JPS6234765A - Machining for non-cylindrical workpiece - Google Patents

Machining for non-cylindrical workpiece

Info

Publication number
JPS6234765A
JPS6234765A JP17288785A JP17288785A JPS6234765A JP S6234765 A JPS6234765 A JP S6234765A JP 17288785 A JP17288785 A JP 17288785A JP 17288785 A JP17288785 A JP 17288785A JP S6234765 A JPS6234765 A JP S6234765A
Authority
JP
Japan
Prior art keywords
workpiece
machining
contact point
axis
constant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17288785A
Other languages
Japanese (ja)
Inventor
Toshihiko Yamamoto
敏彦 山本
Masayuki Uchiumi
雅之 内海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP17288785A priority Critical patent/JPS6234765A/en
Publication of JPS6234765A publication Critical patent/JPS6234765A/en
Pending legal-status Critical Current

Links

Landscapes

  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)

Abstract

PURPOSE:To keep condition of a machining tool constant and perform accurate machining by controlling that the direction of machining action at the tool/ workpiece contact point becomes definite and that the passing speed of the contact point on the periphery of the workpiece becomes constant. CONSTITUTION:A table 1 reciprocating in X-axis direction, a table 2 placed on the table 1 reciprocating in the direction of Y-axis perpendicular to the X-axis, and a rotary table 3 placed on the table 2 and rotating at a slow speed with the center of the table 2 as the center of rotation are equipped. With this simultaneous three-axis control mechanism M, the rotary speed of a workpiece W and its rotary form are controlled so that the machining action of a grindstone T at its contact point on the workpiece W is made definite and that the passing speed Vc at the contact point becomes constant. In this way, the machining condition of the tool is always kept constant and machining of high accuracy can be made.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、回転する加工具に対して非真円形状の加工物
を回転させながら接触せしめてその周面を加工する方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method of machining the circumferential surface of a non-circular workpiece by bringing it into contact with a rotating processing tool while rotating the workpiece.

(従来の技術) 従来、例えばベーン式オイルポンプのロータハウジング
等、非真円形状加工物の内周面を研削もしくは切削加工
する場合、第5図に示すように、砥石等の加工具Tを回
転させながらその回転中心0を固定状態にある加工物W
の周面に沿って公転移動させる加工具移動方式と、第6
図に示すように、所定位置にて回転する加工具Tに対し
て加工物Wを回転移動させながらその周面を加工する加
工物移動方式との2つの加工方法が一般的に採用されて
いる。なお、上記両方式とも非真円形状加工物Wの外周
面を研削もしくは切削加工する場合にも採用できるもの
である。
(Prior Art) Conventionally, when grinding or cutting the inner peripheral surface of a non-circular workpiece, such as the rotor housing of a vane oil pump, as shown in FIG. Workpiece W whose rotation center 0 is fixed while rotating
A processing tool movement method that revolves around the circumferential surface of the
As shown in the figure, two machining methods are generally adopted: a workpiece movement method in which the circumferential surface of the workpiece W is machined while rotating and moving the workpiece W with respect to a processing tool T rotating at a predetermined position. . Note that both of the above methods can also be employed when grinding or cutting the outer circumferential surface of a non-circular workpiece W.

(1!明が解決しようとする問題点) ところが、上記従来の方法では、両方式とも、加工物W
の周面形状が非真円形状であるため、加工具Tと加工物
Wの円面との接触点がPI−P4と変化するのに伴って
加工物Wの周面に対する加工具Tの通過速度が一定でな
くなり、加工物W周面の曲率半径が大きい接触点P2 
、P4では、上記通過速度が遅くなって過剰に加工する
こととなる一方、上記曲率半径が小さい接触点P+ 、
P3では、通過速度が逆に速くなって十分に加工するこ
とができない。その結果、加工物Wを高精度に加工する
ことができないという問題があった。
(1! Problem that Ming attempts to solve) However, in the above conventional methods, both methods
Since the peripheral surface shape of is not a perfect circle, as the contact point between the processing tool T and the circular surface of the workpiece W changes to PI-P4, the passage of the processing tool T against the peripheral surface of the workpiece W changes. Contact point P2 where the speed is no longer constant and the radius of curvature of the circumferential surface of the workpiece W is large
, P4, the passing speed is slow and excessive machining is required, while the contact point P+, where the radius of curvature is small,
At P3, the passing speed becomes faster and sufficient machining cannot be achieved. As a result, there was a problem that the workpiece W could not be processed with high precision.

また、この加工物Wの加工精度の低下は別の原因によっ
ても生ずる。すなわち、上記加工具Tの加工物Wへの加
工作用方向が各接触点P+〜P4の位置に応じて絶えず
変化することがら、それに伴って加工具Tが加工物Wか
ら受ける反力の方向も変化して加工具Tの回転軸心のた
わみ方向が定まらず、その結果、加工物Wを高精度に加
工することができないこととなる。
Further, the decrease in the processing accuracy of the workpiece W is also caused by another cause. That is, since the direction in which the processing tool T acts on the workpiece W constantly changes depending on the position of each contact point P+ to P4, the direction of the reaction force that the processing tool T receives from the workpiece W also changes accordingly. As a result, the deflection direction of the rotation axis of the processing tool T is not determined, and as a result, the workpiece W cannot be processed with high precision.

本発明はかかる諸点に鑑みてなされたものであり、その
目的とするところは、上記した加工物移動方式の加工方
法において、その加工物の回転速度および回転フオーム
を適切に制御することにより、加工物周面における加工
具による加工茶イ1が常に一定に保たれるようにし、非
真円形の加工物周面を精度良く加工することにある。
The present invention has been made in view of these points, and its purpose is to provide a processing method using the above-mentioned workpiece movement method by appropriately controlling the rotational speed and rotation form of the workpiece. To accurately process a non-circular workpiece circumference by keeping the machining radius 1 by a processing tool constant on the circumference of the workpiece.

(問題点を解決するための手段) 上記の目的を達成するため、本発明の解決手段は、回転
する加工具に対して非真円形状の加工物を回転させなが
らその周面を加工することとし、上記加工具の加工物へ
の接触点にお【ノる加工作用方向が特定の一方向になる
ように、かつ加工物周面の上記接触点における通過速度
が一定になるように加工物の回転速度および回転フオー
ムを制御して加工物周面の加工を行うものである。
(Means for Solving the Problems) In order to achieve the above object, the solution of the present invention is to machine the peripheral surface of a non-circular workpiece while rotating it with respect to a rotating processing tool. At the point of contact of the processing tool with the workpiece, the workpiece is moved so that the machining action direction is in one specific direction, and the passing speed of the workpiece circumferential surface at the contact point is constant. The peripheral surface of the workpiece is machined by controlling the rotational speed and rotational form of the machine.

(作用) 上記の構成により、本発明では、回転する加工具に対し
て非真円形状の加工物を回転させながらその周面を加工
する際、加工物と加工具との接触点における加工物周面
の通過速度が一定になるように加工物の回転速度が制御
されることにより、加工物周面の曲率半径の大きいとこ
ろでは相対的に加工物の回転速度が速くなる一方、加工
物周面の曲率半径の小さいところでは逆に加工物の回転
速度が遅くなる。このことから、非真円形状の加工物周
面に加工過多および加工過少が生ずることはなく、加工
物が高精度に加工されることとなる。
(Function) With the above configuration, in the present invention, when processing the peripheral surface of a non-circular workpiece while rotating it with respect to a rotating workpiece, the workpiece at the contact point between the workpiece and the workpiece is By controlling the rotation speed of the workpiece so that the passing speed of the circumferential surface is constant, the rotation speed of the workpiece becomes relatively faster in areas where the radius of curvature of the workpiece circumference is large, while On the contrary, the rotational speed of the workpiece decreases where the radius of curvature of the surface is small. For this reason, over-machining and under-machining will not occur on the circumferential surface of the workpiece having a non-perfect circular shape, and the workpiece will be machined with high precision.

しかも、加工具の加工物への接触点における加工作用方
向が特定の一方向になるように加工物の回転フオームが
制御されることにより、加工物から加工具に作用する反
力方向が一定となって加工具の回転軸心のたわみ方向が
常に一定方向になり、このことから、非真円形状の加工
物周面が加工過多および加工過少を生ずることなくより
一層高精度に加工されることとなる。
Moreover, by controlling the rotation form of the workpiece so that the direction of machining action at the point of contact between the workpiece and the workpiece is in one specific direction, the direction of the reaction force acting on the workpiece from the workpiece is constant. As a result, the direction of deflection of the rotation axis of the processing tool is always in the same direction, and as a result, the peripheral surface of a non-round workpiece can be machined with even higher precision without over- or under-machining. becomes.

(実施例) 以下、本発明の実施例を図面に基づいて説明する。(Example) Embodiments of the present invention will be described below based on the drawings.

第1図は同時3軸制御機構Mを、第2図は非真円形状の
加工物Wの加工原理を示し、加工物Wは例えば内周面形
状が楕円形を呈したベーン式オイルポンプのロータハウ
ジングである場合を例示する。該加工物Wは、定位置に
固定されて高速回転する加工具としての砥石Tに対して
それ自体が回転移動することによりその内周面が研削加
工されるものである。また、上記同時3軸制御機構Mは
Figure 1 shows the simultaneous three-axis control mechanism M, and Figure 2 shows the principle of machining a non-circular workpiece W. The case of a rotor housing will be exemplified. The inner circumferential surface of the workpiece W is ground by being rotated relative to a grindstone T, which is a processing tool that is fixed in a fixed position and rotates at high speed. Furthermore, the simultaneous three-axis control mechanism M is as follows.

X軸方向に往復動するX軸テーブル1と、該X軸テーブ
ル1の上面に設けられ、X軸方向と直交するY軸方向に
往復動するY軸テーブル2と、該Y軸テーブル2の上面
に設けられ、Y軸テーブル1の中央を回転中心として低
速回転する回転テーブル3とを備えてなり、これらX軸
テーブル1、Y軸テーブル2、回転テーブル3の作動に
より上記加工物Wの回転フオームを制御!ll′1J−
るようになされている。そして、この同時3軸制御]機
構Mにより、上記砥石Tの加工物Wへの接触点Pにおけ
る加工作用方向が特定の一方向になるように、かつ加工
物W内周面の上記接触点Pにおける通過速[f V c
が一定になるように加工物Wの回転速度ωおよび回転フ
オームが制御されて加工物W内周面の研削加工が行われ
る。
An X-axis table 1 that reciprocates in the X-axis direction, a Y-axis table 2 that is provided on the top surface of the X-axis table 1 and that reciprocates in the Y-axis direction perpendicular to the X-axis direction, and the top surface of the Y-axis table 2. and a rotary table 3 that rotates at a low speed with the center of the Y-axis table 1 as the center of rotation, and the operation of these X-axis table 1, Y-axis table 2, and rotary table 3 changes the rotation form of the workpiece W. Control! ll'1J-
It is designed so that Then, by this simultaneous three-axis control mechanism M, the machining action direction at the contact point P of the grinding wheel T with the workpiece W is in one specific direction, and the contact point P on the inner peripheral surface of the workpiece W Passing speed [f V c
The rotational speed ω and rotational form of the workpiece W are controlled so that the rotational speed ω and the rotational form of the workpiece W are kept constant, and the grinding process is performed on the inner circumferential surface of the workpiece W.

すなわち、具体的には、上記加工物W内周面の上記接触
点Pにおける通過速度Vcを一定に保つには、加工物W
内周面の曲率半径の大きいところでは、加工物W内周面
の上記接触点Pにおける通過速度Vcが遅くなることに
よる研削過多を避けるべく加工物Wの回転速度ωを速(
する一方、加工物W内周面の曲率半径の小さいところで
は、加工物W内周面の上記接触点Pにおける通過速度V
Gが速くなることによる研削過少を避けるために加工物
Wの回転速度ωを遅くするように上記回転テーブル3の
回転速度を加工物Wの回転速度φに応じて制御すること
でなされる。
That is, specifically, in order to keep the passing speed Vc at the contact point P of the inner peripheral surface of the workpiece W constant, the workpiece W
In areas where the radius of curvature of the inner peripheral surface is large, the rotational speed ω of the workpiece W is increased (
On the other hand, where the radius of curvature of the inner peripheral surface of the workpiece W is small, the passing speed V at the contact point P of the inner peripheral surface of the workpiece W is
This is done by controlling the rotational speed of the rotary table 3 according to the rotational speed φ of the workpiece W so as to slow down the rotational speed ω of the workpiece W in order to avoid insufficient grinding due to an increase in G.

また、上記砥石Tの加工物W内周面への接触点Pにおけ
る加工作用方向が特定の一方向に保つには、上記加工物
Wの回転角度φっまり回転フオームに応じてX軸テーブ
ル1およびY軸テーブル2の移動量を制御することでな
される。図中、Aは加工物Wの中心Oの移動軌跡を示す
In order to maintain the direction of machining action at the contact point P of the grindstone T on the inner circumferential surface of the workpiece W in one specific direction, the rotation angle φ of the workpiece W must be adjusted according to the rotation form of the X-axis table This is done by controlling the amount of movement of the Y-axis table 2. In the figure, A indicates the movement locus of the center O of the workpiece W.

このように加工物Wはその回転速度ωおよび回転フオー
ムが上記同時3軸制御機構Mによって制御されながら研
削加工されるが、その研削加工方法の手順を第3図に示
す70−チト一トに基づいて説明すると、まず、上記同
時3軸制御機構Mに所定の動作を与えるべく数値制御指
令値の作成を行う。すなわち、ステップS1で加工物W
の理想フオームのデータ、すなわち加工物Wの中心0を
原点とし、その内周面の理想フオームについての接触点
Pでの位置座標を例えば1度間隔毎に変化する角度0と
、この角度0のときの上記接触点Pと加工物Wの中心O
とを結ぶ距離Rとを座標成分とJる極座標として求め、
これを数値制御指令値作成システムに入力する。そして
、ステップSλで、上記入力された理想フオームデータ
に基づいて加工物Wの回転角度φに対する上記角度θと
の関係式〇−g (φ)、加工物Wの中心OのXY座標
値と上記回転角度φとの関係式X=F+  (φ)、Y
−F+  (φ)、および加工物Wの回転フオームの弧
の良さしと回転角度φとの関係式L=G(φ)を求め、
これらの関係式を基に加工物W内円面の上記接触点Pに
おける通過速度Vcを一定にするような加工物Wの回転
速度ω(回転角度φの角速度) ω=dφ/dt =Vc/(d[G(φ)]/dφ) を決定する。このようにして求めた上記回転角度φと回
転速度ωとの関係を指令値として加ニジステムに記憶さ
せ、ステップ$3でこの指令値に基づいてテストピース
の内周面を研削加工する。さらに、ステップS4でこの
ときの研削加工データを測定し、ステップSsでその実
測データを上記理想フオームの指令値と比較してその誤
差が所定の許容範囲内にあるか否かを判断する。そして
、この誤差が許容範囲内にあるYESの場合にはステッ
プS6に進み、上記記憶した指令値に基づいた加ニジス
テムにて加工物W内周面の研削加工を開始する。
In this way, the workpiece W is ground while its rotational speed ω and rotational form are controlled by the simultaneous three-axis control mechanism M. The procedure of the grinding method is shown in FIG. To explain based on this, first, a numerical control command value is created in order to give a predetermined operation to the simultaneous three-axis control mechanism M. That is, in step S1, the workpiece W
data of the ideal form, that is, the center 0 of the workpiece W is the origin, and the position coordinates at the contact point P for the ideal form on the inner circumferential surface are the angle 0 that changes at intervals of 1 degree, and the angle 0 of this angle 0. When the above contact point P and the center O of the workpiece W
Find the distance R connecting the coordinate component and J as a polar coordinate,
This is input into the numerical control command value creation system. Then, in step Sλ, based on the input ideal form data, the relational expression 〇-g (φ) between the rotation angle φ of the workpiece W and the above angle θ, and the XY coordinate values of the center O of the workpiece W and the above Relational expression with rotation angle φ: X=F+ (φ), Y
−F+ (φ), and the relational expression L=G(φ) between the arc goodness of the rotation form of the workpiece W and the rotation angle φ,
Based on these relational expressions, the rotational speed ω of the workpiece W (angular velocity of the rotation angle φ) such that the passing speed Vc of the inner circular surface of the workpiece W at the contact point P is constant ω=dφ/dt =Vc/ (d[G(φ)]/dφ) is determined. The relationship between the rotational angle φ and the rotational speed ω obtained in this way is stored in the machining system as a command value, and in step $3, the inner circumferential surface of the test piece is ground based on this command value. Further, in step S4, the grinding data at this time is measured, and in step Ss, the measured data is compared with the command value of the ideal form to determine whether the error is within a predetermined tolerance range. If this error is within the allowable range (YES), the process proceeds to step S6, and the grinding process of the inner circumferential surface of the workpiece W is started using the machining system based on the stored command value.

一方、ステップS5で上記誤差が許容範囲内にないNO
の場合にはステップS7に准み、補正フオーム作成シス
テムにて上記誤差に応じて補正フオームデータを作成す
る。そして、ステップS2に戻って、この補正フオーム
データを上記数値制御指令値作成システムに与えてステ
ップS1の理想7オームデータに基づく指令値の補正を
行い、この修正された指令値に基づいて再びステップS
3で他のチーストピース内周面の研削加工を行う。
On the other hand, if the error is not within the allowable range in step S5, NO
In this case, in step S7, the correction form creation system creates correction form data according to the above-mentioned error. Then, returning to step S2, this correction form data is given to the numerical control command value creation system to correct the command value based on the ideal 7 ohm data of step S1, and the step is repeated based on this corrected command value. S
In step 3, grind the inner peripheral surface of the other chest piece.

その後、上記説明の如く、スタップs4で理想7オーム
データに対する研削加工データの誤差を測定し、この誤
差が許容範囲内にあるが否かをステップS5で判断して
許容範囲内になるまでステップS7,82〜S4を繰り
返し、誤差が許容範囲     □内に収まるとステッ
プS6へと進んで加工物Wの     ・研削加工を行
う。
Thereafter, as explained above, the error of the grinding data with respect to the ideal 7 ohm data is measured with the tap s4, and it is determined in step S5 whether this error is within the allowable range, and until the error is within the allowable range, step S7 , 82 to S4 are repeated, and when the error falls within the allowable range □, the process proceeds to step S6, where the workpiece W is ground.

なお、上述の如(理想フオームデータに対して研削加工
誤差が生ずるのは、例えば加工物Wを同時3軸敗値制御
によって加工する場合に、主に制御系の応答遅れによる
制御誤差と研削加工による誤差とに起因するものであり
、この誤差の補正要領を第4図に基づいて説明する。図
中、実線で示すものが理想7オ一ムデータ通りに研削さ
れたときのテストピースにおける内周面形状であり、破
線で示すものが実際に研削されたその内周面形状である
とすると、両内周面形状で囲まれる領域が理想フオーム
データに対する研削誤差となる。したがって、補正デー
タを求めるには、上記研削誤差を補正量として上記理想
フオームデータに加算あるいは減算すればよい。つまり
、理想フオームデータに対し、図中一点鎖線で示す内周
面形状とで囲まれる領域の誤差が生ずるような指令値で
もって研削加工を行うこととなる。
Furthermore, as mentioned above (grinding errors occur with respect to ideal form data, for example, when processing a workpiece W using simultaneous three-axis loss value control, the main reasons are control errors due to response delays in the control system and grinding errors). This is due to the error caused by the error, and the correction procedure for this error will be explained based on Fig. 4. In the figure, the solid line indicates the inner periphery of the test piece when ground according to the ideal 7-ohm data. If the shape shown by the broken line is the shape of the actually ground inner circumferential surface, then the area surrounded by both inner circumferential shapes will be the grinding error with respect to the ideal form data.Therefore, find the correction data. In order to achieve this, the grinding error can be added or subtracted from the ideal form data as a correction amount.In other words, the grinding error should be added or subtracted from the ideal form data as a correction amount. The grinding process will be performed using the specified command value.

したがって、上記実施例では、加工物Wはその回転速度
ωおよび回転フオームが、砥石Tへの接触点Pにおける
加工作用方向が特定の一方向になるように、かつ加工物
W内周面の上記接触点Pにおける通過速度VGが一定に
なるように制御されながら研削加工されることがら、研
削時に加工物Wから砥石Tへの反力が常に一定方向に作
用して砥石Tの回転軸心たわみ方向が一定になるととも
に、加工物W内周面の曲率半径の変化に関係なく常に一
定の研削条件となる。その結果、加工後の非真円形状加
工物Wはその内周面が研削加工過多および加工過少を生
ずることなく高精度に加工されたものとなる。
Therefore, in the above embodiment, the workpiece W has its rotational speed ω and rotational form such that the machining action direction at the contact point P to the grindstone T is in one specific direction, and Since the grinding process is performed while the passing speed VG at the contact point P is controlled to be constant, the reaction force from the workpiece W to the grindstone T always acts in a constant direction during grinding, causing the rotation axis of the grindstone T to deflect. The direction becomes constant, and the grinding conditions are always constant regardless of changes in the radius of curvature of the inner circumferential surface of the workpiece W. As a result, the inner circumferential surface of the non-round shaped workpiece W after processing is processed with high precision without causing excessive or insufficient grinding.

しかも、テストピースにより加工物Wの理想フオームに
対する研削加工誤差を検出してその誤差に基づいて当初
の理想7オームデータの指令値を修正し、この修正した
指令値に基づいて加工物Wを研削加工することから、加
工物Wが常に理想フオームの許容範囲を逸脱することな
(研削加工され、より一層高精度に加工された加工物W
を得ることができる。
Moreover, the grinding error with respect to the ideal form of the workpiece W is detected using the test piece, the command value of the initial ideal 7 ohm data is corrected based on the error, and the workpiece W is ground based on the corrected command value. Because of the processing, the workpiece W does not always deviate from the allowable range of the ideal form (the workpiece W is ground and processed with even higher precision).
can be obtained.

なお、上記実施例では、加工物Wの内周面を研削加工す
る場合を説明したが、本発明はこれに限らず、加工物W
の非真円形状外周面を研削加工する場合にも適用可能な
ことは言うまでもない。また、研削加工に限らず、切削
加工など他の機械加工を行う場合にも勿論適用すること
ができるものである。
In addition, although the case where the inner circumferential surface of the workpiece W is ground is explained in the above embodiment, the present invention is not limited to this, and the workpiece W
Needless to say, the present invention can also be applied to the case of grinding a non-perfectly circular outer peripheral surface. Moreover, it can of course be applied not only to grinding but also to other machining such as cutting.

(発明の効果) 以上説明したように、本発明の非真円形状加工物の加工
方法によれば、回転する加工具に対して非真円形状の加
工物を回転させながらその周面を加工するに際し、上記
加工具の加工物への接触点における加工作用方向が特定
の一方向になるように、かつ加工物周面の上記接触点に
おける通過速度が一定になるように加工物の回転速度お
よび回転フオームを制御するので、加工物周面に対する
加工具の加工条件が常に一定に保持されて加工物を加工
過多および加工過少を生ずることなく高精度に加工する
ことができる。
(Effects of the Invention) As explained above, according to the method for processing a non-circular workpiece of the present invention, the peripheral surface of the non-circular workpiece is machined while rotating the non-circular workpiece with respect to a rotating processing tool. When doing so, the rotational speed of the workpiece is adjusted so that the working direction at the contact point of the workpiece with the workpiece is in one specific direction, and the passing speed of the workpiece circumferential surface at the contact point is constant. Since the rotation form is controlled, the machining conditions of the machining tool on the circumferential surface of the workpiece are always kept constant, and the workpiece can be machined with high precision without over-machining or under-machining.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ないし第4図は本発明の実施例を示し、第1図は
同時3軸制御機構の概略構成図、第2図は加工物の加工
原理を説明する説明図、第3図は加工手順を説明するプ
ローチ12−ト図、第4図は加工物を加工後のフオーム
から理想フオームにフオーム修正するときの概念を示す
説明図である。 第5図および第6図はそれぞれ従来例方法の説明図であ
る。 P・・・接触点、T・・・砥石、Vc、・・・加工物周
面の接触点における通過速度、W・・・加工物、ω・・
・加工物の回転速度、φ・・・加工物の回転角度。 第1図 第2図 第3図 第5図 第4図 第6図
Figures 1 to 4 show embodiments of the present invention, Figure 1 is a schematic diagram of the simultaneous three-axis control mechanism, Figure 2 is an explanatory diagram explaining the principle of machining the workpiece, and Figure 3 is the machining process. FIG. 4 is an explanatory diagram showing the concept of correcting the form of the workpiece from the processed form to the ideal form. FIG. 5 and FIG. 6 are explanatory diagrams of the conventional method, respectively. P...Contact point, T...Wheelstone, Vc,...Passing speed at the contact point on the circumferential surface of the workpiece, W...Workpiece, ω...
・Rotation speed of workpiece, φ...Rotation angle of workpiece. Figure 1 Figure 2 Figure 3 Figure 5 Figure 4 Figure 6

Claims (1)

【特許請求の範囲】[Claims] (1)回転する加工具に対して非真円形状の加工物を回
転させながらその周面を加工する方法であつて、上記加
工具の加工物への接触点における加工作用方向が特定の
一方向になるように、かつ加工物周面の上記接触点にお
ける通過速度が一定になるように加工物の回転速度およ
び回転フォームを制御して加工物周面の加工を行うこと
を特徴とする非真円形状加工物の加工方法。
(1) A method of machining the circumferential surface of a non-circular workpiece while rotating it with respect to a rotating processing tool, in which the direction of machining action at the point of contact of the processing tool with the workpiece is in a specific direction. The method is characterized in that the peripheral surface of the workpiece is machined by controlling the rotational speed and rotation form of the workpiece so that the rotational speed and rotation form of the workpiece are oriented in the same direction and the passing speed at the contact point of the workpiece peripheral surface is constant. Processing method for perfectly circular workpieces.
JP17288785A 1985-08-06 1985-08-06 Machining for non-cylindrical workpiece Pending JPS6234765A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17288785A JPS6234765A (en) 1985-08-06 1985-08-06 Machining for non-cylindrical workpiece

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17288785A JPS6234765A (en) 1985-08-06 1985-08-06 Machining for non-cylindrical workpiece

Publications (1)

Publication Number Publication Date
JPS6234765A true JPS6234765A (en) 1987-02-14

Family

ID=15950162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17288785A Pending JPS6234765A (en) 1985-08-06 1985-08-06 Machining for non-cylindrical workpiece

Country Status (1)

Country Link
JP (1) JPS6234765A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01310865A (en) * 1988-06-08 1989-12-14 Tokiwa Seiki Kogyo Kk Superfine grinding device
JPH0241862A (en) * 1988-07-30 1990-02-13 Mazda Motor Corp Working device for non-circular shape
JPH0288163A (en) * 1988-04-04 1990-03-28 Michel A Pierrat Grinder
US5534338A (en) * 1993-12-22 1996-07-09 Toyo Metallizing Kabushiki Kaisha Heat resistant cloth for fire fighting comprising in order: a fabric substrate, a rubber layer, a metal coated polyester film layer and a tetrafluoroethylene copolymer film layer
US6228784B1 (en) * 1997-07-28 2001-05-08 Toyo Metallizing Kabushiki Kaisha Heat resistant cloth for fire fighting

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5148715A (en) * 1974-05-07 1976-04-27 Kawasaki Heavy Ind Ltd Tansangasuigata no seisakuhoho

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5148715A (en) * 1974-05-07 1976-04-27 Kawasaki Heavy Ind Ltd Tansangasuigata no seisakuhoho

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0288163A (en) * 1988-04-04 1990-03-28 Michel A Pierrat Grinder
JPH01310865A (en) * 1988-06-08 1989-12-14 Tokiwa Seiki Kogyo Kk Superfine grinding device
JPH0639052B2 (en) * 1988-06-08 1994-05-25 常磐精機工業株式会社 Ultra precision grinding equipment
JPH0241862A (en) * 1988-07-30 1990-02-13 Mazda Motor Corp Working device for non-circular shape
US5534338A (en) * 1993-12-22 1996-07-09 Toyo Metallizing Kabushiki Kaisha Heat resistant cloth for fire fighting comprising in order: a fabric substrate, a rubber layer, a metal coated polyester film layer and a tetrafluoroethylene copolymer film layer
US6228784B1 (en) * 1997-07-28 2001-05-08 Toyo Metallizing Kabushiki Kaisha Heat resistant cloth for fire fighting

Similar Documents

Publication Publication Date Title
RU2128105C1 (en) Method for precision working of toothed rims in machine tool
JPH068105A (en) Cylindrically machining device
JPS62228359A (en) Angular grinder
JPH01206406A (en) Numerical controller for non-cylindrical work machining
JP3570051B2 (en) Non-circular workpiece processing equipment
JPS6234765A (en) Machining for non-cylindrical workpiece
CN107942930B (en) Method for bevel edge machining based on five-axis numerical control system
JPS63318262A (en) Machine tool
JPH1128641A (en) Plate machining device
JP2919754B2 (en) Backlash measurement and correction device for spherical or circular surface machining
JP2000180154A (en) Phase conforming method
KR970003149B1 (en) Method of cutting in working cam shaft
JP2000084780A (en) Nc machining machinery
JPH1190773A (en) Processing of scroll plate and processing device
JP3159889B2 (en) Cam grinder
JPH08229792A (en) Grinding device and grinding method
JPS61226264A (en) Grinder operation robot device
JPH06259123A (en) Machining method
JP3130770B2 (en) Non-circular grinding machine
JPS60177848A (en) Correction of original point in nc machine tool
JPH04159100A (en) Position correction method for ultrasonic tool
JPH0488504A (en) Tool effective position correcting method
JP3920995B2 (en) Crankshaft processing equipment
JPH09285963A (en) Device and method for correcting grinding wheel
JPS63120304A (en) Production of involute curve