JPS60113875A - Pinch valve - Google Patents

Pinch valve

Info

Publication number
JPS60113875A
JPS60113875A JP21846283A JP21846283A JPS60113875A JP S60113875 A JPS60113875 A JP S60113875A JP 21846283 A JP21846283 A JP 21846283A JP 21846283 A JP21846283 A JP 21846283A JP S60113875 A JPS60113875 A JP S60113875A
Authority
JP
Japan
Prior art keywords
buckling
wall portions
thin wall
flexible tube
pinch valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21846283A
Other languages
Japanese (ja)
Other versions
JPS6323433B2 (en
Inventor
Yoneo Murai
米男 村井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okumura Engr Works Co Ltd
Okumura Seisakusho KK
Original Assignee
Okumura Engr Works Co Ltd
Okumura Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okumura Engr Works Co Ltd, Okumura Seisakusho KK filed Critical Okumura Engr Works Co Ltd
Priority to JP21846283A priority Critical patent/JPS60113875A/en
Publication of JPS60113875A publication Critical patent/JPS60113875A/en
Publication of JPS6323433B2 publication Critical patent/JPS6323433B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K7/00Diaphragm valves or cut-off apparatus, e.g. with a member deformed, but not moved bodily, to close the passage ; Pinch valves
    • F16K7/02Diaphragm valves or cut-off apparatus, e.g. with a member deformed, but not moved bodily, to close the passage ; Pinch valves with tubular diaphragm
    • F16K7/04Diaphragm valves or cut-off apparatus, e.g. with a member deformed, but not moved bodily, to close the passage ; Pinch valves with tubular diaphragm constrictable by external radial force
    • F16K7/07Diaphragm valves or cut-off apparatus, e.g. with a member deformed, but not moved bodily, to close the passage ; Pinch valves with tubular diaphragm constrictable by external radial force by means of fluid pressure

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • Reciprocating Pumps (AREA)
  • Check Valves (AREA)
  • Diaphragms And Bellows (AREA)

Abstract

PURPOSE:To improve mechanical durability of a pinch valve by forming a pair of opposite thin wall portions at the central part if a flexible tube to alternately produce Z-shaped and S-chaped bending seal through initial pressure contact with difference in positin of the thin wall portions on every pressure receiving. CONSTITUTION:A cylindrical body l has a take-in port 2 for pressurized air, and a concentric cylindrical flexible tube 3 is mounted in the interior of the body. Bothe ends of the tube 3 are blocked up airtightly at flange portions, and a pair of thin wall portions 3a, 3a vertically confronting each other are formed in the vicinity of the central poriton of the tube. When pressurized air is pressed into the take-in port 2 of a pinch valve, buckling is caused at thin wall portions having relatively lower strength than the other thick wall portions 3b so that the thin wall portions are pressed to each other. When the thin wall portions are further pressureized, the thin wall portions cause a difference in position to block up the tube all over the surface with the Z-shaped bending seal. After the pressurized air is discharged, on pressing the pressurized air into the take- in port. S-shaped bending seal is caused by redidual stress.

Description

【発明の詳細な説明】 この発明は圧力空気の取入口を有する円筒状ボディー内
部に、円筒状可撓性管を装着して、可撓性管の圧潰・復
元により流路の開目jを行うピンチバルブの改良に関づ
るものである。
DETAILED DESCRIPTION OF THE INVENTION This invention installs a cylindrical flexible tube inside a cylindrical body having a pressure air intake, and opens the flow path by crushing and restoring the flexible tube. This relates to improvements to pinch valves.

ピンチバルブは、可撓性管5を、両端において円形状に
一定保持された一種の円筒かくとみなし、操作空気圧を
外圧とみなして座屈理論でそのシール機構を始めとする
バルブの適格性を判断することができる。
In the pinch valve, the flexible tube 5 is regarded as a kind of cylinder with a constant circular shape at both ends, and the operating air pressure is regarded as external pressure, and the suitability of the valve including its sealing mechanism is evaluated using buckling theory. can be judged.

′rJなわち、L:円筒かくの長さ、r:円筒かくの平
均半径、n:座屈波数とすれば、A / rが大ぎ(プ
ればn=2となり、小さければn、3.4゜・・・・・
・となるものである。なおこの座屈波数n がピンチバ
ルブでいう可撓性管の押しつぶれ数に相当する。従って
n=3あるいは4となれば、第6図あるいは第7図に示
すごとき3つ折れあるいは4つ折れの断面形状となって
、その中心部に非凡接面、すなわちデッドスペース6が
存在することになり、液洩れの主原因ともなり好ましく
ない。
'rJ, that is, L: length of the cylinder, r: average radius of the cylinder, n: buckling wave number, then A/r is too large (if n=2, if small, n, 3) .4゜・・・・・・
・This is the result. Note that this buckling wave number n corresponds to the crushing number of the flexible tube in a pinch valve. Therefore, if n=3 or 4, the cross-sectional shape will be three-fold or four-fold as shown in Fig. 6 or 7, and an unusual tangent surface, that is, a dead space 6, will exist in the center. This is undesirable as it becomes the main cause of liquid leakage.

従って!、 / rは大きくする必要がある。しかしな
がら反面りを長寸とすれば操作空気量も多くなる外、配
管作業が困難となり、さらにまた重量増加を来たし実際
面で適するものではない。従ってn =2におけるL 
/ rの極小値が理論的に最も好ましいといえる。なお
、o−2においてL/1゛を極小とするには、α−1/
12(t/r )として、このαを可及的に大きくすれ
ばよいことが理論的に判っており、この点からすればt
 を大きくすることが望ましい。なおt:円筒かくの肉
厚である。しかしながらこのt 値を大きくすれば次に
、座屈限界圧力が高くなって前述のごとく再び操作空気
量の増大にも連がるもので、この点についても問題の有
するところとなる。
Therefore! , /r needs to be large. However, if the sides are made longer, the amount of air to be operated will increase, piping work will be difficult, and the weight will increase, so it is not suitable in practice. Therefore, L at n = 2
It can be said that the minimum value of /r is theoretically the most preferable. In addition, in order to make L/1゛ the minimum at o-2, α-1/
12(t/r), it is theoretically known that this α should be made as large as possible, and from this point of view, t
It is desirable to increase . Note that t is the wall thickness of the cylinder. However, if this t value is increased, the buckling limit pressure becomes higher, which again leads to an increase in the amount of operating air as described above, and this also poses a problem.

ところでピンチバルブでは、開閉動作は上述の可撓性管
でなされる一方で、実際面でのシール性の点からすれば
、この可撓性管を囲繞するボディーによって物理的に大
きく影響を受けるものである。
By the way, in a pinch valve, while the opening and closing operations are performed by the above-mentioned flexible tube, in terms of actual sealing performance, it is physically greatly affected by the body that surrounds this flexible tube. It is.

すなわら第8図に示ずごとく、最も原初的なバルブ形態
である、円筒状ボディ−7内部に、同軸の円筒状可撓性
管5を装着したピンチバルブにあっては、そのボディー
と可撓性管間に存在する微少の間隙8によって、受圧時
に上下相対向する2つ折れの1次座屈が開始されるもの
であるが、第9図に示すご−とく一旦上下の座屈によっ
て伸びた左右の外周面5a 、5bがボディー内壁面7
aに接した後は、さらに高圧にすれば、上下相対向する
上記1次座屈とは別種の、いわゆる前述した3つ折れな
いし4つ折れの座屈形態に進行する2次座屈が開始され
ることになる。(第6図及び第7図参照)。従ってシー
ル性を確保するべく必要以上の高圧化が要求され、かつ
液洩れの主原因ともなるデッドスペースが存在する座屈
形態となり、バルブ特性としてはきわめて好ましくない
In other words, as shown in Fig. 8, in the case of a pinch valve, which is the most primitive type of valve, in which a coaxial cylindrical flexible tube 5 is attached inside a cylindrical body 7, the body and Due to the minute gap 8 that exists between the flexible tubes, primary buckling of two folds facing each other vertically is initiated when pressure is received, but as shown in FIG. The left and right outer peripheral surfaces 5a and 5b extended by the body inner wall surface 7
After contacting point a, if the pressure is applied even higher, secondary buckling will start, which is different from the above-mentioned primary buckling in which the upper and lower sides face each other, and progresses to the so-called 3-fold or 4-fold buckling mode described above. will be done. (See Figures 6 and 7). Therefore, in order to ensure sealing performance, a higher pressure than necessary is required, and a buckling form is created in which a dead space is present, which is the main cause of liquid leakage, which is extremely unfavorable in terms of valve characteristics.

他方これに対処したものとして、座屈プロセスにつき可
撓性管がこれを囲繞するボディーから何キの影響を受け
ずに開閉動作するピンチバルブが従来から汎用されてい
る。例えば第10図に示すごときものである。すなわち
可撓性管の開閉部分9においてボディー10を球形状と
して可撓性管5−ボディー10間の間隙を可及的に長寸
としたピンチバルブである。この種形態のいわゆる球形
用型ピンチバルブは、上述のごとくボディーに球形状部
分を有していることから内容積の増大に連かり、囚って
たとえ上下相対向する座屈を受けたとしでも、左右横方
向に伸びる可撓性管は自由度を有することになってボデ
ィー内壁面へ押し付()られることは皆無となり、第1
1図に示すこと(2つ折れの完全圧接状態が得られたも
のである。
On the other hand, as a solution to this problem, pinch valves have been widely used in which a flexible tube opens and closes without being affected by the body surrounding it during the buckling process. For example, it is as shown in FIG. That is, it is a pinch valve in which the body 10 at the opening/closing portion 9 of the flexible tube is formed into a spherical shape, and the gap between the flexible tube 5 and the body 10 is made as long as possible. This type of so-called spherical pinch valve has a spherical part in the body as mentioned above, which leads to an increase in internal volume, and even if it is subjected to vertical buckling, , the flexible tube extending in the left and right directions has a degree of freedom and is never pressed against the inner wall surface of the body.
What is shown in Figure 1 is that a completely press-welded state with two folds was obtained.

、従って1次座屈により全面閉塞される点でシール性は
良好となり、かつ操作空気量も大略一定量で済む利点を
有している。しかしながら一方で、この比較的長寸の間
隙が可撓性管5に半径方向への外向きの自由度を与えて
いることで、全開時には逆に内圧、すなわち流体圧の影
響を強く受け膨張するに至り、可撓性管の永久変形と機
械的老化が一層促進されるといった問題が新たに惹起し
たものである。しかもこの現象は経時的にみれば、前述
の3つ折れ、4つ折れの座屈形態に転移進行する原因と
もなり、シール性が乏しくなる傾向を示ずとともに、流
路形状が元通りに復元せず流体の流れに支障を来たらづ
欠点を有していたものである。ざらにまたボディーの内
容積の増大に伴い、バルブ全体として一1it増となる
難点を有し、取り扱い上及び経済上問題のあるところと
なった。
Therefore, the sealing performance is good in that the entire surface is closed by the primary buckling, and the amount of operating air is also advantageous to be approximately constant. However, on the other hand, this relatively long gap gives the flexible tube 5 a degree of freedom to move outward in the radial direction, so that when it is fully opened, it is strongly influenced by internal pressure, that is, fluid pressure, and expands. This has led to new problems such as permanent deformation of the flexible tube and accelerated mechanical aging. Moreover, over time, this phenomenon becomes the cause of the transition to the three-fold and four-fold buckling forms described above, and there is no tendency for the sealing performance to deteriorate, and the flow path shape is restored to its original shape. However, it has the disadvantage that it does not interfere with the flow of fluid. Furthermore, as the internal volume of the body increased, the overall size of the valve increased by 11 it, which caused handling and economical problems.

この点で特公昭47−3936号公報に開示された、い
わゆるU形折れ形式のピンチバルブは、第12図に示す
ごとく、円筒状ゴム膜11の一方の半円周部に管軸方向
に平行コード12を配列埋設した構成を採用したもので
あって、円筒状ゴム膜を半径方向には外装体13で拘束
し、軸線方向には一方の半円周部を補強コード14によ
って拘束し、他方の半円周部を一方の半円周部の内面に
、きわめて容易に重なり密接閉止するようになしたもの
である。いわゆる第13図に示すごときU形折れシール
機構である。従って経時的な3つ折れ、4つ折れの座屈
変化の発生を阻止し、かつ内圧すなわち流体圧の影響を
大略皆無としたもので、シール性に優れたバルブ特性を
確保している。
In this respect, the so-called U-shaped pinch valve disclosed in Japanese Patent Publication No. 47-3936 has a cylindrical rubber membrane 11 with one semicircumferential portion parallel to the tube axis direction, as shown in FIG. 12. It adopts a configuration in which cords 12 are arranged and buried, and the cylindrical rubber membrane is restrained in the radial direction by an exterior body 13, one semicircular part is restrained in the axial direction by a reinforcing cord 14, and the other half is restrained by a reinforcing cord 14. The semi-circumferential portion of the two semi-circumferential portions can be very easily overlapped with the inner surface of the other semi-circular portion for a tight seal. This is a so-called U-shaped folding seal mechanism as shown in FIG. Therefore, buckling changes such as three-fold or four-fold bending over time are prevented from occurring, and the influence of internal pressure, that is, fluid pressure, is almost eliminated, ensuring valve characteristics with excellent sealing performance.

しかしながらこのピンチバルブにおいても、他方の半円
周部のみがきわめて大きい変位量を伴って繰り返しの座
屈運動を行い、固定静止状態にある一方の半円周部に圧
接シールするため、経時的観点からすれば未だ耐久性に
おいて満足できるものではなく、機械的疲労性のきわめ
て高いものであった。しかもこの種バルブは、良好なシ
ールを得るには、前例の球形用型ピンチバルブに比すれ
ば比較的管軸方向の寸法を長寸とする必要があり、設計
上好ましくない規制を伴い、この点で問題があった。
However, even in this pinch valve, only the other semi-circumferential part undergoes repeated buckling movements with an extremely large amount of displacement, and is pressure-sealed to the one semi-circular part which is in a fixed and stationary state, so from the perspective of aging. Therefore, the durability was not yet satisfactory and the mechanical fatigue resistance was extremely high. Moreover, in order to obtain a good seal, this type of valve needs to be relatively long in the tube axis direction compared to the previous spherical type pinch valve, which is accompanied by unfavorable design regulations. There was a problem with that.

そこでこの発明は上述した様な座屈理論並びに一連の改
良過程を基本に、最も好適なバルブ特性を有するピンチ
バルブの提供を企図したものである。すなわちその目的
とするところは、経時変化を惹起することなく常時、座
屈波数n=2を確保してシール性を良好に具有すること
ができ、かつ設計自在の安定した流路形状を確保すると
ともに機械的疲労性を可及的に抑制し得る構成とし、も
って耐久性を一段と向上せしめたピンチバルブを提供す
るところにある。
Therefore, the present invention is based on the above-mentioned buckling theory and a series of improvement processes to provide a pinch valve having the most suitable valve characteristics. In other words, the purpose is to always ensure buckling wave number n = 2 without causing changes over time, to provide good sealing performance, and to ensure a stable flow path shape that can be freely designed. It is also an object of the present invention to provide a pinch valve that has a structure that can suppress mechanical fatigue as much as possible, thereby further improving durability.

その特徴とするところは、圧力空気の取入口を有する円
筒状ボディー内部に、円筒状可撓性管を装着して、可撓
性管の圧潰・復元により流路の開閉を行うピンチバルブ
において、上記可撓性管の中央部近傍に、相対向する一
対の薄肉部を形成して、受圧毎に自己変動させ、薄肉部
相互のズレを伴う初期圧接を介して交互にZ抵折れ−S
S抵折シールを繰り返させ、座屈面間の転移圧接により
全面閉塞するようにしたところにある。
The feature is that the pinch valve is equipped with a cylindrical flexible tube inside a cylindrical body with a pressurized air intake, and opens and closes the flow path by crushing and restoring the flexible tube. A pair of thin-walled portions facing each other are formed near the center of the flexible tube, and the thin-walled portions are self-varied each time pressure is received, and the thin-walled portions are alternately Z-broken through initial pressure welding with mutual displacement.
This is where the S-resistance seal is repeated and the entire surface is closed by transfer pressure contact between the buckling surfaces.

以下具体的な実施態様につき図面に従って説明する。Specific embodiments will be described below with reference to the drawings.

まず第1図において、1は圧力空気の取入口2を有する
円筒状ボディーで、その内部に同心の円筒状可撓性管3
が装着されている。可撓性管3はその両端がフランジ部
で密閉状態に挟着されており、また中央部近傍において
上下相対向する一対の薄肉部3a 13a ’が形成さ
れている。薄肉部3a 、3a ’ は第2図に示すご
とく、可撓性管3の上下面を同等に水平に切欠いて、肉
厚を中央部で最小とし、両サイドに向うにつれそれぞれ
対称的に大きくする構成を採っている。なお3bは厚肉
部である。また30は第1図に示すごとく、可撓性管3
の両端部の厚肉部3bから上記薄肉部3a 、 3a 
’ に向って形成された薄肉傾斜部である。
First, in Fig. 1, reference numeral 1 denotes a cylindrical body having a pressure air intake 2, and a concentric cylindrical flexible tube 3 inside the body.
is installed. Both ends of the flexible tube 3 are tightly sandwiched between flanges, and a pair of thin-walled portions 3a and 13a' are formed near the center of the flexible tube 3, which are vertically opposed to each other. As shown in Fig. 2, the thin-walled portions 3a and 3a' are formed by equally horizontally cutting out the upper and lower surfaces of the flexible tube 3, with the thickness being the minimum at the center and increasing symmetrically toward both sides. The structure is adopted. Note that 3b is a thick portion. Further, 30 is a flexible tube 3 as shown in FIG.
from the thick wall portion 3b at both ends of the thin wall portion 3a, 3a.
' It is a thin sloped part formed towards '.

上記構成からなるピンチバルブに、操作空気を取入口2
から圧力Pで圧入すれば、まず第5図Aに示すごとく、
他の厚肉部3bより相対的に強度の低い薄肉部3a 、
3a ’から座屈が開始される。
Inlet 2 for operating air into the pinch valve configured as above.
If it is press-fitted with pressure P from , first as shown in Figure 5A,
A thin wall portion 3a having relatively lower strength than other thick wall portions 3b,
Buckling starts from 3a'.

すなわち初期座屈である。この初期座屈は漸次薄肉部3
a 、3a ’ を中心に両側の厚内部3bを波及的に
取り込むようにして進行するもので、受圧は大略この座
屈によって吸収されるようになっている。すなわち厚肉
部の左右両端地点a、bが強くボディー内壁面1aを押
圧する程の伸びを厚肉部3bに具用さぜないようになっ
ている。なお4は流路である。またBLはこの初期座屈
の仮想中心点b1、bl’の進行ライン、すなわち初期
座屈ラインを示し、TLは薄肉部3b 、 3b ’の
仮想中心点口、t+’間の結合ライン、すなわら薄肉部
中心ラインを示す。図示のごとく、初期座屈は薄肉部中
心ラインTLに沿って進行することが認められる。
That is, initial buckling. This initial buckling gradually
It progresses so as to take in the thick interior 3b on both sides centering around a and 3a', and the received pressure is generally absorbed by this buckling. In other words, the thick portion 3b is prevented from elongating to the extent that the left and right end points a and b of the thick portion strongly press against the inner wall surface 1a of the body. Note that 4 is a flow path. Further, BL indicates the progression line of the virtual center points b1 and bl' of the initial buckling, that is, the initial buckling line, and TL indicates the joining line between the virtual center points of the thin portions 3b and 3b', t+'. The center line of the thin straw part is shown. As shown in the figure, it is recognized that the initial buckling progresses along the thin wall center line TL.

次にこの初期座屈の進行は、第5図Bに示すごとく、相
対向する上下一対の薄肉部3a 、 3a ’間の圧接
によって完了する。すなわち初期圧接である。この初期
圧接は、ある一定幅をもった初期圧接面ipによって起
るものであるが、続いて第5図Cに示すごとく、さらに
加圧すれば、これ以上凹むことができず、薄肉部3a 
、 3a ’相互に、ある一定方向にズレが発生する。
Next, the progress of this initial buckling is completed by pressure contact between the pair of upper and lower thin-walled portions 3a and 3a' that face each other, as shown in FIG. 5B. That is, this is initial pressure welding. This initial pressure contact is caused by the initial contact surface ip having a certain width, but as shown in FIG.
, 3a' A mutual shift occurs in a certain direction.

すなわち初期座屈ラインBLに対して薄肉部中心ライン
TLが角度θに転移することとなる。なおこのズレ方向
は可撓性管につき製造時において生じた品質や変形の僅
少な誤差等にもとづくものと思われる。
That is, the thin-walled portion center line TL shifts to an angle θ with respect to the initial buckling line BL. Note that this direction of deviation is considered to be based on the quality of the flexible tube, slight errors in deformation, etc. that occur during manufacturing.

従って第5図りに示すごとく、左右のバランスがくずれ
、座屈は薄肉部3aにおいては強度の小さい方向、すな
わち初期座屈ラインBLを境に肉薄比率の高い薄肉部の
仮想中心点t1、t1′方向、いわゆる正のズレ方向A
に進行し、他方薄肉部3a′においては逆のズレ方向B
に進行するものである。いわゆる2次座屈が開始される
。なおこの2次座屈は、初期圧接面ipでの圧接状態を
大略保持し、すべらずに山の頂点が移動する座屈面の転
移圧接によって進行するものである。(第5図E及び第
5図F参照)。
Therefore, as shown in the fifth diagram, the left and right balance is lost, and the buckling occurs in the direction of low strength in the thin wall portion 3a, that is, the virtual center points t1, t1' of the thin wall portion with a high wall thickness ratio with the initial buckling line BL as the border. direction, so-called positive deviation direction A
On the other hand, in the thin section 3a', the shift direction B is the opposite direction.
It progresses to So-called secondary buckling begins. It should be noted that this secondary buckling progresses by transition pressure welding of the buckling surface in which the pressure contact state at the initial pressure contact surface ip is roughly maintained and the peak of the peak moves without slipping. (See Figures 5E and 5F).

第5図Gはこの2次座屈の進行が完了し、いわゆる2形
折れシールで全面閉塞した状態を示す概略断面図である
。ここでX印は、この状態下における可撓性管3におい
て最も伸びの大ぎい箇所を示している。
FIG. 5G is a schematic cross-sectional view showing a state in which the progress of this secondary buckling has been completed and the entire area is closed by a so-called type 2 folded seal. Here, the X mark indicates the location where the flexible tube 3 has the greatest elongation under this condition.

次に排気操作の場合では、内圧(流体圧)もしくは可撓
性管の自己復元力により入路上述の圧入時とは逆のプロ
セスで復帰が進行し、しがも進行過度の、いわゆる常態
を超えた可撓性管の半径方向への膨張もこの可撓性管を
囲繞するボディーによって完全に町止されて、前述と同
様の非座屈時の常態に到達安定化するものである。(第
5図Hないし第5図J参照) なおこの際には第5図J
に示すごとく、前記の可撓性管3の完全閉塞状態下にお
いて生起した最も伸びの大きかった箇所Xにおいて残留
応力R8−Zが残存することになる。
Next, in the case of exhaust operation, the return progresses due to the internal pressure (fluid pressure) or the self-restoring force of the flexible tube in the opposite process to the press-in process described above, and the so-called normal state of excessive progress is caused. The excess expansion of the flexible tube in the radial direction is completely stopped by the body surrounding the flexible tube, and the same normal state when unbuckled as described above is reached and stabilized. (See Figures 5H to 5J.) In this case, please refer to Figure 5J.
As shown in FIG. 2, residual stress R8-Z remains at the location X where the maximum elongation occurred under the completely closed state of the flexible tube 3.

従って続いて再びバルブを全開させる操作を行う場合に
おいては、この残留応力R3−Zが薄肉部3a 、3a
 ’ の最小薄肉部分の応力より大きげれば、加圧され
て凹み、座屈が開始されるのはこの残留応力部からとい
うことになる。この座屈を前記の初期座屈に対して1次
座屈とする。
Therefore, when the valve is subsequently fully opened again, this residual stress R3-Z is applied to the thin wall portions 3a, 3a
If the stress is greater than that of the thinnest part of ', it will be pressurized and dented, and buckling will begin from this residual stress part. This buckling is referred to as primary buckling with respect to the above-mentioned initial buckling.

第5図には1次座屈うインFLが薄肉部中心ラインTL
と角度δをなして座屈進行する状態を示す概略図である
In Figure 5, the primary buckling in FL is the thin wall center line TL.
FIG. 2 is a schematic diagram showing a state in which buckling progresses at an angle δ.

従って第5図りに示すごとく、初期圧接面 ipは、先
述のプロセスの際に生起したものとは全く反対のズレを
伴って形成されるもので、薄肉部中心ラインTLは前記
の角度θと同等もしくは大略同等の角度θ′で逆に傾く
ことになる。従って2次座屈は、薄肉部3aにおいて先
述の正のズレ方向Aに対して逆のズレ方向Bに進行し、
薄肉部3 a + において正のズレ方向Aに進行する
ことになる。なおこの座屈進行のメカニズムは先述と同
様である。
Therefore, as shown in Figure 5, the initial pressure contact surface ip is formed with a deviation completely opposite to that which occurred during the above-mentioned process, and the thin wall center line TL is equivalent to the angle θ mentioned above. Alternatively, it will be tilted in the opposite direction at approximately the same angle θ'. Therefore, secondary buckling progresses in the displacement direction B opposite to the positive displacement direction A mentioned above in the thin wall portion 3a,
It proceeds in the positive deviation direction A at the thin portion 3 a + . Note that the mechanism of this buckling progress is the same as described above.

第5図Mはこの2次座屈の進行状態を示す断面概略図で
あり、第5図Nはその進行が完了してなる完全閉塞状態
を示す断面概略図である。この完全閉塞状態は前述のZ
抵折れシールに対して全く対称的なS形折れシール構造
をなしている。
FIG. 5M is a schematic cross-sectional view showing the progress of this secondary buckling, and FIG. 5N is a schematic cross-sectional view showing the completely closed state after the progress has been completed. This state of complete occlusion is the above-mentioned Z
It has an S-shaped folding seal structure that is completely symmetrical to the folding seal.

なおこの状態下においては前述のZ抵折れシールとは全
く相反位置において最も大きい伸びXが存在するもので
、次に排気操作を起せば前述のプロセスと同じく完全に
非座屈状態にまで復帰するが(第5図O参照)、今度は
上記伸び位置に対応して残留応力R8−3は逆対称位置
に発生するものである。(第5図P参照) なおもち論
復帰は内圧(流体圧)もしくは可撓性管の自己復元力に
よりなされることは言うまでもない。
Note that under this condition, the maximum elongation X exists at a position completely opposite to the above-mentioned Z-bending seal, and the next time the exhaust operation is performed, it will completely return to the non-buckling state as in the above-mentioned process. However, this time, the residual stress R8-3 is generated at an oppositely symmetrical position corresponding to the elongated position (see FIG. 5O). (See FIG. 5, P) Needless to say, the return to normal state is achieved by internal pressure (fluid pressure) or the self-restoring force of the flexible tube.

従って法度の圧入操作の場合は、上述のS形折れシール
に向う座屈プロセスとは全く逆の同等の座屈プロセスを
もってシールが完成されるものである。
Therefore, in the case of a severe press-fitting operation, the seal is completed by a buckling process that is completely opposite to the buckling process for the S-shaped folded seal described above.

以降、空気の圧入−排気の繰り返しの操作に従ってS形
折れの座屈サイクルとZ抵折れの座屈サイクルが交互に
生起するもので゛、いわば2サイクル変動の記憶シール
メカニズムが可撓性管において常時内在具(紬されたも
のである。
Thereafter, as the air is repeatedly injected and exhausted, the buckling cycle of S-shaped bending and the buckling cycle of Z-shaped bending occur alternately.In other words, the memory seal mechanism of two-cycle fluctuation occurs in the flexible tube. Constantly internal fittings (made with pongee.

なお、第3図AはZ抵折れシールで閉塞した状態を示す
断面図、第3図BはS形折れシールで閉塞した状態を示
す断面図である。
Note that FIG. 3A is a sectional view showing a state closed with a Z-shaped folding seal, and FIG. 3B is a sectional view showing a state closed with an S-shaped folding seal.

ところで上記実施例における可撓性管3は、その薄肉部
3a 、3a ’を水平に切欠いて形成したものである
が熱論これに限定されるものではない。
By the way, although the flexible tube 3 in the above embodiment is formed by horizontally cutting out the thin wall portions 3a and 3a', the present invention is not limited to this.

たとえば第4図に示すごとく、均等な、肉厚状態で形成
するようにしてもよく、要するに可撓性管の縦軸に対し
て左右対称の薄肉部を形成すれば適当である。
For example, as shown in FIG. 4, it may be formed to have a uniform thickness; in short, it is appropriate to form a thin wall portion that is symmetrical with respect to the longitudinal axis of the flexible tube.

また第1図に示すごとく、薄肉部3a 、3a ’の肉
厚t1は、平均的には厚肉部3bの肉厚t2の約1/2
程度が適切であるが、別設これに限定されるものではな
い。すなわち薄肉部の幅寸法L1や薄肉傾斜部3cの幅
寸法A2とともに、厚肉部の肉厚t2あるいは材質等の
各種ファクターから適宜容易に座屈さ°t!得る範囲を
特定すれば差支えない。
Further, as shown in FIG. 1, the thickness t1 of the thin portions 3a and 3a' is approximately 1/2 of the thickness t2 of the thick portion 3b on average.
Although the degree is appropriate, it is not limited to separate installation. That is, in addition to the width L1 of the thin wall portion and the width A2 of the thin slope portion 3c, buckling can be easily achieved depending on various factors such as the wall thickness t2 of the thick wall portion or the material. There is no problem as long as you specify the scope of gain.

また上記実施例は、Z型−8型−Z型−・・・・・・・
・・の繰り返しのシールメカニズムを採っているが、も
ち論S型−Z型−8型−・・・・・・・・・のメカニズ
ムも採用し得るもので、シーフェンスは限定されない。
In addition, the above embodiments are Z type-8 type-Z type...
Although a sealing mechanism that repeats the following is adopted, mechanisms such as S-type, Z-type, 8-type, etc. can also be adopted, and the sea fence is not limited to this.

因みに前記実施例について操作圧を0〜4kg/ c+
n2として 20000回の繰り返しテストを行なった
結果、経時変化を惹起せずして常時座屈波数n−2に止
まり、かつ安定した流路形状と良好なシール性が認めら
れたものである。
Incidentally, in the above example, the operating pressure was 0 to 4 kg/c+
As a result of repeating the test 20,000 times as n2, it was found that the buckling wave number always remained at n-2 without causing any change over time, and that it had a stable flow path shape and good sealing performance.

以上のごとくこの発明に係るピンチバルブは、円筒状ボ
ディー内部に、円筒状の可撓性管を装着したことによっ
て、可撓性管の半径方向への膨張を完全に規制したもの
で、従来のいわゆる球形側型ピンチバルブにおいて問題
となっていた内圧(流体圧)に主に起因する機械的老化
や永久変形の一層促進により、経時的に3つ折れ、4つ
折れ等の座屈の変態化に進行するおそれは皆無となった
ものであり、しかも安定した流路形状を確保することが
できたものである。またさらに、可撓性管の中央部近傍
に相対向する一対の薄肉部を形成したので、初期の座屈
の開始は必ずこの薄肉部分からなされるものであり、し
かも受圧毎に自己変動し、薄肉部相互のズレを伴う初期
圧接を介して交互にZ抵折れ−8形折れシールを繰り返
させ、座屈面間の転移圧接により全面閉塞するようにし
たので、この可撓性管においてこれを囲繞するボディー
からの好ましからざる影響を全く排除した独立非依存型
の座屈規制が確立されたものである。
As described above, the pinch valve according to the present invention completely restricts the expansion of the flexible tube in the radial direction by installing the cylindrical flexible tube inside the cylindrical body. Due to further acceleration of mechanical aging and permanent deformation mainly caused by internal pressure (fluid pressure), which has been a problem with so-called spherical side pinch valves, buckling changes such as 3-fold or 4-fold bending occur over time. There was no risk of the process progressing, and moreover, a stable flow path shape could be ensured. Furthermore, since a pair of thin-walled parts facing each other is formed near the center of the flexible tube, the initial buckling always starts from these thin-walled parts, and moreover, the flexible tube self-varies every time pressure is received. The Z fold-8 type bending seal was alternately repeated through the initial pressure welding with mutual displacement of the thin wall parts, and the entire surface was closed by the transfer pressure welding between the buckled surfaces. An independent and independent type of buckling regulation has been established that completely eliminates undesirable influences from the surrounding body.

さらにまた特定箇所に極度の集中変位を与えずに済む構
成であることから、従来のいわゆるU抵折れピンチバル
ブに比して機械的疲労度は格段に低く、著しい耐久性の
増大に至ったものである。また座屈面間の圧接は全面閉
塞であり、かつ相互にいわばかみ合うシール構造となっ
ていることからシール効果は従来のものに比して格別に
優れており、さらにまたU抵折れピンチバルブのごとく
、そのシール性能が管軸方向の寸法に依存することはな
く、設計自在の利点を有している。またもち論、球形側
型ピンチバルブに比して軽量化でき、配管作業等での取
扱いも便利である。
Furthermore, since the structure does not require extremely concentrated displacement in a specific location, the degree of mechanical fatigue is significantly lower than that of conventional so-called U-bending pinch valves, resulting in significantly increased durability. It is. In addition, the pressure contact between the buckled surfaces is completely closed, and the seal structure is such that they engage with each other, so the sealing effect is exceptionally superior compared to conventional ones. As such, its sealing performance does not depend on the dimension in the tube axis direction, and it has the advantage of being flexible in design. In addition, it is naturally lighter in weight than a spherical side pinch valve, and is convenient to handle during piping work.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明に係るピンチバルブの一実施例を示す
縦断面図、 第2図は同n−n線横断面図、 第3図Δは第2図においてZ抵折れシールの閉塞状態を
示す横断面図、 第3図Bは同S抵折れシールの閉塞状態を示す横lI/
i面図、 第4図は可撓性管の他実施例を示す断面図、第5図Δな
いしPはそれぞれこの実施例におけるシールメカニズム
を順次概念的に示した断面概略図で、A−JはZ抵折れ
の座屈サイクル、J〜PはS形折れの座屈サイクルであ
る。なおAは初期座屈の開始状態、Bは初期圧接状態、
Cは薄肉部相互のズレ状態、Dは2次座屈の開始状態、
E及びFはその進行状態、GはZ抵折れシール状態、1
−(及びJは排気操作に伴う復帰の進行状態、Jは復帰
完了の常態であり、Kは残留応力に起因する1次座屈の
開始状態、Lは初期圧接状態、Mは2次座屈の進行状態
、NはS形折れシール状態、0は排気操作に伴う復帰の
進行状態、Pは復帰完了の常態である。 第6図は3つ折れの座屈形態を示す概略断面図、第7図
は4つ折れの座屈形態を示す概略断面図、第8図は従来
の原初的タイプのピンチバルブの一例を示す縦断面図、 第9図はその■−IX線概略断面図、 第10図は従来のいわゆる球形態形ピンチバルブの一例
を示す縦断面図、 第11図はそのXI−X[線断面図で、可撓性管が2つ
折れに閉塞した状態を示しており、第12図は従来のい
わゆるU抵折れシールに係るピンチバルブの円筒状ゴム
の一例を示す概略断面図、 第13図はそのゴムを装着し、U抵折れの座屈進行状態
を示す概略断面図である。 1・・・ボディー 2・・・圧力空気の取入口3・・・
可撓性管 3a 、 3a ’ ・・・薄肉部3b・・
・厚肉部 代理人 弁理士 大 島 泰 甫 第2図 2 第3図 第4図 F G 第6図 第7図 第8図 第9図 第11図 ■ 第12図 第13図 自発手続補正書 1、事件の表示 昭和58年特許願第2184624 2、発明の名称 ピンチバルブ 3、補正をする者 事件との関係 特許出願人 滋賀県蒲生郡日野町大字大谷446番地の1株式会社 
奥 村 製 作 所 代表者 奥 村 清 − 4、代理人 ・550 大阪市西区江戸堀1丁目25番30号5、補
正の対象 添付図面。 6、補正の内容 第5図G及びNを別紙添付図面のとおり補正する。 以」 第5図
Fig. 1 is a longitudinal cross-sectional view showing one embodiment of the pinch valve according to the present invention, Fig. 2 is a cross-sectional view taken along the line n-n, and Fig. 3 Δ shows the closed state of the Z-fold seal in Fig. 2. Figure 3B is a horizontal cross-sectional view showing the closed state of the S folding seal.
FIG. 4 is a sectional view showing another embodiment of the flexible tube, and FIGS. is the buckling cycle of Z-shaped bending, and J to P are the buckling cycles of S-shaped bending. Note that A is the initial buckling start state, B is the initial pressure welding state,
C is the mutual misalignment state of the thin wall parts, D is the start state of secondary buckling,
E and F are the progress states, G is the Z failure seal state, 1
- (and J is the progress state of return due to exhaust operation, J is the normal state of completion of return, K is the starting state of primary buckling due to residual stress, L is the initial pressure welding state, M is secondary buckling , N is the S-shaped folded seal state, 0 is the progress state of return due to exhaust operation, and P is the normal state of completion of return. Fig. 7 is a schematic sectional view showing a four-fold buckling form, Fig. 8 is a longitudinal sectional view showing an example of a conventional primitive type pinch valve, Fig. 9 is a schematic sectional view taken along the ■-IX line, Fig. 10 is a longitudinal cross-sectional view showing an example of a conventional so-called spherical pinch valve, and Fig. 11 is a cross-sectional view taken along the line XI-X, showing a state in which the flexible tube is folded in two and is occluded. Fig. 12 is a schematic sectional view showing an example of a cylindrical rubber of a pinch valve related to a conventional so-called U-bending seal, and Fig. 13 is a schematic sectional view showing the progress of buckling of the U-bending with the rubber installed. 1...Body 2...Pressure air intake 3...
Flexible tubes 3a, 3a'...thin wall portion 3b...
・Attack Department Attorney Yasushi Oshima Figure 2 2 Figure 3 Figure 4 FG Figure 6 Figure 7 Figure 8 Figure 9 Figure 11 ■ Figure 12 Figure 13 Voluntary procedure amendment form 1. Indication of the case Patent application No. 2184624 filed in 1982 2. Name of the invention Pinch valve 3. Person making the amendment Relationship to the case Patent applicant 1 Co., Ltd., 446 Otani, Hino-cho, Gamo-gun, Shiga Prefecture
Okumura Manufacturing Representative Kiyoshi Okumura - 4, Agent 550 1-25-30 Edobori, Nishi-ku, Osaka-shi Attached drawings subject to amendment. 6. Contents of amendment Figures G and N in Figure 5 will be amended as shown in the attached drawings. Figure 5

Claims (1)

【特許請求の範囲】[Claims] (1)圧力空気の取入[1を有する円筒状ボディー内部
に、円筒状可撓性管を装着して、可撓性管の圧潰・復元
により流路の開閉を行うピンチバルブにおいて、上記可
撓性管の中央部近傍に相対向する一対の薄肉部を形成し
て、受圧毎に自己変動させ、薄肉部相互のズレを伴う初
期圧接を介して交互にZ形折れ−3形折れシールを繰り
返さけ一1座屈面間の転移圧接により全面閉塞するよう
にしたことを特徴とり゛るピンチバルブ。
(1) In a pinch valve in which a cylindrical flexible tube is installed inside a cylindrical body having pressure air intake [1] and the flow path is opened and closed by crushing and restoring the flexible tube, the above-mentioned A pair of thin-walled portions facing each other are formed near the center of the flexible tube, and the thin-walled portions are self-varied each time pressure is received, and Z-shaped folds and three-shaped folded seals are alternately formed through initial pressure welding with mutual displacement of the thin-walled portions. A pinch valve characterized by being completely closed by repeated displacement pressure contact between buckling surfaces.
JP21846283A 1983-11-18 1983-11-18 Pinch valve Granted JPS60113875A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21846283A JPS60113875A (en) 1983-11-18 1983-11-18 Pinch valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21846283A JPS60113875A (en) 1983-11-18 1983-11-18 Pinch valve

Publications (2)

Publication Number Publication Date
JPS60113875A true JPS60113875A (en) 1985-06-20
JPS6323433B2 JPS6323433B2 (en) 1988-05-16

Family

ID=16720278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21846283A Granted JPS60113875A (en) 1983-11-18 1983-11-18 Pinch valve

Country Status (1)

Country Link
JP (1) JPS60113875A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6343071A (en) * 1986-08-08 1988-02-24 Moon Star Co Pinch valve
JPH02176277A (en) * 1988-12-27 1990-07-09 Okumura Corp Pinch valve
CN100451413C (en) * 2001-07-27 2009-01-14 陈汉保 Low energy consumption and large flow valve
JP2017155910A (en) * 2016-03-04 2017-09-07 Ckd株式会社 Fluid control valve
WO2020211800A1 (en) * 2019-04-19 2020-10-22 武汉圣禹排水系统有限公司 Rubber sleeve for pneumatic cut-off device, and pneumatic cut-off device
WO2020211799A1 (en) * 2019-04-19 2020-10-22 武汉圣禹排水系统有限公司 Rubber sleeve for pneumatic cut-off device and pneumatic cut-off device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5169126U (en) * 1974-11-28 1976-06-01

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5169126U (en) * 1974-11-28 1976-06-01

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6343071A (en) * 1986-08-08 1988-02-24 Moon Star Co Pinch valve
JPH02176277A (en) * 1988-12-27 1990-07-09 Okumura Corp Pinch valve
JPH0549868B2 (en) * 1988-12-27 1993-07-27 Okumura Corp
CN100451413C (en) * 2001-07-27 2009-01-14 陈汉保 Low energy consumption and large flow valve
JP2017155910A (en) * 2016-03-04 2017-09-07 Ckd株式会社 Fluid control valve
WO2020211800A1 (en) * 2019-04-19 2020-10-22 武汉圣禹排水系统有限公司 Rubber sleeve for pneumatic cut-off device, and pneumatic cut-off device
WO2020211799A1 (en) * 2019-04-19 2020-10-22 武汉圣禹排水系统有限公司 Rubber sleeve for pneumatic cut-off device and pneumatic cut-off device

Also Published As

Publication number Publication date
JPS6323433B2 (en) 1988-05-16

Similar Documents

Publication Publication Date Title
JP5384542B2 (en) Improved ring seal
US3318335A (en) Torsional pipe coupling
EP0277724B1 (en) Pressure balanced s-seal
US4132382A (en) Pinch valve sleeve construction
US5246761A (en) Bladder for an accumulator
JPS60113875A (en) Pinch valve
CN112074675A (en) Valve sealing device and valve seat
WO2007136942A2 (en) Seal for water valve
US3979142A (en) Abrasion resisting flexible joint pipe
NO180395B (en) Hollow metal sealing rings
KR101933176B1 (en) Pressure-resistant bellows
JPH08219291A (en) Metal covered gasket
JPH02225801A (en) Accumulator
JPH02186164A (en) Elastic metal gasket
CN220688343U (en) Rubber pipe buckling joint structure with double sealing structures
US3269585A (en) Pressure vessel closure
JPH057923U (en) Exhaust manifold sealing device
JP7545363B2 (en) Rubber ring
JP7133349B2 (en) Gasket with branch
CN213235385U (en) Corrugated pipe reinforced structure for refrigeration compressor
JPH05321515A (en) Cylinder-shaped structural body
JPH03134303A (en) Accumulator
KR20200070365A (en) Diaphragm valve
JP4855705B2 (en) Flexible tube joint member connection method
CN201034182Y (en) Hard-sealing ball valve seat assembly seal structure