JPS60113710A - Cornering sensor for car - Google Patents

Cornering sensor for car

Info

Publication number
JPS60113710A
JPS60113710A JP22169883A JP22169883A JPS60113710A JP S60113710 A JPS60113710 A JP S60113710A JP 22169883 A JP22169883 A JP 22169883A JP 22169883 A JP22169883 A JP 22169883A JP S60113710 A JPS60113710 A JP S60113710A
Authority
JP
Japan
Prior art keywords
vehicle
car
sensor
revolution
wheels
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22169883A
Other languages
Japanese (ja)
Inventor
Mitsuru Nagaoka
長岡 満
Kazutoshi Nobumoto
信本 和俊
Shunichi Tsuyama
津山 俊一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
U Shin Ltd
Original Assignee
Mazda Motor Corp
Yuhshin Co Ltd
Yuhshin Seiki Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp, Yuhshin Co Ltd, Yuhshin Seiki Kogyo KK filed Critical Mazda Motor Corp
Priority to JP22169883A priority Critical patent/JPS60113710A/en
Publication of JPS60113710A publication Critical patent/JPS60113710A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • B60G17/016Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by their responsiveness, when the vehicle is travelling, to specific motion, a specific condition, or driver input
    • B60G17/0162Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by their responsiveness, when the vehicle is travelling, to specific motion, a specific condition, or driver input mainly during a motion involving steering operation, e.g. cornering, overtaking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/10Acceleration; Deceleration
    • B60G2400/104Acceleration; Deceleration lateral or transversal with regard to vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/20Speed
    • B60G2400/204Vehicle speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/20Speed
    • B60G2400/208Speed of wheel rotation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2600/00Indexing codes relating to particular elements, systems or processes used on suspension systems or suspension control systems
    • B60G2600/12Sampling or average detecting; Addition or substraction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2600/00Indexing codes relating to particular elements, systems or processes used on suspension systems or suspension control systems
    • B60G2600/12Sampling or average detecting; Addition or substraction
    • B60G2600/124Error signal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2800/00Indexing codes relating to the type of movement or to the condition of the vehicle and to the end result to be achieved by the control action
    • B60G2800/24Steering, cornering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2800/00Indexing codes relating to the type of movement or to the condition of the vehicle and to the end result to be achieved by the control action
    • B60G2800/70Estimating or calculating vehicle parameters or state variables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2800/00Indexing codes relating to the type of movement or to the condition of the vehicle and to the end result to be achieved by the control action
    • B60G2800/70Estimating or calculating vehicle parameters or state variables
    • B60G2800/702Improving accuracy of a sensor signal

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Navigation (AREA)
  • Vehicle Body Suspensions (AREA)

Abstract

PURPOSE:To detect the turning state of a car without using a steering-angle sensor by judging the turning state of the car by obtaining the difference of the number of revolution between right and left wheels from the output of a revolution number sensor for detecting the number of revolution of the wheels. CONSTITUTION:Right and left revolution number sensor 6a and 6b detect the number of revolution of the right and left wheels among front and rear-wheels 1a-1d. After the detection by the sensors 6a and 6b is performed, the difference of the number of revolution between the right and left wheels is calculated in the substraction circuit 8 of a controller 7, and the average value of the number of revolution of the right and left wheels is calculated in a calculation circuit 9, and the radius R of turn of a car is calculated in a calculation circuit 10, and at the same time, a car speed V is obtained in a calculation circuit 11. In a calculation circuit 12, the centrifugal acceleration speed of the car is obtained, and compared with a set value in a comparator 13, and in a calculation circuit 15, the magnitude of the car acceleration speed is obtained from the car speed V, and compared with a set value in a comparator 16.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、自動車の旋回状態を検出する自動11工の
コーナリングセンザに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a cornering sensor for an automatic 11-turn system that detects the turning state of an automobile.

〔従来技術〕[Prior art]

一般に車両のサスペンションに要求される特性は、旨・
1縦安定性と乗心地とである。ところで車両の旋回時に
は車両に遠心力が作用して該車両が左右に領く、いわゆ
るローリングを起こし、又急アクセル時や急ブレーキ時
には車両に大きな加速力や制動力が作用して車両が前後
に傾く、いわゆるピッチングを起こすことが知られてお
り、このような場合には急激な姿勢変化が生J゛るため
に、車両の運動特性が大きく変化し、又運転者の心理的
負担が増大するものである。
In general, the characteristics required for vehicle suspension are:
1. Longitudinal stability and riding comfort. By the way, when a vehicle turns, centrifugal force acts on the vehicle, causing the vehicle to move from side to side, causing so-called rolling. Also, when accelerating suddenly or braking suddenly, a large accelerating force or braking force acts on the vehicle, causing the vehicle to move back and forth. It is known that the vehicle may lean, or so-called pitching, and in such a case, a sudden change in posture occurs, which significantly changes the vehicle's dynamic characteristics and increases the psychological burden on the driver. It is something.

そしてこのような不具合を解消する方法として、従来、
ローリングについては、例えば実開昭56−14710
7号公報に示されるように、操舵角及び車速から車両旋
回時の心加速度の変化に対応する所定以上のロール速度
が生ずる条件を検出して、サスペンションに設けられて
いる可変ダンパの減衰力を高め、もってローリングの発
生を抑制し、一方ピノチングについては、アクセルペダ
ルやブレーキペダルの操作量を検出して上記可変ダンパ
の減衰力を高め、もってピッチングの発生を抑制するよ
うにしたものがある。
Conventionally, as a method to eliminate such problems,
Regarding rolling, for example, Utility Model Application No. 56-14710
As shown in Publication No. 7, the damping force of the variable damper provided in the suspension is adjusted by detecting the conditions under which a roll speed exceeding a predetermined value corresponding to changes in cardiac acceleration when the vehicle turns is generated based on the steering angle and vehicle speed. For pinoting, the damping force of the variable damper is increased by detecting the amount of operation of the accelerator pedal or brake pedal, thereby suppressing the occurrence of pitching.

しかしながらこのような従来の方法では、車両のローリ
ングを抑制するためには2種類のセンサを必要とし、そ
の制御も複雑になるという問題があり、又車両のピッチ
ングを抑制するためには別途2種類のセンサを設ける必
要があって、構造が大変複雑になるという問題があった
。また操舵角センサを用いているので、該センサをスペ
ースの狭いステアリングハンドル回りに取付けなければ
ならず、その取付作業が大変煩雑であり、しがも該セン
サの組イ」時には車両毎にその舵角と車両の旋回上(蚤
との関係を調整する調整作業が大変煩雑であるという問
題があった。
However, in this conventional method, two types of sensors are required to suppress vehicle rolling, and the control thereof is complicated.Also, two types of sensors are required to suppress vehicle pitching. There was a problem in that it was necessary to provide several sensors, making the structure very complicated. In addition, since a steering angle sensor is used, the sensor must be installed around the steering wheel, which has a narrow space, and the installation work is very complicated. There was a problem in that the adjustment work to adjust the relationship between the corner and the turning position of the vehicle (flea) was very complicated.

〔発明の目的〕[Purpose of the invention]

この発明は、かかる問題点に鑑み、操舵角センサを用い
ることな(,1種類のセンサでもって自動車の旋回状態
を判別でき、しかも調整及び組付が簡単な自動車のコー
ナリングセンサを提供せんとするものである。
In view of these problems, the present invention aims to provide a cornering sensor for an automobile that can determine the turning state of an automobile with a single type of sensor without using a steering angle sensor, and is easy to adjust and assemble. It is something.

〔発明の構成〕[Structure of the invention]

そこでこの発明は、自動車の前輪又は後輪のいずれか一
方の左右輪の回転数を検出する回転数センサを設り、該
両センザの出力がら左右輪の回転数差をめて自動車の旋
回状態を判別するようにしたものである。
Therefore, the present invention provides a rotation speed sensor that detects the rotation speed of either the front or rear wheels of the vehicle, and calculates the rotation speed difference between the left and right wheels based on the outputs of both sensors to determine the turning state of the vehicle. It is designed to determine.

〔実施例〕〔Example〕

本発明の詳細な説明に先立ち、本発明の理解に必要な理
論的な事項について説明する。
Prior to detailed description of the present invention, theoretical matters necessary for understanding the present invention will be explained.

まず左右輪の回転数から自動車の旋回状態、特に旋回上
il Rがめられる理由を第1図(C1を用いて説明す
る。第1図(C1は車両旋回時の旋回半径と車輪の回転
数との関係を示す。図において、nl。
First, we will explain the reason why the turning condition of a car, especially the turning speed, can be determined from the rotation speed of the left and right wheels using Figure 1 (C1). In the figure, nl.

n2は左右輪の回転数、n3は車両中心における回転数
、Kはキングピン間の距離、θは車両の旋回角である。
n2 is the rotation speed of the left and right wheels, n3 is the rotation speed at the center of the vehicle, K is the distance between the king pins, and θ is the turning angle of the vehicle.

今、時間tの間に車両が角度θだけ旋回したとし、又ボ
イールヘースL及び後輪と車両重心位置間の距離gが旋
回半径Rに比較して小さいものと仮定すると、次の関係
が成立する。
Now, assuming that the vehicle has turned by an angle θ during time t, and assuming that the distance g between the boiler height L and the rear wheels and the vehicle center of gravity are small compared to the turning radius R, the following relationship holds true. .

・・・(2) この式(2)を変形すると、 に −−−(n 2 + n 1 ) ・°・ R= □ n 2−nl ・・・(3) この式(3)より、左右輪の回転数n1.n2がら旋回
上fl Rがめられる。ここで通常の走行時には車輪に
横ずべりが生しているので、その車両の前後輪の横ずべ
り角を考慮して回転数からめられた旋回半径Rを補正係
数aでもって補正すれば、次式(4)で示す実際の車両
重心位置での旋回半径Rがめられる。
...(2) If we transform this equation (2), we get --- (n 2 + n 1 ) ・°・ R= □ n 2 - nl ... (3) From this equation (3), we can see that the left and right Rotation speed of the wheel n1. Fl R was detected while turning from n2. Since the wheels experience side slip during normal driving, if the turning radius R determined from the rotational speed is corrected using the correction coefficient a, taking into account the side slip angle of the front and rear wheels of the vehicle, The turning radius R at the actual vehicle center of gravity position is determined by the following equation (4).

−(n 2 +n 1) R=a □ ・・・(4) n2 nl 次に車両の旋回状態によって車両のローリング及びピッ
チングを抑制制御できる理由を第1図+al(blを用
いて説明する。第1図(al (blは旋回時の車両の
状態を概念的に示したものであり、図において、■は車
速、mは車重、Fは遠心力、Flは遠心力Fの垂直成分
、Rは旋回半径、k、Cはサスペンションのばね定数及
びダンパの減衰係数、Xは車体の上下方向の変位量であ
る。
-(n 2 + n 1) R=a □ ...(4) n2 nl Next, the reason why rolling and pitching of the vehicle can be suppressed and controlled depending on the turning state of the vehicle will be explained using FIG. Figure 1 (al) (bl conceptually shows the state of the vehicle when turning. In the figure, ■ is the vehicle speed, m is the vehicle weight, F is the centrifugal force, Fl is the vertical component of the centrifugal force F, and R is the turning radius, k and C are the spring constant of the suspension and the damping coefficient of the damper, and X is the amount of vertical displacement of the vehicle body.

車両旋回時の心加速度は一般にF / m = v 2
/Rである。すると心加速度の変化は次式で表わされる
The cardiac acceleration when turning a vehicle is generally F/m = v2
/R. Then, the change in cardiac acceleration is expressed by the following equation.

・・・・・・(5) ここで式(5)において、clv/dtは車両の加速度
、dR/dtは旋回半径変化率である。
(5) Here, in equation (5), clv/dt is the acceleration of the vehicle, and dR/dt is the rate of change in the turning radius.

またサスペンションの運動方程式は次式で表わされる。The equation of motion of the suspension is expressed by the following equation.

・・・・・・(6〕 」二記式+51. (6)より請求心加速度はロール速
度dx / d tの関数であり、従って車速、車両の
加速度、旋回半径、旋回半径変化率をめることにより、
ばね定数k及び減衰係数Cを決定し、車両のローリング
を抑制することが可能である。
・・・・・・(6) ``2 notation + 51. From (6), the center acceleration is a function of the roll speed dx / dt, and therefore, the vehicle speed, vehicle acceleration, turning radius, and rate of change of the turning radius can be estimated. By doing so,
It is possible to determine the spring constant k and the damping coefficient C to suppress rolling of the vehicle.

またさらに車輪の回転数から急アクセル時や急ブレーキ
時が判別できることから、これにより車両のピッチング
の発生をも抑制できるものである。
Furthermore, since sudden acceleration or sudden braking can be determined based on the number of rotations of the wheels, it is possible to suppress the pitching of the vehicle.

以下、本発明の実施例を図について説明する。Hereinafter, embodiments of the present invention will be described with reference to the drawings.

第2図及び第3図は本発明の一実施例による自動車のコ
ーナリングセンサを備えた可変ダンパ制御装置を示す。
2 and 3 show a variable damper control device with a cornering sensor for a motor vehicle according to an embodiment of the present invention.

第2図において、1a〜1dは自動車の前輪及び後輪、
2a〜2dは可変ダンパ3a〜3dとばね部材43〜4
dとにより構成され、前輪及び後輪1a〜1dを車体に
支承するサスペンション、5a〜5dは可変ダンパ3a
〜3dの減衰力を高めるだめのアクチュエータ、6a、
6bは前輪又は後輪1a〜1dのうちいずれが一方の左
輪及び右輪の回転数を検出する左右の回転数センサ、7
は上記両センザ6a、6bの出力を受け、左右輪の回転
数差から自動車の旋回状態を判別し、上記アクチュエー
タ5a〜5dに制御信号を出力して該アクチュエータ5
a〜5dを駆動制御するコントローラである。
In FIG. 2, 1a to 1d are the front wheels and rear wheels of a car,
2a to 2d are variable dampers 3a to 3d and spring members 43 to 4
d, which supports the front and rear wheels 1a to 1d on the vehicle body; 5a to 5d are variable dampers 3a;
~3d actuator for increasing the damping force, 6a,
6b is a left and right rotational speed sensor for detecting the rotational speed of one of the front wheels or rear wheels 1a to 1d, one of the left and right wheels;
receives the outputs of the two sensors 6a and 6b, determines the turning state of the vehicle from the rotational speed difference between the left and right wheels, outputs a control signal to the actuators 5a to 5d, and controls the actuators 5a to 5d.
This is a controller that drives and controls a to 5d.

また第3図は上記コントローラ7のより詳細な構成を示
し、図において、8は回転数センサ6a。
Further, FIG. 3 shows a more detailed configuration of the controller 7, and in the figure, 8 is a rotation speed sensor 6a.

6bの再出力の差n2−n1をめる減算回路、9は回転
数センサ6a、6bの再出力の平均値(n2+nt )
/2をめる演算回路、IOは上記両回路8.9の出力を
受け、a (((n2 +n1)/2)−K)/ (n
2〜rz )という式を用いて旋回半径Rを演算する演
算回路、19は上記回路8〜10によって構成され、自
動車の旋回状態を判別する判別回路、11は平均値演算
回路9の出力を受け、πr(n1+n2)という式を用
いて車速■をめる演算回路であり、ここでrは車輪の半
径である。また12は旋回半径及び車速の再演算回路1
0.11の出力を受け、V2/Rという式を用いて車両
の心加速度F/mを演算する演算回路、13は上記演算
回路12の出力と設定値発生回路14の出力とを比較す
る比較器、15ば車速演算回路11の出力から車両の加
速度の大きさl v l (−ldv/dtl)を演算
する演算回路、16は加速度演算回路15の出力と設定
値発生回路17の出力とを比較する比較器、18は上記
両比較器13.16の出力を2人力とするOR回路であ
り、該OR回路18の“1”信号は制御信号としてアク
チュエータ5a〜5dに加えられ、これによりダンパ3
a〜3dの減衰力が高く調整されるようになっている(
但し、第3図中には1つのアクチュエータ5a及びダン
パ3aのみを示している)。
6b is a subtraction circuit that calculates the difference n2-n1 between the re-outputs, and 9 is the average value (n2+nt) of the re-outputs of the rotational speed sensors 6a and 6b.
The arithmetic circuit and IO that calculates /2 receives the outputs of both circuits 8.9 and calculates a (((n2 +n1)/2)-K)/(n
A calculation circuit 19 calculates the turning radius R using the formula 2 to rz); 19 is a determination circuit configured by the above circuits 8 to 10 and determines the turning state of the automobile; 11 receives the output of the average value calculation circuit 9; , πr(n1+n2), where r is the radius of the wheel. 12 is a turning radius and vehicle speed recalculation circuit 1
A calculation circuit receives the output of 0.11 and calculates the cardiac acceleration F/m of the vehicle using the formula V2/R, and 13 is a comparison circuit that compares the output of the calculation circuit 12 and the output of the set value generation circuit 14. 15 is an arithmetic circuit that calculates the magnitude of vehicle acceleration l v l (-ldv/dtl) from the output of the vehicle speed arithmetic circuit 11; The comparator 18 for comparison is an OR circuit that outputs the outputs of both the comparators 13 and 16, and the "1" signal of the OR circuit 18 is applied as a control signal to the actuators 5a to 5d, thereby controlling the damper. 3
The damping force of a to 3d is adjusted to be high (
However, only one actuator 5a and one damper 3a are shown in FIG. 3).

次に動作について説明する。Next, the operation will be explained.

本装置において、左右輪の回転数n1.n2が回転数セ
ンサ6a、6bで検出されると、減算回路8で左右輪の
回転数差n2−nlがめられるとともに、演算回路9で
左右輪の回転数平均値(n2→−n 1)/2が演算さ
れ、この回転数の差n2−n1と平均値(n2+ni)
/2とにより演算回路10で車両の旋回半径Rが演算さ
れ、又同時に演算回路11で車速■がめられる。車両の
旋回半径R及び車速■がめられると、演算回路12で車
両の心加速度F/mがめられ、この心加速度F / m
ば比較器13で設定値と比較される。また演算回路15
では車速■から車両加速度の大きさ101がめられ、こ
の車両加速度の大きさ1÷1は比較器16で設定値と比
較される。
In this device, the rotation speed n1 of the left and right wheels. When n2 is detected by the rotational speed sensors 6a and 6b, the subtraction circuit 8 calculates the rotational speed difference n2-nl between the left and right wheels, and the arithmetic circuit 9 calculates the average rotational speed of the left and right wheels (n2→-n 1)/ 2 is calculated, and the difference n2 - n1 of this rotation speed and the average value (n2 + ni)
/2, the turning radius R of the vehicle is calculated in the arithmetic circuit 10, and at the same time, the vehicle speed is determined in the arithmetic circuit 11. When the turning radius R and vehicle speed of the vehicle are determined, the arithmetic circuit 12 determines the cardiac acceleration F/m of the vehicle, and this cardiac acceleration F/m
For example, the comparator 13 compares it with a set value. Also, the arithmetic circuit 15
Then, the magnitude 101 of the vehicle acceleration is determined from the vehicle speed ■, and the magnitude 1/1 of this vehicle acceleration is compared with a set value in the comparator 16.

そして車両の旋回半径Rが小さく、車両にローリングが
発生ずるような場合には比較器13の出力が“1”とな
り、この”1”信号が制御信号としてアクチュエータ5
a〜5dに加えられ、これによりダンパ3a〜3dの減
衰力が高くなって車両のローリングが抑制される。また
車両の旋回が完了すると、比較器13の出力が“′0”
となることから、制御信号の発生を停止され、これによ
りダンパ3a〜3dの減衰力は通常の低い状態に戻り、
車両の快適さが保証される。
When the turning radius R of the vehicle is small and rolling occurs in the vehicle, the output of the comparator 13 becomes "1", and this "1" signal is used as a control signal to control the actuator 5.
a to 5d, thereby increasing the damping force of the dampers 3a to 3d and suppressing rolling of the vehicle. When the vehicle completes a turn, the output of the comparator 13 becomes “0”.
Therefore, the generation of the control signal is stopped, and the damping force of the dampers 3a to 3d returns to the normal low state.
Vehicle comfort is guaranteed.

また急ブレーキ時又は急アクセル時になると、車両加速
度の大きさIolが大きくなることから、比較器16の
出力が“1”となり、この“1”信号が制御信号として
アクチュエータ5a〜5dに加えられる。従ってこの場
合もダンパ3a〜3dの減衰力が高くなり、これにより
車両のピッチングが抑制される。
Furthermore, when sudden braking or acceleration occurs, the magnitude of the vehicle acceleration Iol increases, so the output of the comparator 16 becomes "1", and this "1" signal is applied as a control signal to the actuators 5a to 5d. Therefore, in this case as well, the damping force of the dampers 3a to 3d becomes high, thereby suppressing pitching of the vehicle.

以上のような本実施例の装置では、1つのコーナリング
センサでもって車両のローリング及びピッチング双方の
制御を行なうことができる。またこのコーナリングセン
サを回転数センサを用いて構成しており、操舵角センナ
を用いる場合に比し組付及び調整が簡単である。さらに
1種類のセンサで旋回状態を検出できるので、従来のよ
うに操舵角センサと車速センサとを用いて旋回状態を検
出する場合に比し、構造が簡単であり、又コストも安価
である。
In the device of this embodiment as described above, both rolling and pitching of the vehicle can be controlled using one cornering sensor. Furthermore, this cornering sensor is constructed using a rotation speed sensor, and is easier to assemble and adjust than when a steering angle sensor is used. Furthermore, since the turning state can be detected with one type of sensor, the structure is simpler and the cost is lower than the conventional case where the turning state is detected using a steering angle sensor and a vehicle speed sensor.

ところで上記実施例ではコントローラ7をハード構成し
た場合について説明したが、このコントローラ7はソフ
ト構成してもよく、第4図は上記コントローラ7をソフ
ト構成した場合の演算処理のフローを示す。図において
、21はシステムを初期化するステップ、22は回転数
センサ6a。
By the way, in the above embodiment, a case has been described in which the controller 7 is configured as a hardware, but the controller 7 may also be configured as a software, and FIG. 4 shows the flow of arithmetic processing when the controller 7 is configured as a software. In the figure, 21 is a step for initializing the system, and 22 is a rotation speed sensor 6a.

6bの出力を読み込むステップ、23は左右輪の回転数
差n2−nlを演算するステップ、24は左右輪の回転
数の平均値(n2→−rz )/2を演算するステップ
、25は上記求めた左右輪の回転数の差n2−n1及び
平均値(n2+rz )/2を用いて旋回半径Rを演算
するステップ、26はπr (n2 +n1 )という
式を用いて車速を演算するステップ、27は心加速度V
2/Rを演算するステップ、2Bはめた心加速度の大き
さl v2/Rlが設定値より大きいか否かを判定する
ステップ、29は車両の加速度v (=dv/dt)を
演算するステップ、30は加速度の大きさ1:Jlが設
定値より大きいか否かを判定する判定ステップ、31は
アクチュエータ5a〜5dに対し制御信号を発生してダ
ンパ3a〜3dの減衰力を高めるステップ、32は制御
信号の発生を停止してダンパ3a〜3dの減衰力を低い
状態に保持するステップである。
6b is a step of reading the output, 23 is a step of calculating the rotational speed difference n2-nl between the left and right wheels, 24 is a step of calculating the average value of the rotational speeds of the left and right wheels (n2→-rz)/2, and 25 is the above calculation. 26 is a step of calculating the vehicle speed using the formula πr (n2 + n1), and 27 is cardiac acceleration V
Step of calculating 2/R, step of determining whether the magnitude of cardiac acceleration lv2/Rl fitted into 2B is larger than a set value, step 29 of calculating vehicle acceleration v (=dv/dt), 30 is a determination step for determining whether the acceleration magnitude 1: Jl is larger than a set value; 31 is a step for generating a control signal for the actuators 5a to 5d to increase the damping force of the dampers 3a to 3d; and 32 is a step for increasing the damping force of the dampers 3a to 3d. This is a step in which the generation of the control signal is stopped to maintain the damping force of the dampers 3a to 3d in a low state.

なお本実施例の動作は容易に理解されるので、その説明
は省略する。
Note that since the operation of this embodiment is easily understood, its explanation will be omitted.

なお上記実施例では可変ダンパを2段階に制御するよう
にしたが、予めサスペンションの運動方程式から遠心力
に対して最適な減衰係数をめておいて、ダンパの減衰力
を連続的に制御するようにしてもよい。
In the above embodiment, the variable damper was controlled in two stages, but it is also possible to determine the optimum damping coefficient for centrifugal force from the equation of motion of the suspension in advance, and then continuously control the damping force of the damper. You can also do this.

また上記実施例では本発明の自動車のコーナリングセン
サをサスペンションの可変ダンパの制御に用いた場合に
ついて説明したが、本発明の自動車のコーナリングセン
サは自動車の旋回状態に応して制御されるものであれば
これ以外の制御、例えばパワーステアリングの操作力の
制御に用いることもできる。
Furthermore, in the above embodiment, the case where the automotive cornering sensor of the present invention is used to control the variable damper of the suspension has been described, but the automotive cornering sensor of the present invention may be used to control the vehicle in accordance with the turning state of the vehicle. For example, it can also be used for control other than this, for example, controlling the operating force of power steering.

〔発明の効果〕〔Effect of the invention〕

以上のように、本発明に係る自動車のコーナリングセン
サによれば、前輪又は後輪いずれか一方の左右輪の回転
数を検出し、左右輪の回転数差から自動車の旋回状態を
判別するようにしたので、従来のような操舵角センサを
用いることなく、自動車の旋回状態を検出でき、組付及
び調整作業が簡単であり、又1種類のセンサでもって旋
回状態を検出でき、構造wJ単かつ安価であるという効
果がある。
As described above, according to the cornering sensor for a vehicle according to the present invention, the rotation speed of either the front or rear wheels is detected, and the turning state of the vehicle is determined from the difference in rotation speed between the left and right wheels. Therefore, the turning state of the automobile can be detected without using a conventional steering angle sensor, the assembly and adjustment work is easy, the turning state can be detected with one type of sensor, and the structure wJ is simple and simple. It has the effect of being inexpensive.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の理解に必要な理論的事項を説明するた
めの車両の概略図、第2図は本発明の一実施例による自
動車のコーナリングセンサを備えた可変ダンパの制御装
置の概略構成図、第3図は上記装置のより詳細な構成図
、第4図は本発明の他の実施例におけるフローチャー1
・を示す図である。 1a〜1d・・・前、後輪、6a、6b・・・回転数セ
ンサ、7・・・コン1−ローラ(判別手段)。 特 許 出 願−人 東洋工業株式会社(外1名)代理
人 弁理士 早 瀬 憲 −
FIG. 1 is a schematic diagram of a vehicle for explaining theoretical matters necessary for understanding the present invention, and FIG. 2 is a schematic diagram of a control device for a variable damper equipped with an automotive cornering sensor according to an embodiment of the present invention. 3 is a more detailed configuration diagram of the above-mentioned apparatus, and FIG. 4 is a flowchart 1 in another embodiment of the present invention.
・It is a figure showing. 1a to 1d...front and rear wheels, 6a, 6b...rotation speed sensor, 7...controller 1-roller (discrimination means). Patent application - Person: Toyo Kogyo Co., Ltd. (1 other person) Representative Patent attorney Ken Hayase -

Claims (1)

【特許請求の範囲】[Claims] (1) 自動車の前輪又は後輪のうぢいずれか一方の左
右輪の回転数をそれぞれ検出する左右の回転数センサと
、該両センサからの出力信号を受け両用力信号の差を演
算して自動車の旋回状態を判別するI’ll別手段とを
備えたことを特徴とする自動車の二1−ナリングセンザ
(1) Left and right rotational speed sensors that detect the rotational speed of either the front or rear wheels of the vehicle, and a system that receives output signals from both sensors and calculates the difference between the dual-use force signals. 21. A turning sensor for an automobile, characterized in that it is provided with separate means for determining the turning state of the automobile.
JP22169883A 1983-11-24 1983-11-24 Cornering sensor for car Pending JPS60113710A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22169883A JPS60113710A (en) 1983-11-24 1983-11-24 Cornering sensor for car

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22169883A JPS60113710A (en) 1983-11-24 1983-11-24 Cornering sensor for car

Publications (1)

Publication Number Publication Date
JPS60113710A true JPS60113710A (en) 1985-06-20

Family

ID=16770871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22169883A Pending JPS60113710A (en) 1983-11-24 1983-11-24 Cornering sensor for car

Country Status (1)

Country Link
JP (1) JPS60113710A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63218866A (en) * 1987-03-09 1988-09-12 Honda Motor Co Ltd Yaw rate detector for vehicle
EP0296756A2 (en) * 1987-06-26 1988-12-28 Ford Motor Company Limited Vehicular controller with differential wheel speed input
EP0308263A2 (en) * 1987-09-16 1989-03-22 Honda Giken Kogyo Kabushiki Kaisha Front and rear wheel steering vehicle with a minimized manoeuvering area
US5828975A (en) * 1994-11-21 1998-10-27 Sumitomo Rubber Industries, Ltd. Method and device for calculating turning radius of vehicle taking load movement thereof into consideration
JP2016022830A (en) * 2014-07-22 2016-02-08 本田技研工業株式会社 Control device of attenuation force variable damper

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5281830A (en) * 1975-12-29 1977-07-08 Okamura Shiro Vehicle steering system
JPS56154306A (en) * 1980-01-26 1981-11-28 Lucas Industries Ltd Suspension device for car
JPS58116214A (en) * 1981-12-29 1983-07-11 Nippon Denso Co Ltd Controller of shock absorber

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5281830A (en) * 1975-12-29 1977-07-08 Okamura Shiro Vehicle steering system
JPS56154306A (en) * 1980-01-26 1981-11-28 Lucas Industries Ltd Suspension device for car
JPS58116214A (en) * 1981-12-29 1983-07-11 Nippon Denso Co Ltd Controller of shock absorber

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63218866A (en) * 1987-03-09 1988-09-12 Honda Motor Co Ltd Yaw rate detector for vehicle
JPH0562953B2 (en) * 1987-03-09 1993-09-09 Honda Motor Co Ltd
EP0296756A2 (en) * 1987-06-26 1988-12-28 Ford Motor Company Limited Vehicular controller with differential wheel speed input
EP0308263A2 (en) * 1987-09-16 1989-03-22 Honda Giken Kogyo Kabushiki Kaisha Front and rear wheel steering vehicle with a minimized manoeuvering area
US5828975A (en) * 1994-11-21 1998-10-27 Sumitomo Rubber Industries, Ltd. Method and device for calculating turning radius of vehicle taking load movement thereof into consideration
JP2016022830A (en) * 2014-07-22 2016-02-08 本田技研工業株式会社 Control device of attenuation force variable damper

Similar Documents

Publication Publication Date Title
US9227637B2 (en) Vehicle braking/driving force control apparatus
US20060052908A1 (en) Vehicle stability control system
JP4655913B2 (en) Wheel vertical acceleration detection device for posture correction of detection value of vertical acceleration sensor
CN112776552A (en) Active control system for vehicle suspension
US11325599B2 (en) Vehicle control system for adjusting longtitudinal motion to reduce deviation of lateral motion
JP4207698B2 (en) Vehicle rollover prevention device
JPS60113710A (en) Cornering sensor for car
JP4046790B2 (en) Device for determining a value indicating skew rigidity in an automobile
JPH05254328A (en) Method and apparatus for generating signal for driving chassis control system
JP4367641B2 (en) Electric vehicle control system
JP4251166B2 (en) Vehicle control device
JP3748595B2 (en) Anti-lock brake control device for vehicle
KR100388104B1 (en) system for controlling the stability of vehicles
US20200180382A1 (en) Damper control system for vehicle
KR100262572B1 (en) Vehicle active roll damping control system and method
JP3713995B2 (en) Vehicle travel control device
US11904842B2 (en) Method for controlling driving force of vehicle
JPH042513A (en) Suspension control device
JP7247992B2 (en) vehicle controller
US20230311853A1 (en) Vehicle turning control device and method thereof
JP3334572B2 (en) Damping force control device and road surface estimation method
JPS632802B2 (en)
US20240116519A1 (en) Method for controlling driving of vehicle
JP2002005657A (en) Detection method for angle of inclination of vehicle body
KR100381773B1 (en) How to Control Anti-Roll of Vehicles