JPS601128B2 - Electric discharge machining method - Google Patents
Electric discharge machining methodInfo
- Publication number
- JPS601128B2 JPS601128B2 JP55092601A JP9260180A JPS601128B2 JP S601128 B2 JPS601128 B2 JP S601128B2 JP 55092601 A JP55092601 A JP 55092601A JP 9260180 A JP9260180 A JP 9260180A JP S601128 B2 JPS601128 B2 JP S601128B2
- Authority
- JP
- Japan
- Prior art keywords
- machining
- workpiece
- axis
- discharge machining
- electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23H—WORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
- B23H7/00—Processes or apparatus applicable to both electrical discharge machining and electrochemical machining
- B23H7/26—Apparatus for moving or positioning electrode relatively to workpiece; Mounting of electrode
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23Q—DETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
- B23Q27/00—Geometrical mechanisms for the production of work of particular shapes, not fully provided for in another subclass
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Physics & Mathematics (AREA)
- Geometry (AREA)
- Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
Description
【発明の詳細な説明】
本発明は放電加工方法に関し、更に特定して述べると、
被加工物の断面輪郭形状を円形又は楕円形の少なくとも
一部の形状に加工するための放電加工方法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electric discharge machining method, and more specifically,
The present invention relates to an electrical discharge machining method for machining the cross-sectional contour of a workpiece into at least a partial circular or elliptical shape.
一般に、第1図に示すように、被加工物1の輪郭線aが
所定の式ax2十by2=r2に従った円形又は楕円形
の一部を含む形状となるように放電加工を行なうことを
要求される場合がいまいま生ずる。Generally, as shown in FIG. 1, electrical discharge machining is performed so that the contour line a of the workpiece 1 has a shape including a part of a circle or an ellipse according to a predetermined formula ax2+by2=r2. A situation arises where this is required.
このような加工要求に対し、例えば円柱状の棒状電極を
用い、NC制御装置により電極を所要の円又は楕円軌跡
に沿って被加工物と相対運動を行なわせれば、所望の円
又は楕円の輪郭形状を得ることができる。しかし、この
ような加工方法では、電極の消耗により加工開始時と加
工終了時とでは電極の寸法が異なってしまい、従って加
工用電極をいくら精密に所要の円又は楕円軌跡に沿って
移動させたとしても正確な寸法に被加工物を加工するこ
とが困難であった。そこで、無消耗加工により放電加工
を行なうことが考えられるが、無消耗加工の場合には加
工速度が遅く、従って加工能率が著しく低下するという
不具合し、を有している。本発明は、従来技術の上述の
欠点に鑑みてなされたものであり、その目的は、遠い加
工速度で且つ高精度に被加工物の断面輪郭形状を所要の
円又は楕円形の少LIくとも一部の形状に簡単に放電加
工することができる放電加工方法を提供することにある
。以下、図示の実施例により本発明の方法を詳細に説明
する。To meet such processing requirements, for example, if a cylindrical rod-shaped electrode is used and the electrode is moved relative to the workpiece along a desired circular or elliptical locus using an NC control device, the contour of the desired circle or ellipse can be obtained. shape can be obtained. However, in such a machining method, the dimensions of the electrode differ between the start of machining and the end of machining due to wear of the electrode, so no matter how precisely the machining electrode is moved along the required circular or elliptical trajectory, However, it was difficult to process the workpiece to exact dimensions. Therefore, it has been considered to perform electric discharge machining by non-consumable machining, but non-consumable machining has the disadvantage that the machining speed is slow and therefore the machining efficiency is significantly reduced. The present invention has been made in view of the above-mentioned drawbacks of the prior art, and its purpose is to form a cross-sectional profile of a workpiece into a required circular or elliptical shape with a low LI at a high processing speed and with high precision. It is an object of the present invention to provide an electrical discharge machining method that can easily perform electrical discharge machining into some shapes. In the following, the method of the invention will be explained in detail with reference to the illustrated embodiments.
第2図を参照すると、予め適宜の手段により二点銭線で
示される所望の楕円形状のうちの一部分の形状にほぼ相
応した形状を含んだ輪郭形状に荒加工仕上されている被
加工物1を平板状の加工用電極2を用いて、本発明の方
法により上述の楕円形状の一部を含む所望の形状に精密
加工する場合が示されている。Referring to FIG. 2, a workpiece 1 has been rough-finished in advance by an appropriate means into a contour shape that includes a shape approximately corresponding to the shape of a part of the desired elliptical shape indicated by the double dotted line. A case is shown in which a flat plate-shaped processing electrode 2 is used to precisely process a material into a desired shape including a part of the above-mentioned elliptical shape by the method of the present invention.
被加工物1‘ま、その放電加工部分が加工テーブル3か
ら突出するよう加工テーブル3上に戦遣され、加工テー
ブル3は図示しない案内支持部材により、紙面に平行な
X−Y平面内において少なくともそのY軸方向に移動可
能なように支持されている。加工テ−ブル3をY軸方向
に沿って送り制御するため、加工テーブル3には駆動用
パルスモ−夕4により回転駆動されるねじ樟5が螺入さ
れており、パルスモータ4の回転制御を行なうことによ
り加工テーブル3をY軸方向に沿う所望の方向に所望の
距離だけ移動させることができる。一方、加工用電極2
は、被加工物1との間に放電加工間隙を形成する平坦面
6を有し、この加工用電極2は、放電加工装置本体の加
工ヘッド(図示せず)に設けられたスピンドル(図示せ
ず)により支持されるが、加工用電極2は、上記スピン
ドルの回転軸7が放電面である平坦面6に含まれるよう
スピンドルに取付けられ、且つ回転軸7は×−×平面に
垂直となるよう調整されている。スピンドルの回転は図
示しない加工ヘッド内に収納されたパルスモータ8の回
転により与えられ、これにより加工用電極2が回動する
。次に、加工用電極2を回転軸7を中心に回転させつつ
、被加工物1を加工用電極2の回転運動に関連してY軸
方向に沿う運動を行なわせ、これにより被加工物1の被
加工面9と平坦面6との間に形成される放電加工間隙を
被加工物の加工予定線に沿って移動させ、被加工物1の
輪郭形状を予定の楕円形状を含む輪郭形状に加工する方
法について詳述する。The workpiece 1' is placed on the machining table 3 so that its electric discharge machining part protrudes from the machining table 3, and the machining table 3 is moved at least within the X-Y plane parallel to the plane of the paper by a guide support member (not shown). It is supported so as to be movable in the Y-axis direction. In order to control the feeding of the processing table 3 along the Y-axis direction, a screw 5 that is rotationally driven by a driving pulse motor 4 is screwed into the processing table 3, and controls the rotation of the pulse motor 4. By doing so, the processing table 3 can be moved by a desired distance in a desired direction along the Y-axis direction. On the other hand, processing electrode 2
has a flat surface 6 that forms an electrical discharge machining gap with the workpiece 1, and this machining electrode 2 is connected to a spindle (not shown) provided on a machining head (not shown) of the electrical discharge machining apparatus main body. The processing electrode 2 is attached to the spindle so that the rotation axis 7 of the spindle is included in the flat surface 6 which is the discharge surface, and the rotation axis 7 is perpendicular to the x-x plane. It has been adjusted accordingly. Rotation of the spindle is provided by rotation of a pulse motor 8 housed in a processing head (not shown), thereby rotating the processing electrode 2. Next, while rotating the processing electrode 2 around the rotation axis 7, the workpiece 1 is caused to move along the Y-axis direction in relation to the rotational movement of the processing electrode 2. The electrical discharge machining gap formed between the workpiece surface 9 and the flat surface 6 is moved along the planned machining line of the workpiece, and the contour shape of the workpiece 1 is changed to a contour shape including the planned elliptical shape. The processing method will be explained in detail.
被加工物2に示されている加工予定楕円形状をax2十
by2=r2 ……………{1}と表わし
、一方、加工用電極2の平坦面6の×−Y平面上への投
影線をy二kx十1 ……………■
と表わし、加工用電極2の平坦面6が被加工物の加工予
定楕円形状で規定される輪郭面に接するための条件を、
k=tanひとおいて求めると、代数学の教えるところ
により、【3’l=士ゾaCOS2器bS■28C。The elliptical shape to be machined shown on the workpiece 2 is expressed as ax2+by2=r2 ......{1}, and on the other hand, the projection line of the flat surface 6 of the processing electrode 2 onto the x-Y plane is expressed as y2kx11......■, and the conditions for the flat surface 6 of the processing electrode 2 to be in contact with the contour surface defined by the elliptical shape of the workpiece to be processed are as follows:
If we take k=tan and find it, according to the teachings of algebra, [3'l=shizo aCOS2 device bS■28C.
≦ひとなる。ここで8は第2}式で示される投影線が×
軸となす角度であり(第2図参照)、加工用電極2の回
転角度位置を示すパラメータである。従って、第‘3’
式から、平坦面6が×軸に対して0なる角度をなしてい
る場合「被加工物1の加工予定楕円形状を第{1)式で
定めた時のX−Y平面の原点位層○点(第2図参照)と
回転軸7との間のY軸上の距離が鍬3}式で示される1
の値となっている場合に、平坦面6が第2図で二点鎖線
で示される加工予定線に従う所望の楕円形状の輪郭面に
接することとなる。従って、第(3}式に示される関係
を保つようにして加工用電極の回転運動と被加工物のY
軸に沿う直線移動運動を行ないつつ放電加工を行なえば
、被加工物を二点鎖線で示される所望の楕円輪郭形状と
することができる。尚、上記説明から判るように、円形
の場合は上記係数aとbとが等しいので、a=bとおく
ことにより、同様の説明を円形状の加工の場合に適用す
ることができる。≦One person. Here, 8 is the projection line shown by the second equation
It is an angle formed with the axis (see FIG. 2), and is a parameter indicating the rotational angular position of the processing electrode 2. Therefore, the 'third'
From the equation, if the flat surface 6 makes an angle of 0 with the The distance on the Y axis between the point (see Figure 2) and the rotation axis 7 is expressed by the formula 1
When the value is , the flat surface 6 comes into contact with the desired elliptical contour surface following the machining plan line shown by the two-dot chain line in FIG. Therefore, the rotational movement of the machining electrode and the Y of the workpiece are maintained so as to maintain the relationship shown in equation (3).
If electrical discharge machining is performed while performing linear movement along the axis, the workpiece can be formed into the desired elliptical contour shape shown by the two-dot chain line. As can be seen from the above description, in the case of a circular shape, the coefficients a and b are equal, so by setting a=b, the same explanation can be applied to the case of circular machining.
第3図には、上述の第糊式の関係に従って、被加工物の
Y軸方向の運動と加工用電極の回転運動とを運動させて
行なうための制御装置10のブロック図が示されている
。FIG. 3 shows a block diagram of a control device 10 for moving the workpiece in the Y-axis direction and rotating the machining electrode according to the relationship of the above-mentioned glue equation. .
制御装置1川ま、上述の角度のこ相応した角度信号S,
を出力する角度検出器11を有し、角度信号S,は演算
回路12に入力され、第糊式に示されるところに従い、
角度のこ対応した1の値を示す目標Y軸位置信号S2が
出力される。この目標Y軸位置信号S2は一方の入力に
位置検出器13からの実Y軸位置信号S3が入力されて
いる誤差検出器14の他方の入力に印加される。実Y軸
位置信号S3は、被加工物1上の加工予定線に対して上
述の如く定められた座標系の原点位置に対応する○点が
、移動軸であるY軸上のどの位置に実際位置しているの
かを示す信号であり、加工テーブルに対して与えられて
いるX−Y座標系のY軸上の位置に相応した信号として
出力される。即ち、加工テーブルに対して与えられてい
る×−Y座標系の原点は加工用電極の回転軸の位置であ
り、0点ではない。一方、目標Y軸位置信号S2は、加
工テーブルに与えられた×−Y座標系のY軸に沿った○
点と回転軸との間の距離に相応した信号であり、誤差検
出器14からは、雨信号S2,S3の差分が誤差信号S
4として出力され、モータ4を駆動する駆動回路15に
入力される。駆動回路15は、誤差信号S4の値が零と
なるように、換言すると実Y軸信号S3が目標Y軸信号
S2に一致するように、モータ4を駆動するための駆動
動パルス信号P,を出力し、これにより被加工物1は演
算回路12からの目標Y軸位置信号S2に従って位置決
めされることになる。このような構成によれば、加工用
電極2を所定の初期位置から回動させはじめると、回動
角度位置81こ応じて、被加工物1の○点の位置が第【
3}式に従って定められるようにY軸方向の位置決めサ
ーボが行なわれつつ被加工物1と加工用電極2の平坦面
6との間で放電加工が行なわれる。The control device 1 outputs an angle signal S corresponding to the above-mentioned angle.
It has an angle detector 11 that outputs an angle signal S, which is input to an arithmetic circuit 12, and according to the following equation,
A target Y-axis position signal S2 indicating a value of 1 corresponding to the angle saw is output. This target Y-axis position signal S2 is applied to the other input of the error detector 14, to which the actual Y-axis position signal S3 from the position detector 13 is input. The actual Y-axis position signal S3 indicates at what position on the Y-axis, which is the movement axis, the point ○ corresponding to the origin position of the coordinate system determined as described above with respect to the machining schedule line on the workpiece 1. This is a signal indicating whether the processing table is located, and is output as a signal corresponding to the position on the Y-axis of the X-Y coordinate system given to the processing table. That is, the origin of the x-y coordinate system given to the processing table is the position of the rotation axis of the processing electrode, and is not the zero point. On the other hand, the target Y-axis position signal S2 is ○ along the Y-axis of the ×-Y coordinate system given to the processing table.
It is a signal corresponding to the distance between a point and the rotation axis, and the error detector 14 detects the difference between rain signals S2 and S3 as an error signal S.
4 and is input to a drive circuit 15 that drives the motor 4. The drive circuit 15 generates a drive pulse signal P for driving the motor 4 so that the value of the error signal S4 becomes zero, in other words, so that the actual Y-axis signal S3 matches the target Y-axis signal S2. As a result, the workpiece 1 is positioned in accordance with the target Y-axis position signal S2 from the arithmetic circuit 12. According to such a configuration, when the machining electrode 2 starts to be rotated from a predetermined initial position, the position of the ○ point on the workpiece 1 changes to the rotation angle position 81.
3}, electric discharge machining is performed between the workpiece 1 and the flat surface 6 of the machining electrode 2 while positioning servo in the Y-axis direction is performed.
これにより被加工物1の断面輪郭形状が所望の楕円又は
円となるように放電加工を行なうことができる。尚、第
湖式から判るように、連続加工により被加工物1の輪郭
形状を完全な楕円又は円とする場合には、8=900及
び2700において1の値を無限大としなければならな
くなるが、この状態を避けるため、例えば加工面を4象
限に分割し、各象限毎に本発明の方法を適用して加工を
行ない、完全な円又は楕円の断面輪郭形状を得るように
してもよい。上記説明から理解されるように、被加工物
の断面輪郭形状を円又は楕円の一部分の形状に加工する
場合にも本発明を適用できるものである。また、第3図
に示した制御装置は本発明の方法を実施するための一実
施例にすぎず、NC装置のプログラムを適宜作成するこ
とにより、被加工物と加工用電極との間の上述の連繋運
動を行なわせることにより本発明の方法を実施すること
も可能であることは勿論である。このように、第2図、
第3図に示す如くして被加工物の輪郭形状を円又は楕円
形又はその一部分の形状に放電加工すれば、加工用電極
2の平坦面6が全体に亘つて順次被加工物1の放電加工
面に対向するので、被電加工間隙には常に新しい電極面
が供給される。Thereby, electrical discharge machining can be performed so that the cross-sectional contour shape of the workpiece 1 becomes a desired ellipse or circle. As can be seen from the Lake equation, if the contour shape of the workpiece 1 is made into a perfect ellipse or circle through continuous machining, the value of 1 must be set to infinity at 8=900 and 2700. In order to avoid this situation, for example, the machined surface may be divided into four quadrants, and the method of the present invention may be applied to each quadrant to obtain a perfect circular or elliptical cross-sectional profile. As can be understood from the above description, the present invention can also be applied to the case where the cross-sectional profile of a workpiece is processed into a partial shape of a circle or an ellipse. Further, the control device shown in FIG. 3 is only one embodiment for implementing the method of the present invention, and by creating an appropriate program for the NC device, the above-mentioned control device between the workpiece and the processing electrode can be controlled. Of course, it is also possible to carry out the method of the present invention by performing a linked movement. In this way, Figure 2,
If the outline of the workpiece is subjected to electrical discharge machining into a circular or elliptical shape or a partial shape as shown in FIG. Since it faces the machining surface, a new electrode surface is always supplied to the electrical machining gap.
従って、被加工物及び加工用電極に所定の運動を行なわ
せることにより電極消耗を考慮することなく極めて正確
な加工を行なうことができる。更に、加工用電極及び被
加工物の運動が極めて単純な運動(直線運動と軸旋回運
動)で済み、従って複雑高価なNC装置を用いることな
く、円又は楕円形状を得ることができる。上記実施例で
は、加工用電極2の放電面を平坦にした場合を説明した
が、本発明は放電面が平坦である場合に限定されるもの
ではなく、要求によっては、第4図に示されるように、
放電面6′の形状を回転軸の方向に沿って凹凸をつけた
凹状としてもよい。本発明によれば、上述の如く、極め
て単純な運動軌跡に従った運動を被加工物及び加工用電
極に行なわせることにより円又は楕円の全部又は一部を
含む断面輪郭形状を得ることができ、その上加工を高精
度、高速度で行なうことができる優れた放電加工方法を
提供することができる。Therefore, by causing the workpiece and the machining electrode to perform predetermined movements, extremely accurate machining can be performed without considering electrode wear. Further, the movement of the processing electrode and the workpiece is extremely simple (linear movement and axis rotation movement), and therefore a circular or elliptical shape can be obtained without using a complicated and expensive NC device. In the above embodiment, the case where the discharge surface of the machining electrode 2 is made flat has been explained, but the present invention is not limited to the case where the discharge surface is flat, and depending on requirements, the discharge surface of the machining electrode 2 may be made flat. like,
The discharge surface 6' may have a concave shape with unevenness along the direction of the rotation axis. According to the present invention, as described above, a cross-sectional contour shape including all or part of a circle or an ellipse can be obtained by causing the workpiece and the processing electrode to move along extremely simple movement trajectories. Moreover, it is possible to provide an excellent electric discharge machining method that can perform machining with high precision and high speed.
第1図は被加工物の所望の楕円輪郭形状の一例を示す斜
視図、第2図は本発明の方法を実施するための装置の要
部を示す概略図、第3図は第2図の装置の制御装置のブ
ロック図、第4図は本発明の方法に使用する他の加工用
電極の一例を示す斜視図である。
1・・…・被加工物、2・・・・・・加工用電極、4・
・・・・・パルスモータ、6・・・・・・平坦面、7・
・・・・・回転軸、8・・・.・・パルスモータ、10
・・・・・・制御装置、S,..,...角度信号、S
2・・・・・・目標Y軸位置信号、S3・・・・・・実
Y軸位置信号、S4・・・・・・誤差信号、P.・・・
・・・駆動パルス信号。
第1図
第2図
第3図
第4図FIG. 1 is a perspective view showing an example of a desired elliptical contour shape of a workpiece, FIG. 2 is a schematic view showing the main parts of an apparatus for carrying out the method of the present invention, and FIG. FIG. 4 is a block diagram of the control device of the apparatus, and is a perspective view showing an example of another processing electrode used in the method of the present invention. 1... Workpiece, 2... Machining electrode, 4...
...Pulse motor, 6...Flat surface, 7.
...rotation axis, 8... ...Pulse motor, 10
...Control device, S, . .. 、. .. .. Angle signal, S
2...Target Y-axis position signal, S3...Actual Y-axis position signal, S4...Error signal, P. ...
...Drive pulse signal. Figure 1 Figure 2 Figure 3 Figure 4
Claims (1)
^2に従う円形又は楕円形の少なくとも一部の形状に放
電加工するための放電加工方法において、前記被加工物
とにより放電加工間隙を形成する放電面を有しその放電
面上に位置される所定の回転軸に垂直な面での該放電面
の断面が直線である加工用電極を前記回転軸を中心に回
動させると同時に、前記回転軸と垂直な平面内にある所
定の移動軸線に沿って前記被加工物を前記被加工物上の
加工目的形状の中心と前記回転軸との間の距離lが前記
移動軸線と直角な方向の直線と前記放電面とのなす角度
θとl=±√(acos^2θ+bsin^2θ)/√
(ab)・r/(cosθ)なる関係を保つようにして
移動させつつ前記加工間隙において放電加工を行なわせ
ることを特徴とする放電加工方法。1 The cross-sectional contour shape of the workpiece is ax^2+by^2=r
In the electrical discharge machining method for electrical discharge machining into at least part of a circular or elliptical shape according to A machining electrode whose discharge surface has a straight cross section in a plane perpendicular to the rotation axis is rotated about the rotation axis and at the same time along a predetermined movement axis in a plane perpendicular to the rotation axis. The distance l between the center of the target shape to be machined on the workpiece and the rotation axis is the angle θ between the discharge surface and a straight line perpendicular to the movement axis, and l=±. √(acos^2θ+bsin^2θ)/√
An electric discharge machining method characterized in that electric discharge machining is performed in the machining gap while moving so as to maintain the relationship (ab)·r/(cos θ).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP55092601A JPS601128B2 (en) | 1980-07-09 | 1980-07-09 | Electric discharge machining method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP55092601A JPS601128B2 (en) | 1980-07-09 | 1980-07-09 | Electric discharge machining method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5721229A JPS5721229A (en) | 1982-02-03 |
JPS601128B2 true JPS601128B2 (en) | 1985-01-12 |
Family
ID=14058967
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP55092601A Expired JPS601128B2 (en) | 1980-07-09 | 1980-07-09 | Electric discharge machining method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS601128B2 (en) |
-
1980
- 1980-07-09 JP JP55092601A patent/JPS601128B2/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS5721229A (en) | 1982-02-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0513223A4 (en) | Computer-controlled grinding machine for producing objects with complex shapes | |
JPH01206406A (en) | Numerical controller for non-cylindrical work machining | |
KR20100119494A (en) | Machining apparatus and machining method | |
JPH0675818B2 (en) | Anguilura grinder | |
US4343206A (en) | Slide system for machine tools | |
JPH11347861A (en) | Compound machining method and system in laser beam machine | |
CN110614445A (en) | Laser head phase angle self-adaptive adjusting method for laser-assisted cutting | |
JPH11138321A (en) | Cam shaft processing machine | |
JPS601128B2 (en) | Electric discharge machining method | |
JPH0248393B2 (en) | ||
JPH0761557B2 (en) | Laser processing equipment | |
JPS5626676A (en) | Welding arc detector | |
JPS6354487B2 (en) | ||
JPH0325269B2 (en) | ||
JPS6234765A (en) | Machining for non-cylindrical workpiece | |
JP2000198001A (en) | Cutting tool and cutting work method | |
JPS62297065A (en) | Method and device for grinding outer surface of rotation symmetrical work | |
JPS62136301A (en) | Turning work apparatus | |
JPH068059A (en) | Electric discharge machine | |
JPH05177370A (en) | Three-dimensional laser beam machine | |
JPH11267915A (en) | Eccentric cylinder machining method | |
JPH04284509A (en) | Working method for scroll vane part | |
JPS60249533A (en) | Electrode apparatus for electric discharge machining | |
WO2005091093A1 (en) | Method and device for numerical control | |
JPH04152014A (en) | Machining method by means of ball end mill |