JPS60113347A - Optical device of photomagnetic memory - Google Patents

Optical device of photomagnetic memory

Info

Publication number
JPS60113347A
JPS60113347A JP22239183A JP22239183A JPS60113347A JP S60113347 A JPS60113347 A JP S60113347A JP 22239183 A JP22239183 A JP 22239183A JP 22239183 A JP22239183 A JP 22239183A JP S60113347 A JPS60113347 A JP S60113347A
Authority
JP
Japan
Prior art keywords
beam splitter
optical
wave
light
magneto
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22239183A
Other languages
Japanese (ja)
Other versions
JPH0756710B2 (en
Inventor
Toshihisa Deguchi
出口 敏久
Tetsuya Inui
哲也 乾
Yoshikazu Fujii
義和 藤居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP58222391A priority Critical patent/JPH0756710B2/en
Publication of JPS60113347A publication Critical patent/JPS60113347A/en
Publication of JPH0756710B2 publication Critical patent/JPH0756710B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/10532Heads

Abstract

PURPOSE:To enable the improvement of S/N by controlling optical characteristics including the phase of a beam splitter, a mirror, an analyser etc. utilized for reproduction. CONSTITUTION:Reflected information light from a recording medium 1 is led to a detection side system by a polarization beam splitter 3 having function to improve the degree of polarization for reflected light and function to rotate polarization orientation and enlarge apparent magnetic optical rotation angle for transmitted light. Dielectric multilayer coating is made on the slanted face of a total reflection prism 6 to make phase deviation between S-wave and P- wave to be npi. Optical characteristics is given to the reflecting face of the beam splitter to give the relation of TP>TS between amplitude transmittivity TP for P-polarized light and amplitude transmittivity TS for S-polarized light and to make phase difference delta between transmitted P-wave and S-wave is npi-pi/4 <=deltanpi+pi/4 (n: integer).

Description

【発明の詳細な説明】 く技術分野〉 本発明は磁性膜を記録媒体としレーザ光等の光ビームを
記録媒体に照射することにより情報の記録・再生・消去
を行う光磁気記憶装置に関するものであり、特にその光
学装置に関する。
[Detailed Description of the Invention] Technical Field The present invention relates to a magneto-optical storage device that uses a magnetic film as a recording medium and records, reproduces, and erases information by irradiating the recording medium with a light beam such as a laser beam. particularly regarding its optical device.

〈従来技術〉 近年、光記憶装置は高密度化、大容量化、及び高速アク
セス化が可能なメモリ装置f’?とじて広く研究されて
いる。このうち記憶媒体に微細なビット列を形成し、該
ピット部における光ビームの回折現象を利用して光再生
する装置、あるいは記憶媒体に屈折率の異なる領域をビ
ット状に形成しその反射率あるいけ透過率の変化を利用
して光再生する装置について一部実用化が図られている
。しかしながら上記装置は再生専用あるいは情報の追加
記録が可能であるという機能をもつに留まっており、メ
モリ装置の一大特徴たるべき消去機能までも有する光記
憶装置は未だ実用化に至っていない。
<Prior Art> In recent years, optical storage devices have become memory devices f'? that are capable of higher density, larger capacity, and faster access. It has been widely studied. Among these, there is a device that forms a minute bit string on a storage medium and reproduces light by utilizing the diffraction phenomenon of a light beam in the pit portion, or a device that forms bit-like regions with different refractive indexes on the storage medium and changes the reflectance. Some devices for reproducing light using changes in transmittance have been put into practical use. However, the above-described devices only have the function of being read-only or capable of recording additional information, and an optical storage device that even has an erasing function, which is a major feature of a memory device, has not yet been put into practical use.

ところで、磁性体を記憶媒体とする光磁気記憶装置は記
録・消去が容易に行える極めて有用な光記憶装置となり
うるちのである。しかしながら、この光磁気記憶装置は
再生光学系が他の光記憶装置に比べて複雑なこと、及び
再生信号の品質が悪いなどの問題がある。
By the way, a magneto-optical storage device using a magnetic material as a storage medium can be an extremely useful optical storage device that allows easy recording and erasing. However, this magneto-optical storage device has problems such as its reproducing optical system being more complex than other optical storage devices and the quality of the reproducing signal being poor.

〈目的〉 本発明は上記の様な従来問題に鑑みなされたものであり
、光再生信号の品質向上ならびに信頼性の向上を達成す
ることを目的とする。
<Purpose> The present invention has been made in view of the above-mentioned conventional problems, and an object of the present invention is to improve the quality and reliability of optically reproduced signals.

〈実施例〉 以下、本発明に係る光磁気記憶装置の光学装置の一実施
例について図面を用いて詳細に説明する。
<Embodiment> Hereinafter, an embodiment of an optical device of a magneto-optical storage device according to the present invention will be described in detail with reference to the drawings.

第1図は本発明に係る光磁気記憶装置の再生装置の概略
構成説明図である。
FIG. 1 is an explanatory diagram of a schematic configuration of a reproducing apparatus for a magneto-optical storage device according to the present invention.

It−j希土類金属と遷移金属のアモルファス合金薄膜
を記録材料とする垂直磁気異方性を有する磁気記録媒体
である。2け所定の強度のレーザ光を射出できる半導体
レーザ、3は射出レーザ光を平行光に変換するコリメー
トレンズ、/11:L 半導n<17−ザ2から射出さ
れた楕円レーザビームを略円形ビームに変換する成形プ
リズムであり、その入射面にはS偏光に対する無反射コ
ートがなされている。5は反射光に対してはその偏光度
を改善し、透過光に対してはその偏光方位を更に回転さ
せて見かけ上の磁気光学回転角を大きくせしめる作用を
備えた偏光ビームスプリッタであり、該偏光ビームスプ
リッタ5によって記録媒体lからの反射情報光は検出i
側糸、に導かれる。この偏光ビームスプリッタ5の更に
詳しい効果については後述する。
It-j is a magnetic recording medium having perpendicular magnetic anisotropy using an amorphous alloy thin film of a rare earth metal and a transition metal as a recording material. 2 semiconductor lasers that can emit laser light with a predetermined intensity; 3 collimating lenses that convert the emitted laser light into parallel light; It is a shaped prism that converts into a beam, and its entrance surface is coated with a non-reflection coating for S-polarized light. 5 is a polarizing beam splitter that has the function of improving the degree of polarization of reflected light and further rotating the polarization direction of transmitted light to increase the apparent magneto-optic rotation angle; The reflected information light from the recording medium l is detected by the polarizing beam splitter 5.
Guided by the side threads. More detailed effects of this polarizing beam splitter 5 will be described later.

6け光路4908曲げる全反射プリズムであり、その斜
面にはS波とP波間の位相ズレがnπとなる様な誘電体
多層コートがなされており、入射偏光の状態を維持した
まま光路を90°変更する機能をもつ。7は媒体1上に
微小光スポット全結像するための対物レンズである。8
は上記偏光ビームスプリッタ5と同様透過光に対して磁
気光学回転角を増大させる機能をもつ偏光ビームスプリ
ッタである。9は反射情報光を後述する各光検出器上に
所定の大きさ及び形状で光ビームを投射するためのスポ
ットレンズ、10は反射情報光の偏光方位を所定の方向
に回転できる1波長板、11けS偏光を分離する偏光ビ
ームスプリッタ、12.13は偏光ビームスプリッタ1
1により検波された情報光を受光する光検出器であり、
通常5iPINフオトダイオードあるいはS 1APD
(AvalanchePhoto Diode)が使用
される。14はスポットレンズ、15け記録媒体I上の
トラック接線方向に対してその焦線全45°傾けて設置
されるンリンドリカルレンズ、16は前記スポットレン
ズ14ならびにンリンドリカルレンズ15による相乗作
用によって記録媒体1と対物レンズ7との間の相対距離
の変化を検出するための複合素子型光検出器であり、本
実施例では光スポットと情報トラックとの位置ズレ情報
(トラッキング情報)をも検出できる様になっている。
It is a total reflection prism that bends the optical path 4908 times, and its slope is coated with a dielectric multilayer so that the phase shift between the S wave and the P wave is nπ, and the optical path is bent by 90 degrees while maintaining the state of incident polarization. Has the ability to change. Reference numeral 7 denotes an objective lens for forming a complete image of a minute light spot on the medium 1. 8
is a polarizing beam splitter which has the function of increasing the magneto-optical rotation angle of transmitted light, similar to the polarizing beam splitter 5 described above. 9 is a spot lens for projecting a light beam of a predetermined size and shape onto each photodetector (described later); 10 is a one-wavelength plate capable of rotating the polarization direction of the reflected information light in a predetermined direction; 11 is a polarizing beam splitter that separates S-polarized light, 12.13 is a polarizing beam splitter 1
A photodetector that receives information light detected by 1,
Usually 5iPIN photodiode or S1APD
(Avalanche Photo Diode) is used. 14 is a spot lens; 15 is an lindrical lens whose focal line is inclined by 45 degrees with respect to the tangential direction of the track on the recording medium I; This is a composite element type photodetector for detecting changes in the relative distance between the recording medium 1 and the objective lens 7, and in this embodiment, it also detects positional deviation information (tracking information) between the optical spot and the information track. It looks like it can be done.

次に偏光ビームスプリッタ5.8の作用について説明す
る。
Next, the action of the polarizing beam splitter 5.8 will be explained.

第2図は偏光ビームスプリッタ5,8の光学特性ヲ示す
ベクトル図である。半導f1にレーザ2より射出される
レーザビームは偏光ビームスプリッタ5に対してS偏光
となるように設定されており、S偏光の状態で記録媒体
1に到達する。記録媒(+<lにて反射され再び偏光ビ
ームスプリッタ5に入射した光は記録媒体lの磁化状態
(上向きもしくは下向きの磁化)に応じてその偏波面が
右もしくは左に微小角(カー回転角α)回転した偏光と
なり、これをそれぞれM″−1M−とすると偏光ビーム
スプリッタ5によって検出系側に透過した偏光はそれぞ
れM+′1M−′となる。同図に示される様に偏光ビー
ムスプリッタ5における透過の過程で光エネルギは減じ
るが、偏波面の回転角βは偏光ビー回転角が増大された
ことになる0又、偏光ビームスプリッタ8によって更に
回転角の増大の効果を受ける。しかしながら上記の回転
角増大比は、偏光ビームスプリッタによって反射される
S波とP波の間の位相ズレがn7Lの場合であり、上記
位相ズしがnπからズした場合には増大比は小さくなる
とともに楕円率が大きくなり、信号変調度が小さくなっ
てS/N fl低下する傾向にある。
FIG. 2 is a vector diagram showing the optical characteristics of the polarizing beam splitters 5 and 8. The laser beam emitted from the laser 2 to the semiconductor f1 is set to become S-polarized light with respect to the polarization beam splitter 5, and reaches the recording medium 1 in the S-polarized state. The light reflected by the recording medium (+<l) and re-injected into the polarizing beam splitter 5 changes its polarization plane to the right or left by a small angle (Kerr rotation angle) depending on the magnetization state (upward or downward magnetization) of the recording medium l. α) Rotated polarized light, and if these are respectively M''-1M-, the polarized lights transmitted to the detection system side by the polarizing beam splitter 5 are M+'1M-'.As shown in the figure, the polarized beam splitter 5 The optical energy is reduced during the transmission process, but the rotation angle β of the polarization plane is 0, which means that the polarization beam rotation angle is increased.In addition, the rotation angle is further increased by the polarization beam splitter 8.However, the rotation angle β of the polarization plane is increased. The rotation angle increase ratio is when the phase shift between the S wave and the P wave reflected by the polarizing beam splitter is n7L, and when the above phase shift deviates from nπ, the increase ratio becomes smaller and the ellipticity increases. increases, the degree of signal modulation decreases, and the S/N fl tends to decrease.

このことを計算によりめた結果を第3図に示す。第3図
は第4図に示す様な略モデルによりした時の透過される
P波、S波間の位相ズレδとS/N の関係を示す。第
4図で21は検光子、22け光検出器である。第3図か
ら見てn足−二≦δ≦nル+、4(n:整数)が必要で
ある。第3図の結果は検光子21をS/N が最大とな
る方位に合わせたときに得られたS/N の相対値であ
るが、検光子21の方位をS方位とP方位の中間(45
°)に合わせた時に得られるS/N も同様な傾向を示
す。
The results of this calculation are shown in FIG. FIG. 3 shows the relationship between the phase shift δ between the transmitted P wave and S wave and the S/N when the approximate model shown in FIG. 4 is used. In FIG. 4, 21 is an analyzer and 22 photodetectors. As seen from FIG. 3, n feet - 2 ≦ δ ≦ n + 4 (n: integer) are required. The results shown in Figure 3 are relative values of S/N obtained when the analyzer 21 is set at the direction where the S/N is maximum. 45
The S/N ratio obtained when adjusting the angle (°) also shows a similar tendency.

またこのS/N 劣化は光学系の消光比が悪化すればさ
らに大きくなり、よって偏光ビームスプリッタの位相ズ
レδの管理が極めて重要となる。またこの位相ズレδは
偏光ビームスプリッタ5.8に限らずその他の光学素子
例えば全反射プリズム6等でも管理が必要である。
Moreover, this S/N deterioration becomes even greater as the extinction ratio of the optical system deteriorates, and therefore, management of the phase shift δ of the polarizing beam splitter becomes extremely important. Further, this phase shift δ needs to be managed not only in the polarizing beam splitter 5.8 but also in other optical elements such as the total reflection prism 6.

次に偏光ビームスプリッタ5,8が備えるべき光学特性
につ因て説明する。前述した様に偏光ビームスプリッタ
5,8を上述の構成で組み込めば磁気光学回転角を増大
して再生を容易にすること、又、回転角が大きくなった
結果、検光子の方位角を大きくできるため光学素子の消
光比がS/N 劣化に与える作用を減らせること等の効
果が期待でき、理想的な再生を行なった場合に得られる
S/Nに近づけることが容易になる。
Next, the optical characteristics that the polarizing beam splitters 5 and 8 should have will be explained. As mentioned above, if the polarizing beam splitters 5 and 8 are incorporated in the above configuration, the magneto-optic rotation angle can be increased to facilitate reproduction, and as a result of the increased rotation angle, the azimuth angle of the analyzer can be increased. Therefore, effects such as reducing the effect of the extinction ratio of the optical element on S/N deterioration can be expected, and it becomes easy to approach the S/N obtained when ideal reproduction is performed.

しかしながら偏光ビームスプリッタ5,8によって記録
媒体1が持つ基本的なS/N ’i越えることは不可能
であり、よって偏光ビームスプリッタ5.8の機能とし
てはいかに記録媒体lの情報信号を劣化させることなく
検出器に導くことができるかが重要となる。一般に光検
出器に光電子槽l〕管、APD(Avalanche 
Photo Diode )等の増巾機能を持つ素子を
用いる場合の最大のノイズ源は光ンヨットノイズであり
、そのS/N 比V、j、、S/Nci(p−o(p:
検波される光量、θ:磁気光学1i11転角)の式で表
わすことができる。従ってS/N ’に劣化させないた
めに必要な光学特性Tp、 T8け偏光ビームスプリッ
タに入射される前の磁気光学回転角をθ。とすると近似
的に JT・θ。
However, it is impossible for the polarizing beam splitters 5 and 8 to exceed the basic S/N 'i of the recording medium 1, and therefore, the function of the polarizing beam splitter 5.8 is to determine how to degrade the information signal of the recording medium 1. What is important is whether it can be guided to the detector without any interference. In general, a photodetector is equipped with a photoelectronic tank l] tube, an APD (avalanche
When using an element with amplification function such as Photo Diode), the biggest noise source is optical yacht noise, and its S/N ratio V,j,,S/Nci(p-o(p:
The amount of light to be detected can be expressed by the following equation: θ: magneto-optical 1i11 rotation angle). Therefore, the optical characteristic Tp is required to prevent the S/N' from deteriorating, and the magneto-optical rotation angle before the beam is input to the polarizing beam splitter T8 is θ. Then, approximately JT・θ.

を満足する値とすれば良いことになる。即ち偏光ビーム
スプリッタを出た光の光量と磁気光学回転角の積が偏光
ビームスプリッタに入射される前と近似していればよい
It is sufficient if the value satisfies . That is, it is sufficient that the product of the light quantity and the magneto-optic rotation angle of the light exiting the polarizing beam splitter is similar to that before entering the polarizing beam splitter.

〈効果〉 以上説明した本発明によれば磁気光学記憶装置の再生に
利用するビームスプリッタ、ミラー、検光子等の位相ま
で含めた光学特性を管理することによりS/N ’i改
善することが可能となる。
<Effects> According to the present invention described above, it is possible to improve S/N'i by managing the optical characteristics including the phase of the beam splitter, mirror, analyzer, etc. used for reproduction of the magneto-optical storage device. becomes.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る光磁気記憶装置の概略構成説明図
、第2図は再生情報光の偏光状態を示すクトル図、第3
図は位相ズレδとS/N の関係のグラフ図、第4図は
再生略モデルの構成説明1゛りを示す。 図中、■=磁気記録媒体 2:半導体レーザ3:コリメ
ートレンズ 4:成形プリズム 5゜8.11:偏光ビ
ームスプリッタ 9.14ニスボツ15ニジリントリカ
ルレンズ 16:複合素子型光検出器 代理人 弁理士 福 士 愛 彦 (他2名)第1図 S (S/N )ref lCdag) 第3図
FIG. 1 is a schematic configuration diagram of a magneto-optical storage device according to the present invention, FIG. 2 is a vector diagram showing the polarization state of reproduced information light, and FIG.
The figure is a graph of the relationship between phase shift δ and S/N, and FIG. 4 shows a first explanation of the configuration of the reproduction model. In the figure, ■=Magnetic recording medium 2: Semiconductor laser 3: Collimating lens 4: Shaped prism 5° 8.11: Polarizing beam splitter 9.14 Varnished spot 15 Nijilinstrical lens 16: Complex element type photodetector Agent Patent attorney Yoshihiko Fukushi (and 2 others) Figure 1 S (S/N) ref lCdag) Figure 3

Claims (1)

【特許請求の範囲】 ■、垂直磁気異方性を有する磁性薄膜を記録媒体とし、
該記録媒体へのレーザビーム照射により情報の再生を行
う磁気光学記憶装置の光学装置において、光路中にビー
ムスプリッタを配し、該ビームスプリッタの反射面にP
偏光に対する振巾透過率TPとS偏光に対する振巾透過
率T8との間にTp)T8なる関係をもち、かつ透過し
たP波、S波間の位相差δがni−士≦J≦nfi+7
(n:整数)である様な光学特性を付与する誘電体薄膜
の多層コートを施してなることを特徴とする光磁気記憶
装置の光学装置。 2 記録媒体による磁気光学回転角をθ、ビームスプリ
ッタによるP波、S波の振巾透過率をそ/θキ1である
様な値に設定したことを特徴とする特許請求の範囲第1
項記載の光磁気記憶袋[1qの光学装置。
[Claims] (1) A magnetic thin film having perpendicular magnetic anisotropy is used as a recording medium;
In an optical device of a magneto-optical storage device that reproduces information by irradiating the recording medium with a laser beam, a beam splitter is arranged in the optical path, and a P
The amplitude transmittance TP for polarized light and the amplitude transmittance T8 for S-polarized light have the relationship Tp)T8, and the phase difference δ between the transmitted P wave and S wave is ni−shi≦J≦nfi+7
1. An optical device for a magneto-optical storage device, characterized in that it is coated with a multilayer dielectric thin film that imparts optical properties such that (n: an integer). 2. Claim 1, characterized in that the magneto-optical rotation angle by the recording medium is set to θ, and the amplitude transmittance of P waves and S waves by the beam splitter is set to a value such that /θki1.
Optical device of magneto-optical storage bag [1q.
JP58222391A 1983-11-24 1983-11-24 Optical device of magneto-optical storage device Expired - Lifetime JPH0756710B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58222391A JPH0756710B2 (en) 1983-11-24 1983-11-24 Optical device of magneto-optical storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58222391A JPH0756710B2 (en) 1983-11-24 1983-11-24 Optical device of magneto-optical storage device

Publications (2)

Publication Number Publication Date
JPS60113347A true JPS60113347A (en) 1985-06-19
JPH0756710B2 JPH0756710B2 (en) 1995-06-14

Family

ID=16781626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58222391A Expired - Lifetime JPH0756710B2 (en) 1983-11-24 1983-11-24 Optical device of magneto-optical storage device

Country Status (1)

Country Link
JP (1) JPH0756710B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6427056A (en) * 1987-07-22 1989-01-30 Nec Corp Magneto-optical recorder
US5077723A (en) * 1986-12-25 1991-12-31 Sony Corporation Optical pick-up apparatus which utilizes plural prisms
US5404490A (en) * 1987-01-28 1995-04-04 Olympus Optical Co., Ltd. Photomagnetic signal detecting device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57205840A (en) * 1981-06-10 1982-12-17 Canon Inc Vertical magnetic recording and reproducing device
JPS58122633A (en) * 1982-01-18 1983-07-21 Sharp Corp Optical device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57205840A (en) * 1981-06-10 1982-12-17 Canon Inc Vertical magnetic recording and reproducing device
JPS58122633A (en) * 1982-01-18 1983-07-21 Sharp Corp Optical device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5077723A (en) * 1986-12-25 1991-12-31 Sony Corporation Optical pick-up apparatus which utilizes plural prisms
US5404490A (en) * 1987-01-28 1995-04-04 Olympus Optical Co., Ltd. Photomagnetic signal detecting device
JPS6427056A (en) * 1987-07-22 1989-01-30 Nec Corp Magneto-optical recorder

Also Published As

Publication number Publication date
JPH0756710B2 (en) 1995-06-14

Similar Documents

Publication Publication Date Title
JP2504734B2 (en) Optical device of magneto-optical storage device
EP0107754A1 (en) Apparatus for magneto-optical information storage
JPS6370950A (en) Magneto-optical signal reproducer
JPH0250335A (en) Magneto-optical memory element
US5898661A (en) Optical information storage unit
JPS60113347A (en) Optical device of photomagnetic memory
EP0908872B1 (en) Optical information storage unit
JP3480810B2 (en) Optical information storage device
JPH0327977B2 (en)
JPH07121923A (en) Optical-pickup head device
JPS6255222B2 (en)
JP3514708B2 (en) Optical pickup device
JP2888280B2 (en) Optical head device
JP2511202B2 (en) Optical device
JP2624241B2 (en) Magneto-optical disk device
JPH08212615A (en) Optical device of magneto-optical storage device
JPH1021596A (en) Magneto-optical recording medium and optical reproducing device
JPH04349248A (en) Magneto-optical disk device
JPH053667B2 (en)
JPH0743847B2 (en) Magneto-optical storage element
JP2604381B2 (en) Magneto-optical recording device
JP2859519B2 (en) Optical information reproducing device
JPS59157856A (en) Reproduction structure for photomagnetic information recorder
JPH04278238A (en) Magnetooptic disk reproducing apparatus
JPS61210537A (en) Optical device