JP2888280B2 - Optical head device - Google Patents

Optical head device

Info

Publication number
JP2888280B2
JP2888280B2 JP8001739A JP173996A JP2888280B2 JP 2888280 B2 JP2888280 B2 JP 2888280B2 JP 8001739 A JP8001739 A JP 8001739A JP 173996 A JP173996 A JP 173996A JP 2888280 B2 JP2888280 B2 JP 2888280B2
Authority
JP
Japan
Prior art keywords
light
layer
hologram layer
substrate
head device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP8001739A
Other languages
Japanese (ja)
Other versions
JPH09190654A (en
Inventor
卓也 安澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP8001739A priority Critical patent/JP2888280B2/en
Publication of JPH09190654A publication Critical patent/JPH09190654A/en
Application granted granted Critical
Publication of JP2888280B2 publication Critical patent/JP2888280B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Optical Head (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光磁気ディスク用
の光ヘッド装置に属するものである。
The present invention relates to an optical head device for a magneto-optical disk.

【0002】[0002]

【従来の技術】特開平6−308309号公報記載の光
磁気ディスク用光ヘッド装置の従来例を図5に示す。半
導体レーザー1から出た光は、基板10の表面に形成さ
れた偏光ビームスプリッタ層3により反射され、コリメ
ートレンズ4によりコリメートされた後、収束レンズ5
により光ディスク6上に収束される。光ディスク6から
の戻り光は同じ光路を逆に進み、偏光ビームスプリッタ
層3において元の偏光成分の一部は透過し、カー効果に
よって生じる偏光成分はほとんど透過する。偏光ビーム
スプリッタ層3を透過した光は、図6の様な4つの領域
に分割されたパターンを持ち、且つプロトン交換層1
4、位相補償膜15、及び金属または誘電体の反射膜1
7から構成される複屈折回折格子層16により、x−y
平面内でy軸に対して−45°、又は+45°方向の偏
光成分は反射され、+45°、又は−45°方向の偏光
成分は回折されて光検出器12により受光される。プロ
トン交換層14の深さ、及び位相補償膜15の厚さを規
定するための条件は下記の数1式で表される。
2. Description of the Related Art FIG. 5 shows a conventional example of an optical head device for a magneto-optical disk described in JP-A-6-308309. The light emitted from the semiconductor laser 1 is reflected by a polarizing beam splitter layer 3 formed on the surface of a substrate 10, collimated by a collimating lens 4, and then converged by a converging lens 5.
Converges on the optical disk 6. The return light from the optical disc 6 travels in the same optical path in the opposite direction, and a part of the original polarized light component is transmitted through the polarization beam splitter layer 3, while the polarized light component generated by the Kerr effect is almost transmitted. The light transmitted through the polarizing beam splitter layer 3 has a pattern divided into four regions as shown in FIG.
4. Phase compensation film 15, and metal or dielectric reflection film 1
Xy by the birefringent diffraction grating layer 16 composed of
In the plane, the polarization component in the direction of −45 ° or + 45 ° with respect to the y axis is reflected, and the polarization component in the direction of + 45 ° or −45 ° is diffracted and received by the photodetector 12. Conditions for defining the depth of the proton exchange layer 14 and the thickness of the phase compensation film 15 are expressed by the following equation (1).

【0003】[0003]

【数1】 ここで、Δno 、Δne はプロトン交換層14における
常光、異常光に対する屈折率変化量、nd は位相補償膜
15の屈折率、Tp 、Td はプロトン交換層14の深
さ、位相補償膜15の厚さ、λは光の波長である。この
式により、Tp 、Td は下記の数2式のように求められ
る。
(Equation 1) Here, [Delta] n o, [Delta] n e is ordinary in the proton exchange layer 14, the refractive index variation with respect to extraordinary light, n d is the refractive index of the phase compensation film 15, T p, T d is the depth of the proton exchange layer 14, the phase The thickness λ of the compensation film 15 is the wavelength of light. By this equation, T p and T d are obtained as in the following equation (2).

【0004】[0004]

【数2】 基板10の光学軸は基板面内に存在し、y−z平面と4
5°の角度をなす方向に存在する。
(Equation 2) The optical axis of the substrate 10 lies in the plane of the substrate, and
It exists in a direction forming an angle of 5 °.

【0005】図7は光検出器12の詳細図である。図6
に示す領域A80、領域B81、領域C82、領域D8
3の4つの領域からの+1次回折光はそれぞれ図7の第
一光検出器63上に集光スポット93,90,91,9
2を形成し、−1次回折光はそれぞれ図7の第二光検出
器64上に集光スポット100,102,103,10
1を形成する。反射光は図7の第三光検出器65上に集
光スポット104を形成する。光ディスク6上に光の焦
点が合っている場合、光検出器94と光検出器95の
間、及び光検出器96と光検出器97の間の分割線54
上に集光スポット90、及び集光スポット93が存在す
る。光ディスク6の手前に焦点がある場合は、光検出器
97、及び光検出器94で受光する光量が光検出器9
5、及び光検出器96で受光する光量よりも多くなり、
また光ディスク6の奥に焦点がずれた場合は、光検出器
95、及び光検出器96で受光する光量が光検出器9
7、及び光検出器94で受光する光量よりも多くなる。
図7において光検出器94、光検出器95、光検出器9
6、光検出器97の出力をそれぞれA、B、C、Dとす
ると焦点誤差信号はA+D−(B+C)の演算で表され
る。トラック誤差信号は光検出器98と光検出器99の
受光量の差からプッシュプル法により検出する。RF信
号は第一光検出器63と第二光検出器64の受光量の和
と、第三光検出器65の受光量の差から検出する。
FIG. 7 is a detailed view of the photodetector 12. FIG.
A80, B81, C82, D8
The + 1st-order diffracted lights from the four areas 3 are focused on the first photodetector 63 in FIG.
2, and the -1st-order diffracted lights are respectively condensed spots 100, 102, 103, and 10 on the second photodetector 64 in FIG.
Form one. The reflected light forms a focused spot 104 on the third photodetector 65 of FIG. If the light is focused on the optical disk 6, the dividing line 54 between the photodetector 94 and the photodetector 95 and between the photodetector 96 and the photodetector 97
A converging spot 90 and a converging spot 93 exist on the upper side. When the focal point is located in front of the optical disk 6, the amount of light received by the photodetector 97 and the photodetector 94 is smaller than that of the photodetector 9.
5, and the amount of light received by the photodetector 96 becomes larger,
When the focal point is shifted to the back of the optical disk 6, the amount of light received by the photodetector 95 and the photodetector 96 is reduced.
7, and the amount of light received by the photodetector 94 is larger.
In FIG. 7, the photodetector 94, the photodetector 95, and the photodetector 9
6. If the outputs of the photodetector 97 are A, B, C, and D, respectively, the focus error signal is represented by the calculation of A + D- (B + C). The track error signal is detected by the push-pull method from the difference between the amounts of light received by the photodetectors 98 and 99. The RF signal is detected from the difference between the sum of the amounts of light received by the first photodetector 63 and the second photodetector 64 and the amount of light received by the third photodetector 65.

【0006】[0006]

【発明が解決しようとする課題】上記の構成の光磁気デ
ィスク用光ヘッド装置は、基板の光学軸の方向、プロト
ン交換層の深さ、及び位相補償膜の厚さが垂直入射の場
合に対して規定されているために、45°入射に対して
複屈折回折格子層の消光比が低下し、また、光が反射膜
で反射される際に一般にP偏光成分とS偏光成分の光の
間に位相差が生じ、複屈折回折格子層の消光比がさらに
低下するため、RF信号を検出するために必要な信号振
幅を得られないと言う課題を抱えていた。
SUMMARY OF THE INVENTION The optical head device for a magneto-optical disk having the above-mentioned structure has a structure in which the direction of the optical axis of the substrate, the depth of the proton exchange layer, and the thickness of the phase compensation film are perpendicularly incident. , The extinction ratio of the birefringent diffraction grating layer is reduced with respect to 45 ° incidence, and when light is reflected by the reflective film, the light between the P-polarized component and the S-polarized component In this case, a phase difference is generated, and the extinction ratio of the birefringent diffraction grating layer is further reduced, so that there is a problem that a signal amplitude required for detecting an RF signal cannot be obtained.

【0007】本発明の目的は、このような複屈折回折格
子層の消光比の低下を防止した光ヘッド装置を提供する
ことにある。
An object of the present invention is to provide an optical head device which prevents such a decrease in the extinction ratio of the birefringent diffraction grating layer.

【0008】[0008]

【課題を解決するための手段】本発明の光ヘッド装置
は、光源と、斜面の一部に偏光ビームスプリッタ層を有
する三角プリズムと、前記光源から出射して前記三角プ
リズムに入射し、前記偏光ビームスプリッタ層で反射さ
れた光をコリメートするコリメートレンズと、該コリメ
ートレンズによりコリメートされた光を記録媒体上に絞
り込む結像レンズと、偏光性ホログラム層を表面の一部
に有し、該偏光性ホログラム層側の面が前記三角プリズ
ムの斜面に接着された光学異方性を持つ基板と、前記記
録媒体で反射されて前記偏光ビームスプリッタ層を透過
し、前記偏光性ホログラム層により透過、及び回折さ
れ、前記基板の前記偏光性ホログラム層が形成された面
と反対の面で反射された光を受光する光検出器とを含
み、前記基板の光学軸が、入射光の方向に垂直な平面へ
の光学軸の射影と入射光の偏光方向のなす角度が実質的
に45°となる様な方向に存在し、前記偏光性ホログラ
ム層のライン部を透過する光とスペース部を透過する光
の位相差が、前記光学軸の射影に垂直な偏光成分、平行
な偏光成分の一方に対しては2nπ、他方に対しては
(2n+1)π(nは整数)となるように規定されてい
ることを特徴とする。
According to the present invention, there is provided an optical head device comprising: a light source; a triangular prism having a polarizing beam splitter layer on a part of an inclined surface; A collimating lens for collimating the light reflected by the beam splitter layer, an imaging lens for converging the light collimated by the collimating lens onto a recording medium, and a polarizing hologram layer on a part of the surface; A substrate having an optical anisotropy whose surface on the hologram layer side is adhered to the inclined surface of the triangular prism, and reflected by the recording medium and transmitted through the polarizing beam splitter layer, transmitted and diffracted by the polarizing hologram layer And a photodetector that receives light reflected on the surface of the substrate opposite to the surface on which the polarizing hologram layer is formed, and wherein the optical axis of the substrate is Light that exists in a direction such that the angle between the projection of the optical axis onto a plane perpendicular to the direction of the incident light and the polarization direction of the incident light is substantially 45 °, and that passes through the line portion of the polarizing hologram layer. And the phase difference between the light passing through the space portion is 2nπ for one of the polarization component perpendicular to the projection of the optical axis and the parallel polarization component, and (2n + 1) π (n is an integer) for the other. It is characterized by being defined as follows.

【0009】[0009]

【作用】本発明の光ヘッド装置は、基板の光学軸方向を
入射光の方向に垂直な平面への射影が入射光の偏光方向
に対して45°となる様な方向に規定し、偏光性ホログ
ラム層のライン部を透過する光とスペース部を透過する
光の位相差を、光学軸の射影に垂直な偏光成分、平行な
偏光成分の一方に対しては2nπ、他方に対しては(2
n+1)π(nは整数)となるように規定する。これに
より、入射光の偏光方向に対して+45°、又は−45
°方向の偏光成分をほぼ完全に透過させ、−45°、又
は+45°方向の偏光成分をほぼ完全に回折させ、偏光
性ホログラム層の消光比の低下を防止する。さらに反射
膜をなくすことによっても、偏光性ホログラム層の消光
比の低下を防止することで、RF信号の信号振幅の低下
を防止する。
According to the optical head device of the present invention, the direction of the optical axis of the substrate is defined such that the projection onto a plane perpendicular to the direction of the incident light is at 45 ° to the polarization direction of the incident light. The phase difference between the light passing through the line portion and the light passing through the space portion of the hologram layer is 2nπ for one of a polarization component perpendicular to the projection of the optical axis and a polarization component parallel thereto, and (2nπ) for the other.
n + 1) π (n is an integer). Thereby, the polarization direction of the incident light is + 45 ° or −45 °.
The polarization component in the direction of ° is almost completely transmitted, and the polarization component in the direction of -45 ° or + 45 ° is almost completely diffracted, thereby preventing a decrease in the extinction ratio of the polarizing hologram layer. Further, by eliminating the reflection film, it is possible to prevent the extinction ratio of the polarizing hologram layer from decreasing, thereby preventing the signal amplitude of the RF signal from decreasing.

【0010】[0010]

【発明の実施の形態】図1は本発明の光ヘッド装置の一
実施形態を示す。半導体レーザー1から出た光は、三角
プリズム2に入射し、三角プリズム2の斜面に施された
偏光ビームスプリッタ層3により一部反射され、コリメ
ートレンズ4によりコリメートされた後に収束レンズ
(結像レンズ)5により光ディスク6上に収束される。
光ディスク6からの反射光は同じ光路を逆に進み、再び
三角プリズム2に入射し、偏光ビームスプリッタ層3に
おいて元の偏光成分の一部は透過し、カー効果によって
生じる偏光成分はほとんど透過する。偏光ビームスプリ
ッタ層3を透過した光は、三角プリズム2と同じ屈折率
を持つ接着剤7を透過し、反射防止膜8によりほとんど
反射損失を受けないまま、三角プリズム2の斜面に接着
された基板10の入射面側に施された、プロトン交換層
14と位相補償膜15とから構成される偏光性ホログラ
ム層9に入射する。偏光性ホログラム層9は、図2の様
に4領域に分割されたパターンを持つ。偏光性ホログラ
ム層9に光が入射すると、基板10内での入射光の進行
方向をz′方向とした場合、x′,y′,z′座標系に
おいてx′−y′平面内でx′軸に対して+45°方向
の偏光成分は透過し、−45°方向の偏光成分は回折さ
れる。偏光性ホログラム層9を透過した光、及び回折さ
れた光は基板10の裏面で全反射し、反射防止膜8によ
り基板10と接着剤7の間でほとんど反射損失を受けな
いまま、接着剤7、三角プリズム2を透過し、光検出器
11によりそれぞれ受光される。
FIG. 1 shows an embodiment of an optical head device according to the present invention. Light emitted from the semiconductor laser 1 enters a triangular prism 2, is partially reflected by a polarization beam splitter layer 3 provided on the slope of the triangular prism 2, is collimated by a collimating lens 4, and then converges (an imaging lens). ) 5 converges on the optical disk 6.
The reflected light from the optical disk 6 travels in the same optical path in the opposite direction, enters the triangular prism 2 again, transmits a part of the original polarized light component in the polarized beam splitter layer 3, and almost transmits the polarized light component generated by the Kerr effect. The light transmitted through the polarizing beam splitter layer 3 passes through an adhesive 7 having the same refractive index as the triangular prism 2 and is bonded to the slope of the triangular prism 2 with almost no reflection loss by the antireflection film 8. The light is incident on the polarizing hologram layer 9 provided on the incident surface side of 10 and composed of the proton exchange layer 14 and the phase compensation film 15. The polarizing hologram layer 9 has a pattern divided into four regions as shown in FIG. When light is incident on the polarizing hologram layer 9, if the traveling direction of the incident light in the substrate 10 is the z 'direction, x' on the x'-y 'plane in the x', y ', z' coordinate system. The polarization component in the + 45 ° direction with respect to the axis is transmitted, and the polarization component in the −45 ° direction is diffracted. The light transmitted through the polarizing hologram layer 9 and the diffracted light are totally reflected on the back surface of the substrate 10, and the reflection of the adhesive 7 with little reflection loss between the substrate 10 and the adhesive 7 by the antireflection film 8. , Through the triangular prism 2 and received by the photodetector 11, respectively.

【0011】光学軸が基板面内にある場合、光学軸の
x′,y′,z′成分は下記の数3式のように表せる。
When the optical axis is in the plane of the substrate, the x ', y', z 'components of the optical axis can be expressed by the following equation (3).

【0012】[0012]

【数3】 ここで、φはy′−z′平面と光学軸とのなす角、θは
接着剤7から偏光性ホログラム層9への45°入射に対
する屈折角である。このとき、光学軸のx′−y′平面
への射影が入射光の偏光方向(x′方向)に対して45
°となる条件は下記の数4式のようになる。
(Equation 3) Here, φ is the angle between the y′-z ′ plane and the optical axis, and θ is the refraction angle with respect to 45 ° incidence from the adhesive 7 to the polarizing hologram layer 9. At this time, the projection of the optical axis onto the x'-y 'plane is 45 degrees with respect to the polarization direction (x' direction) of the incident light.
The condition of ° is as in the following equation (4).

【0013】[0013]

【数4】 また、入射光に対するSnellの法則から下記の数5
式が成り立つ。
(Equation 4) From Snell's law for incident light,
The formula holds.

【0014】[0014]

【数5】 ここで、n1 、n2 は接着剤7の屈折率、基板10の屈
折率である。従ってφは下記の数6式のようになる。
(Equation 5) Here, n 1 and n 2 are the refractive index of the adhesive 7 and the refractive index of the substrate 10. Therefore, φ is expressed by the following equation (6).

【0015】[0015]

【数6】 光学軸の射影に垂直な偏光成分(+45°成分)を透過
させ、平行な偏光成分(−45°成分)を回折させる場
合、偏光性ホログラム層のライン部を透過する光とスペ
ース部を透過する光の位相差が、前者に対しては2n
π、後者に対しては(2n+1)π(nは整数)となれ
ばよい。このとき、n=0とすると、プロトン交換層1
4の深さ、及び位相補償膜15の厚さを規定するための
条件は下記の数7式で表される。
(Equation 6) When transmitting a polarized light component (+ 45 ° component) perpendicular to the projection of the optical axis and diffracting a parallel polarized light component (−45 ° component), the light transmitted through the line portion of the polarizing hologram layer and the light transmitted through the space portion are transmitted. The phase difference of light is 2n for the former
π, and for the latter, (2n + 1) π (n is an integer). At this time, if n = 0, the proton exchange layer 1
The condition for defining the depth of 4 and the thickness of the phase compensation film 15 is expressed by the following equation (7).

【0016】[0016]

【数7】 ここで、下記の外1はプロトン交換層14における光学
軸のx′−y′平面への射影と平行な偏光成分、垂直な
偏光成分に対する屈折率変化量、Tp ′、Td′はプロ
トン交換層14の深さ、位相補償膜15の厚さ、nd
位相補償膜15の屈折率である。この式により、
p ′、Td ′は下記の数8式のように求められる。
(Equation 7) Here, the following 1 is a polarization component parallel to the projection of the optical axis of the proton exchange layer 14 onto the x'-y 'plane, a refractive index change amount with respect to a vertical polarization component, and T p ' and T d 'are protons. the depth of the exchange layer 14, the thickness of the phase compensation film 15, n d is the refractive index of the phase compensation film 15. From this equation,
T p ′ and T d ′ are obtained as in the following equation (8).

【0017】[0017]

【外1】 [Outside 1]

【0018】[0018]

【数8】 下記外2は下記の数9式で表される。(Equation 8) The following (2) is expressed by the following equation (9).

【0019】[0019]

【外2】 [Outside 2]

【0020】[0020]

【数9】 ここで、no 、ne は基板10の常光、異常光に対する
屈折率、np,O 、np,e はプロトン交換層14の常光、
異常光に対する屈折率である。
(Equation 9) Here, n o, ordinary of n e is the substrate 10, the refractive index with respect to extraordinary light, n p, O, n p , e is ordinary proton exchange layer 14,
It is a refractive index for extraordinary light.

【0021】三角プリズム2の材質をBK7等のガラ
ス、接着剤7の材質は屈折率が三角プリズム2と同じも
の、基板10の材質をニオブ酸リチウム、位相補償膜の
材質をNb2 5 とし、入射光の波長をλ=685nm
とすると、n1 =1.5、n2=2.2、nd =2.
2、no =2.27、ne =2.18、np,O =2.2
3、np,e =2.3となる。
The material of the triangular prism 2 is glass such as BK7, the material of the adhesive 7 is the same as that of the triangular prism 2, the material of the substrate 10 is lithium niobate, and the material of the phase compensation film is Nb 2 O 5. , The wavelength of the incident light is λ = 685 nm
Then, n 1 = 1.5, n 2 = 2.2, n d = 2.
2, n o = 2.27, n e = 2.18, n p, O = 2.2
3, n p, e = 2.3.

【0022】従って、光学軸の方向はθ=29°、φ=
41°で規定され、プロトン交換層14の深さ、位相補
償膜15の厚さは上記の式により、下記の数10式とな
る。
Therefore, the direction of the optical axis is θ = 29 °, φ =
It is defined by 41 °, and the depth of the proton exchange layer 14 and the thickness of the phase compensation film 15 are given by the following equation (10) according to the above equation.

【0023】[0023]

【数10】 図3は光検出器11の詳細図である。図2に示す4つの
領域21,22,23,24からの+1次回折光は図3
においてそれぞれ、トラック誤差検出器A31上に集光
スポット39、トラック誤差検出器B32上に集光スポ
ット40、焦点誤差検出器30上に集光スポット38,
37を形成し、−1次回折光は図3においてそれぞれ、
RF信号検出器B34上に集光スポット41、RF信号
検出器A33上に集光スポット42、RF信号検出器A
33上に集光スポット43、RF信号検出器B34上に
集光スポット44を形成する。透過光はRF信号検出器
C35上に集光スポット45を形成する。図4は焦点誤
差検出器30の詳細図である。光デイスク6上に焦点が
合っている場合、焦点誤差検出器A50と焦点誤差検出
器B51の間、及び焦点誤差検出器C52と焦点誤差検
出器D53の間の分割線54上に集光スポットが存在す
る。光ディスク6の手前に焦点がずれた場合は、焦点誤
差検出器B51、及び焦点誤差検出器C52で受光する
光量が焦点誤差検出器A50、及び焦点誤差検出器D5
3で受光する光量よりも多くなる。また光ディスク6の
奥に焦点がずれた場合は、焦点誤差検出器A50、及び
焦点誤差検出器D53で受光する光量の方が焦点誤差検
出器B51、及び焦点誤差検出器C52で受光する光量
よりも多くなる。図4において焦点誤差検出器A50、
焦点誤差検出器B51、焦点誤差検出器C52、焦点誤
差検出器D53の出力をそれぞれA、B、C、Dとする
と焦点誤差信号はA+D−(B+C)の演算で表され
る。トラック誤差信号は図3のトラック誤差検出器A3
1とラック誤差検出器B32の受光量の差からプッシュ
プル法により検出する。RF信号はRF信号検出器A3
3とRF信号検出器B34の受光量の和とRF信号検出
器C35の受光量との差により検出する。
(Equation 10) FIG. 3 is a detailed view of the photodetector 11. The + 1st-order diffracted light from the four regions 21, 22, 23, and 24 shown in FIG.
, The focused spot 39 on the track error detector A31, the focused spot 40 on the track error detector B32, the focused spot 38 on the focus error detector 30,
37, and the -1st order diffracted light is
Focused spot 41 on RF signal detector B34, Focused spot 42 on RF signal detector A33, RF signal detector A
A condensed spot 43 is formed on 33 and a condensed spot 44 is formed on the RF signal detector B34. The transmitted light forms a focused spot 45 on the RF signal detector C35. FIG. 4 is a detailed view of the focus error detector 30. When the light is focused on the optical disc 6, a condensed spot is formed on a dividing line 54 between the focus error detector A50 and the focus error detector B51 and between the focus error detector C52 and the focus error detector D53. Exists. When the focus is shifted to the front of the optical disc 6, the light amount received by the focus error detector B51 and the focus error detector C52 is changed to the focus error detector A50 and the focus error detector D5.
3, the amount of light received is larger than the amount of light received. When the focus shifts to the back of the optical disk 6, the light amount received by the focus error detector A50 and the focus error detector D53 is larger than the light amount received by the focus error detector B51 and the focus error detector C52. More. In FIG. 4, a focus error detector A50,
Assuming that outputs of the focus error detector B51, the focus error detector C52, and the focus error detector D53 are A, B, C, and D, respectively, the focus error signal is represented by an operation of A + D- (B + C). The track error signal is the track error detector A3 in FIG.
It is detected by the push-pull method from the difference between 1 and the amount of light received by the rack error detector B32. RF signal is RF signal detector A3
3 and the difference between the sum of the amounts of light received by the RF signal detector B34 and the amount of light received by the RF signal detector C35.

【0024】[0024]

【発明の効果】本発明によれば、基板の光学軸方向を入
射光の方向に垂直な平面への射影が入射光の偏光方向に
対して45°となる様な方向に規定し、偏光性ホログラ
ム層のライン部を透過する光とスペース部を透過する光
の位相差を、光学軸の射影に垂直な偏光成分、平行な偏
光成分の一方に対しては2nπ、他方に対しては(2n
+1)π(nは整数)となるように規定することによ
り、入射光の偏光方向に対して+45°、又は−45°
方向の偏光成分をほぼ完全に透過させ、−45°、又は
+45°方向の偏光成分をほぼ完全に回折させ、偏光性
ホログラム層の消光比の低下を防止することができる。
さらに反射膜をなくすことにより、偏光性ホログラム層
の消光比は低下せず、RF信号の信号振幅の低下を防止
した光ヘッド装置が得られる。
According to the present invention, the direction of the optical axis of the substrate is defined so that the projection onto a plane perpendicular to the direction of the incident light is at 45 ° to the polarization direction of the incident light. The phase difference between the light transmitted through the line portion and the light transmitted through the space portion of the hologram layer is 2nπ for one of a polarization component perpendicular to the projection of the optical axis and a polarization component parallel thereto, and (2n
+1) + 45 ° or −45 ° with respect to the polarization direction of the incident light by defining it to be π (n is an integer).
The polarization component in the −45 ° or + 45 ° direction is almost completely diffracted, and the extinction ratio of the polarizing hologram layer can be prevented from lowering.
Further, by eliminating the reflection film, an optical head device in which the extinction ratio of the polarizing hologram layer does not decrease and the signal amplitude of the RF signal is prevented from decreasing can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の光ヘッド装置の一実施形態を示す図で
ある。
FIG. 1 is a diagram showing one embodiment of an optical head device of the present invention.

【図2】図1の光ヘッド装置に用いる偏光性ホログラム
層の詳細図である。
FIG. 2 is a detailed view of a polarizing hologram layer used in the optical head device of FIG.

【図3】図1の光ヘッド装置に用いる光検出器の詳細図
である。
FIG. 3 is a detailed view of a photodetector used in the optical head device of FIG.

【図4】図3の光検出器の中の焦点誤差検出器の詳細図
である。
FIG. 4 is a detailed view of a focus error detector in the photodetector of FIG. 3;

【図5】光磁気ディスク用光ヘッド装置の従来例を説明
する図である。
FIG. 5 is a diagram illustrating a conventional example of an optical head device for a magneto-optical disk.

【図6】図5の光ヘッド装置に用いる複屈折回折格子層
の詳細図である。
FIG. 6 is a detailed view of a birefringent diffraction grating layer used in the optical head device of FIG.

【図7】図5の光ヘッド層に用いる光検出器の詳細図で
ある。
FIG. 7 is a detailed view of a photodetector used in the optical head layer of FIG.

【符号の説明】[Explanation of symbols]

1 半導体レーザー 2 三角プリズム 3 偏光ビームスプリッタ層 4 コリメートレンズ 5 収束レンズ 6 光ディスク 7 接着剤 8 反射防止膜 9 偏光性ホログラム層 10 基板 11 光検出器 12 光検出器 14 プロトン交換器 15 位相補償膜 16 複屈折回折格子層 17 反射膜 21,22,23,24 領域 30 焦点誤差検出器 31 トラック誤差検出器A 32 トラック誤差検出器B 33 RF信号検出器A 34 RF信号検出器B 35 RF信号検出器C 36 ミラー 37,38,39,40,41,42,43,44,4
5 集光スポット 50 焦点誤差検出器A 51 焦点誤差検出器B 52 焦点誤差検出器C 53 焦点誤差検出器D 54 分割線 63 第一光検出器 64 第二光検出器 65 第三光検出器 80 領域A 81 領域B 82 領域C 83 領域D 90,91,92,93 集光スポット 94,95,96,97,98,99 光検出器 100,101,102,103,104 集光スポ
ット
DESCRIPTION OF SYMBOLS 1 Semiconductor laser 2 Triangular prism 3 Polarization beam splitter layer 4 Collimating lens 5 Converging lens 6 Optical disk 7 Adhesive 8 Antireflection film 9 Polarizing hologram layer 10 Substrate 11 Photodetector 12 Photodetector 14 Proton exchanger 15 Phase compensation film 16 Birefringent diffraction grating layer 17 Reflective film 21, 22, 23, 24 Area 30 Focus error detector 31 Track error detector A 32 Track error detector B 33 RF signal detector A 34 RF signal detector B 35 RF signal detector C 36 mirror 37, 38, 39, 40, 41, 42, 43, 44, 4
5 Focus Spot 50 Focus Error Detector A 51 Focus Error Detector B 52 Focus Error Detector C 53 Focus Error Detector D 54 Division Line 63 First Photo Detector 64 Second Photo Detector 65 Third Photo Detector 80 Area A 81 Area B 82 Area C 83 Area D 90, 91, 92, 93 Focused spots 94, 95, 96, 97, 98, 99 Photodetectors 100, 101, 102, 103, 104 Focused spots

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 光源と、斜面の一部に偏光ビームスプリ
ッタ層を有する三角プリズムと、前記光源から出射して
前記三角プリズムに入射し、前記偏光ビームスプリッタ
層で反射された光をコリメートするコリメートレンズ
と、該コリメートレンズによりコリメートされた光を記
録媒体上に絞り込む結像レンズと、偏光性ホログラム層
を表面の一部に有し、該偏光性ホログラム層側の面が前
記三角プリズムの斜面に接着された光学異方性を持つ基
板と、前記記録媒体で反射されて前記偏光ビームスプリ
ッタ層を透過し、前記偏光性ホログラム層により透過、
及び回折され、前記基板の前記偏光性ホログラム層が形
成された面と反対の面で反射された光を受光する光検出
器とを含み、前記基板の光学軸が、入射光の方向に垂直
な平面への光学軸の射影と入射光の偏光方向のなす角度
が実質的に45°となる様な方向に存在し、前記偏光性
ホログラム層のライン部を透過する光とスペース部を透
過する光の位相差が、前記光学軸の射影に垂直な偏光成
分、平行な偏光成分の一方に対しては2nπ、他方に対
しては(2n+1)π(nは整数)となるように規定さ
れていることを特徴とする光ヘッド装置。
1. A light source, a triangular prism having a polarizing beam splitter layer on a part of an inclined surface, and a collimator for emitting light from the light source, entering the triangular prism, and collimating light reflected by the polarizing beam splitter layer. A lens, an imaging lens for focusing light collimated by the collimating lens on a recording medium, and a polarizing hologram layer on a part of the surface, and the surface on the polarizing hologram layer side is formed on an inclined surface of the triangular prism. A bonded substrate having optical anisotropy, reflected by the recording medium and transmitted through the polarizing beam splitter layer, transmitted by the polarizing hologram layer,
And a photodetector that receives light that is diffracted and reflected on the surface of the substrate opposite to the surface on which the polarizing hologram layer is formed, wherein the optical axis of the substrate is perpendicular to the direction of incident light. The light that passes through the line portion and the space portion of the polarizing hologram layer exists in a direction such that the angle between the projection of the optical axis onto the plane and the polarization direction of the incident light is substantially 45 °. Is defined to be 2nπ for one of the polarization component perpendicular to and parallel to the projection of the optical axis and (2n + 1) π (n is an integer) for the other. An optical head device comprising:
【請求項2】 前記基板がニオブ酸リチウムであること
を特徴とする請求項1記載の光ヘッド装置。
2. The optical head device according to claim 1, wherein said substrate is made of lithium niobate.
【請求項3】 前記偏光性ホログラム層がプロトン交換
層、及び位相補償膜から構成されていることを特徴とす
る請求項1記載の光ヘッド装置。
3. The optical head device according to claim 1, wherein said polarizing hologram layer is composed of a proton exchange layer and a phase compensation film.
【請求項4】 前記基板がニオブ酸リチウムであり、前
記偏光性ホログラム層がプロトン交換層、及び位相補償
膜から構成されていることを特徴とする請求項1記載の
光ヘッド装置。
4. The optical head device according to claim 1, wherein said substrate is made of lithium niobate, and said polarizing hologram layer is composed of a proton exchange layer and a phase compensation film.
JP8001739A 1996-01-09 1996-01-09 Optical head device Expired - Lifetime JP2888280B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8001739A JP2888280B2 (en) 1996-01-09 1996-01-09 Optical head device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8001739A JP2888280B2 (en) 1996-01-09 1996-01-09 Optical head device

Publications (2)

Publication Number Publication Date
JPH09190654A JPH09190654A (en) 1997-07-22
JP2888280B2 true JP2888280B2 (en) 1999-05-10

Family

ID=11509943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8001739A Expired - Lifetime JP2888280B2 (en) 1996-01-09 1996-01-09 Optical head device

Country Status (1)

Country Link
JP (1) JP2888280B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100403596B1 (en) * 2001-08-30 2003-10-30 삼성전자주식회사 Optic pickup apparatus comprising a right-angled triangle beam splitter and method of compensating optic axes using the same

Also Published As

Publication number Publication date
JPH09190654A (en) 1997-07-22

Similar Documents

Publication Publication Date Title
US5659531A (en) Optical head device and birefringent diffraction grating polarizer and polarizing hologram element used therein
JPH09231604A (en) Optical head for optical disk device
US5570333A (en) Head device for magneto-optical disk
JP3047351B2 (en) Optical head device
JPH10104427A (en) Wavelength plate, and optical pickup unit equipped with the same
US5726962A (en) Compact optical pickup device with beam splitter
JP2982965B2 (en) Optical reader
KR100286865B1 (en) Optical head unit
JPH05109143A (en) Optical pickup device
JPH11306581A (en) Broadband polarized light separating element and optical head using this broadband polarized light separating element
JP2616018B2 (en) Optical head device
JP2888280B2 (en) Optical head device
JP3439903B2 (en) Optical head for optical disk device
JPH07121923A (en) Optical-pickup head device
JP2658818B2 (en) Birefringent diffraction grating polarizer and optical head device
JPH0729233A (en) Magneto-optical head
JPH11219541A (en) Information reading/writing device for optical disk
JP2724095B2 (en) Optical pickup
JP3980677B2 (en) Optical pickup device
JP3490527B2 (en) Light head
JPH11353728A (en) Magneto-optical head
JP4072776B2 (en) Optical pick-up module and magneto-optical signal recording / reproducing apparatus
JPH05205339A (en) Magnetooptical recording polarization optical system
JPH04298837A (en) Polarizing beam splitter and magneto-optical head device
JP2000298867A (en) Optical head device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990120