々様々の方式が
提案され、実用化されているが、回路の複雑さをj′さ
ける事ができなかった。 ・本発明ゝの目的は、回路を
簡素化し集積回路化に適したA/D変換回路を提供する
ことにある。
Regarding A/D conversion devices, various systems have been proposed and put into practical use, but it has not been possible to avoid the complexity of the circuit. - An object of the present invention is to provide an A/D conversion circuit that has a simplified circuit and is suitable for integration.

本発明は、電荷転送素子を用いる事によって、簡単な構
成の電圧比較器を用いることができ、かつ回路の簡素化
及び集積化に適した新しいA/D変換装置を提供するこ
とができる。
By using a charge transfer element, the present invention can provide a new A/D conversion device that can use a voltage comparator with a simple configuration and is suitable for circuit simplification and integration.

以下、本発明を図面によシ詳細に説明する。Hereinafter, the present invention will be explained in detail with reference to the drawings.

第1図は、本発明による一実施例を示し、特に3ピツ)
 (bit) A/D変換装置を示したものである。以
下、第1図について詳細に説明する。
FIG. 1 shows an embodiment according to the present invention, especially 3 pins)
(bit) This shows an A/D conversion device. Hereinafter, FIG. 1 will be explained in detail.

基準電圧V□、は、分圧回路1によって、8通り011
圧に分割されて出力されている。分圧回路1は抵抗値R
の抵抗と抵抗値R/2の抵抗が直列に接続されてn番目
接続点からの出力電圧は、なる。並列に配置された8個
の電荷注入部2〜9は電荷結合素子を用いて構成されて
おり、それぞれ、半導体基板に反対導電型領斌を形成し
た電荷注入ダイオード17と半導体基板に絶縁膜を介し
て電極金属を設けた第1および第2ゲート電、極18゜
19によって構成されている。各電荷注入部の第1ゲー
ト電極18はそれぞれ分圧回路1の出力に順に接続され
ている。電荷注入ダイオード17には、電荷注入パルス
S、が、第2ゲート電極19には、入力信号電圧V s
lGがそれぞれ接続されている。従って、第1ゲート電
極18下の電位は電荷注入部9で最も低く、電荷注入部
2で最も高くなるように順次電位がかわっている。一方
第2ゲート電極19下には入力信号v8□0に応じた電
位が形成されている。このため、電荷注入パルスS、に
応じて電荷注入ダイオード17から電荷が第1ゲート電
極18下を通って第2ゲート電極工9下に転送されるが
、この転送は入力信号VglGよシも小さな電位窄第1
ゲート電極18に与えられている部分に限られる。
The reference voltage V □ is divided into 8 ways, 011
It is divided into pressure and output. The voltage divider circuit 1 has a resistance value R
and a resistor with a resistance value R/2 are connected in series, and the output voltage from the n-th connection point is as follows. The eight charge injection units 2 to 9 arranged in parallel are constructed using charge-coupled devices, and each includes a charge injection diode 17 with opposite conductivity types formed on the semiconductor substrate and an insulating film formed on the semiconductor substrate. It is constituted by first and second gate electrodes and electrodes 18 and 19 with electrode metal provided therebetween. The first gate electrodes 18 of each charge injection section are connected to the output of the voltage dividing circuit 1 in sequence. The charge injection diode 17 receives a charge injection pulse S, and the second gate electrode 19 receives an input signal voltage V s
1G are connected to each other. Therefore, the potential under the first gate electrode 18 changes sequentially so that the potential is lowest at the charge injection part 9 and highest at the charge injection part 2. On the other hand, a potential corresponding to the input signal v8□0 is formed under the second gate electrode 19. Therefore, the charge is transferred from the charge injection diode 17 to the second gate electrode 9 through the first gate electrode 18 in response to the charge injection pulse S, but this transfer is smaller than the input signal VglG. Potential constriction 1st
It is limited to the portion provided to the gate electrode 18.

電荷注入部2〜9で第2ゲート電極19下に注入された
電荷は、転送ゲート電極10.11によって、7段の電
荷転送段で構成される直列転送部12に転送される。直
列転送部12祉電荷結合素子で形成され、この直列連送
部12を、φ3.φ鵞。
The charges injected under the second gate electrode 19 by the charge injection sections 2 to 9 are transferred by the transfer gate electrode 10.11 to the serial transfer section 12, which is composed of seven charge transfer stages. The serial transfer section 12 is formed of a charge-coupled device, and the serial transfer section 12 is connected to a φ3. φ goose.

φ、の3相転送りロックによって、電荷は順に電荷検出
室4#!X3に転送される08回の転送サイクルで全段
の電荷転送が完了する。電荷検出電極13は、浮動拡散
層によって形成され、電荷量が電圧に変換されて出力ア
ンプ14に入力されると共に、クロックφ、によって、
周期的にリセットされる。
Due to the three-phase transfer lock of φ, charges are sequentially transferred to charge detection chamber 4#! Charge transfer of all stages is completed in 08 transfer cycles transferred to X3. The charge detection electrode 13 is formed by a floating diffusion layer, and the amount of charge is converted into a voltage and inputted to the output amplifier 14, and the clock φ is used to
Reset periodically.

出力アンプ14の出力は電荷検出電極13に電荷が転送
された時は、論理11″が電荷が転送されない時は論理
10”が出力されるように構成され、この論理の変化点
(1→0)をデータ・ラッチ回路15によって検出する
0この検出はクロック制御回路16からのクロック数が
いくつで変化したかによって行われる。検出されたクロ
ック数に応じて、データラッチ回路では2進数を形成し
て一旦ラッチする。
The output of the output amplifier 14 is configured such that when a charge is transferred to the charge detection electrode 13, a logic 11'' is output, and when no charge is transferred, a logic 10'' is output. ) is detected by the data latch circuit 15. This detection is performed depending on how many times the number of clocks from the clock control circuit 16 changes. Depending on the detected number of clocks, the data latch circuit forms a binary number and latches it once.

クロック制御回路16は、第2図に示すようなりロック
信号φ1.φ1.φ3.φ、′、φ、′およびStを発
生すると共に、直列転送部12に供給する転送り四ツク
φ1〜φ3の転送サイクルを2進計数し、計数データを
データーラッチ回路15に出力する。
The clock control circuit 16 receives the lock signal φ1. as shown in FIG. φ1. φ3. It generates φ, ', φ, ' and St, and also counts the transfer cycles of the four transfer blocks φ1 to φ3 supplied to the serial transfer section 12 in binary, and outputs the counted data to the data latch circuit 15.

電荷注入部2〜9に注入される電荷は、第3図に示すよ
うに、第1および第2ゲートm極18゜19下に形成さ
れるポテンシャル井戸の深さの差によって決足される0
ずなわち、N型CCDを用いた場傘、第1ゲート1!極
18の電圧をva3、第2ゲート電極19の電圧をV。
As shown in FIG. 3, the charge injected into the charge injection parts 2 to 9 is determined by the difference in depth between the potential wells formed under the first and second gate m poles 18°19.
That is, the field umbrella using N-type CCD, the first gate 1! The voltage of the pole 18 is va3, and the voltage of the second gate electrode 19 is V.

 とすると、第3図に示すように、舅≧V、、の場合に
は、第1ゲート篇、極18下のポテンシャル井戸が、第
2V、の場合には、第1ゲート電極18下のポテンシャ
ル井戸よシ第2ゲート電極19下のポテンシャル井戸が
深ドなり、第2ゲート電極19下のポテンシャル井戸に
電荷が注入される。
As shown in FIG. 3, if ≧V, the potential well under the first gate electrode 18 is 2V, then the potential under the first gate electrode 18 is The potential well below the second gate electrode 19 becomes deep, and charges are injected into the potential well below the second gate electrode 19.

今、入力信号電圧v8□0がVs、、 = Oであると
すると、全ての電荷注入部2〜9において、第1および
第2ゲート電極18.19の関係はvo 、 > va
Now, assuming that the input signal voltage v8□0 is Vs,, = O, the relationship between the first and second gate electrodes 18, 19 in all charge injection parts 2 to 9 is vo, > va.
.

であるため、電荷注入部2〜9には全て、電荷は注入さ
れない。従って、電荷検出型4iji13には8回の転
送サイクルにわたって電荷が転送されないため、出力ア
ンプ14の出力は”oooooooo’となシ、データ
・ラッチ回路15には、バイナリデータ(4−2−1コ
ード)”000”がラッチされる。
Therefore, no charge is injected into any of the charge injection sections 2 to 9. Therefore, since no charge is transferred to the charge detection type 4iji 13 for eight transfer cycles, the output of the output amplifier 14 is "oooooooo", and the data latch circuit 15 has binary data (4-2-1 code). ) “000” is latched.

部5までがV。□>Vo、となル、電荷入力部6から電
荷入力部9まではV。、〈v6 となるため、電! 荷入力部2〜5には電荷は注入されず、一方、電荷入力
部6〜9には電荷が注入される。従って、電荷検出電極
13には、4回の転送サイクルの間は電荷が転送され、
5回目以降の転送サイクルでは電荷が転送されない。よ
って、出力アンプ14の出力は” 11110000”
となシ、データーラッチ回路15には、5回目までの転
送サイクル計数データ@100”がラッチされる。
Up to part 5 is V. □>Vo, V from charge input section 6 to charge input section 9. ,〈v6, so electric! No charges are injected into the load input sections 2-5, while charges are injected into the charge input sections 6-9. Therefore, charge is transferred to the charge detection electrode 13 during four transfer cycles;
Charge is not transferred in the fifth and subsequent transfer cycles. Therefore, the output of the output amplifier 14 is "11110000"
Meanwhile, the data latch circuit 15 latches up to the fifth transfer cycle count data @100''.

このように、本実施例においては、入力信号電圧Fi 
’ xvwステップのデジタル量に変換されて、3ビツ
トのA/D変換が行なわれる。
In this way, in this embodiment, the input signal voltage Fi
' It is converted into a digital quantity of xvw steps, and 3-bit A/D conversion is performed.

上記の説明において、第1ゲート電桶tsに分圧回路1
からの電圧を加え、第2ゲート電&19に入力信号電圧
v8、。を加えるものとしたが、この2つのゲート電極
18,19の関係を逆にして。
In the above explanation, the voltage divider circuit 1 is connected to the first gate electric bucket ts.
The input signal voltage v8, is applied to the second gate voltage &19. However, the relationship between these two gate electrodes 18 and 19 is reversed.

計数データのラッチを出力アンプ14の論理が11”か
ら@0#に変化する時点で行うようにしても良い01&
、第1 ゲ−)を極1 BKは、基f@電圧vIItF
を分圧回路1で分圧して加えているが、電荷注入部2〜
9を等間隔に配置し、第1ゲート電極18に高抵抗のポ
リシリコン配線を用いることによって、分圧回路と等価
な機能をもたせることも可能である。
The counting data may be latched at the time when the logic of the output amplifier 14 changes from 11'' to @0#.
, the first gate) is the pole 1 BK is the base f@voltage vIItF
is applied after being divided by the voltage dividing circuit 1, but the charge injection section 2~
By arranging the gate electrodes 9 at equal intervals and using a high resistance polysilicon wiring for the first gate electrode 18, it is also possible to provide a function equivalent to a voltage dividing circuit.

さらに、上記説明は3ビツトのA/D変換について行な
ったが、一般的にnピッ)A/D変換に拡張することは
容易である。この場合、分圧回路1の出力電圧は2 個
でそのm番目の電圧は、さらにまた、前記説明は3相C
CDを用いているが、2相CCD用いることも可能であ
る。
Furthermore, although the above explanation has been made regarding 3-bit A/D conversion, it is generally easy to extend this to n-bit A/D conversion. In this case, the voltage divider circuit 1 has two output voltages, and the m-th voltage is the three-phase C
Although a CD is used, it is also possible to use a two-phase CCD.

以上説明したように、本発明によれば、従来方式での複
雑な電圧比較回路や、す、ンプル・ホールド回路を用い
ることが無いため、回路が簡素化され集積化に適したA
/D変換装置が実現できる0変換速度も1〜100μS
と比較的高速なものが実現でき、その効果は大きい。
As explained above, according to the present invention, there is no need to use a complicated voltage comparison circuit or a sample hold circuit in the conventional method, so the circuit is simplified and an A
The 0 conversion speed that the /D conversion device can achieve is also 1 to 100 μS.
It is possible to achieve relatively high speed, and the effect is great.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す図、第2図は。 第1図の実施例におけるタイミングを示す図、第3図は
、電荷注入部の動作説明図である。 1・・・・・・分圧回路、2〜9・・・・・・電荷注入
部、10゜11・・・・・・転送ゲート電極、12・・
・・・・直列電荷転送部、13・・・・・・電荷検出電
極、14・・・・・・出力アンプ、15・・・・・・デ
ータ・ラッチ回路、16・・・・・・クロック制御回路
% 17・・・・・・電荷注入ダイオード、18・・・
・・・第1ゲート電極、19・・・・・・第2ゲート電
極。
FIG. 1 is a diagram showing an embodiment of the present invention, and FIG. 2 is a diagram showing an embodiment of the present invention. FIG. 1 is a diagram showing the timing in the embodiment, and FIG. 3 is an explanatory diagram of the operation of the charge injection section. 1...Voltage dividing circuit, 2-9...Charge injection part, 10°11...Transfer gate electrode, 12...
...Series charge transfer unit, 13...Charge detection electrode, 14...Output amplifier, 15...Data latch circuit, 16...Clock Control circuit% 17...Charge injection diode, 18...
...first gate electrode, 19...second gate electrode.

Claims (4)

【特許請求の範囲】[Claims] (1)基準電圧を分圧して複数の分圧電圧を発生する分
圧回路と、入力信号電圧を前記複数の分圧電圧の各々と
比較する複数の電圧比較器と、各電圧比較器の出力によ
シ前記入力信号電圧に対するディジタル信号を得る手段
とを有するA/D変換装置において、前記複数の電圧比
較器は、半導体基板に形成されておシ、それぞれ該半導
体基板に形成された電荷注入ダイオードと、前記半導体
基板に絶縁膜を介して形成され、前記分圧電圧が供給さ
れる第1ゲート電極と前記半導体基板に絶縁膜を介して
形成され、前記入力信号電圧が供給される第2ゲー)k
極とを有することを特徴とするA/D変換装置。
(1) A voltage divider circuit that divides a reference voltage to generate a plurality of divided voltages, a plurality of voltage comparators that compare the input signal voltage with each of the plurality of divided voltages, and an output of each voltage comparator. In the A/D conversion device, the plurality of voltage comparators are formed on a semiconductor substrate, and each of the plurality of voltage comparators is formed on a charge injection device formed on the semiconductor substrate. a first gate electrode formed on the semiconductor substrate via an insulating film and to which the divided voltage is supplied; and a second gate electrode formed on the semiconductor substrate via an insulating film and to which the input signal voltage is supplied. game)k
An A/D conversion device characterized by having a pole.
(2)前記ディジタル信号を得る手段社、前記複数の電
、圧比較器の各々の出力が供給される複数の入力端を有
するシフトレジスタ、前記シフトレジストの出力端に入
力端が接続されたデータ検出器、および該データ検出器
の出力をデジタル信号に変換する回路とを含んで構成さ
れていることを特徴とする特許請求の範囲第(1)項記
載のA/D変換装N。
(2) A means for obtaining the digital signal, a shift register having a plurality of input terminals to which the outputs of the plurality of voltage and voltage comparators are supplied, and a data input terminal connected to the output terminal of the shift register. An A/D converter N according to claim 1, characterized in that it includes a detector and a circuit that converts the output of the data detector into a digital signal.
(3)前記シフトレジスタは、電荷転送素子を用いて構
成されたことを特徴とする特許請求の範囲第(2)項記
載のA/D変換装置。
(3) The A/D conversion device according to claim (2), wherein the shift register is constructed using a charge transfer element.
(4)前記分圧回路は高抵抗ポリシリコン配線を用いた
ことを特徴とする特許請求の@囲第(1) 、 (2)
又は(3)項記載のA/D変換装置。
(4) The voltage dividing circuit uses high-resistance polysilicon wiring.
Or the A/D conversion device described in (3).
JP22161583A 1983-11-25 1983-11-25 A/d converter Pending JPS60114035A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22161583A JPS60114035A (en) 1983-11-25 1983-11-25 A/d converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22161583A JPS60114035A (en) 1983-11-25 1983-11-25 A/d converter

Publications (1)

Publication Number Publication Date
JPS60114035A true JPS60114035A (en) 1985-06-20

Family

ID=16769523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22161583A Pending JPS60114035A (en) 1983-11-25 1983-11-25 A/d converter

Country Status (1)

Country Link
JP (1) JPS60114035A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02140014A (en) * 1988-11-19 1990-05-29 Sony Corp Voltage comparator circuit
US8684464B2 (en) 2008-07-11 2014-04-01 Keiper Gmbh & Co. Kg Locking mechanism for a vehicle seat
US9039048B2 (en) 2008-07-11 2015-05-26 Johnson Controls Components GmbH & Co. KG. Locking mechanism for a vehicle seat
US9180799B2 (en) 2011-05-12 2015-11-10 Keiper Gmbh & Co. Kg Locking system
US9199554B2 (en) 2008-07-11 2015-12-01 Keiper Gmbh & Co. Kg Locking mechanism for a vehicle seat

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02140014A (en) * 1988-11-19 1990-05-29 Sony Corp Voltage comparator circuit
US8684464B2 (en) 2008-07-11 2014-04-01 Keiper Gmbh & Co. Kg Locking mechanism for a vehicle seat
US9039048B2 (en) 2008-07-11 2015-05-26 Johnson Controls Components GmbH & Co. KG. Locking mechanism for a vehicle seat
US9199554B2 (en) 2008-07-11 2015-12-01 Keiper Gmbh & Co. Kg Locking mechanism for a vehicle seat
US9180799B2 (en) 2011-05-12 2015-11-10 Keiper Gmbh & Co. Kg Locking system

Similar Documents

Publication Publication Date Title
KR900000997B1 (en) Intermeshed resistor network for analogue to digital conversion
KR950013873B1 (en) Sub ranging a/d converter
US5072221A (en) Error limiting analog to digital converter
JPS58164316A (en) Analog-to-digital converter
TWI384210B (en) Thermal detecting apparatus and method
US5225837A (en) A/D converter
JPH03220814A (en) Pulse phase difference coding circuit
US3836906A (en) Digital-to-analog converter circuit
CA1096497A (en) Digital-to-analog and analog-to-digital converter circuit
JPS60114035A (en) A/d converter
US20040217895A1 (en) Analog-digital conversion apparatus
JPS63253727A (en) Succesive approximation analog-digital converter
US4821036A (en) Method of and apparatus for producing a digital indication of the time-integral of an electric current
TWI717194B (en) Clock fail detector
JP2955733B2 (en) A / D converter for charge signal
KR960003622B1 (en) Ccd a/d converter
JPS59112722A (en) A/d converter
TWI676361B (en) Sar adc and control method thereof
RU2205500C1 (en) Analog-to-digital converter
JPS6231224A (en) Digital-analog converter
JPH0640440B2 (en) Shift register
JPH075704Y2 (en) Multi-channel A / D converter
JPS62155621A (en) Analog-digital converter
JPS6013578B2 (en) analog to digital converter
JP2638002B2 (en) Parallel A / D converter