JPS60111931A - Light applied temperature measuring apparatus - Google Patents

Light applied temperature measuring apparatus

Info

Publication number
JPS60111931A
JPS60111931A JP21867283A JP21867283A JPS60111931A JP S60111931 A JPS60111931 A JP S60111931A JP 21867283 A JP21867283 A JP 21867283A JP 21867283 A JP21867283 A JP 21867283A JP S60111931 A JPS60111931 A JP S60111931A
Authority
JP
Japan
Prior art keywords
light
diffraction grating
temperature
temp
reflected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21867283A
Other languages
Japanese (ja)
Inventor
Yoichi Shindo
洋一 進藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP21867283A priority Critical patent/JPS60111931A/en
Publication of JPS60111931A publication Critical patent/JPS60111931A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K5/00Measuring temperature based on the expansion or contraction of a material
    • G01K5/48Measuring temperature based on the expansion or contraction of a material the material being a solid
    • G01K5/50Measuring temperature based on the expansion or contraction of a material the material being a solid arranged for free expansion or contraction
    • G01K5/52Measuring temperature based on the expansion or contraction of a material the material being a solid arranged for free expansion or contraction with electrical conversion means for final indication

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radiation Pyrometers (AREA)

Abstract

PURPOSE:To eliminate the variation in the output of a light source and the transmission loss of a light transmitting member, by constituting the title apparatus so that a diffraction grating is brought into contact with an object to be measured and the temp. around the diffraction grating is measured from the peak wavelength of the spectrum distribution of reflected light. CONSTITUTION:Light emitted from a light emitting element 19 is projected to the diffraction grating 33 in a temp. detector 23 and light reflected from said grating 33 is guided to a light receiving part 25 and the spectrum distribution of the reflected light is detected by a photodiode array 29. Therefore, by calculating the peak wavelength of the spectrum distribution from the detection result, the temp. in the vicinity of the diffraction grating 33 in the temp. detecting part 23 is measured. Because the peak wavelength utilized in this measurement is an amount not relating to the intensity of a light source for projecting light or the light transmission loss of a light transmitting member, the accurate measurement of a temp. subjected to no effect of said phenomena can be performed.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は光の特性を利用した温度測定装置、特に被測定
物に接触させられた回折格子に光を投射し、この回fJ
[格子からの反射光のスペクトル分布の波長から前記被
測定物の温度を測定する、光源ならびに光伝送部材の特
性変動の影響を受けることのない接触式温度測定装置i
K関する。
Detailed Description of the Invention [Technical field to which the invention pertains] The present invention relates to a temperature measuring device that utilizes the characteristics of light, in particular, a temperature measuring device that projects light onto a diffraction grating that is brought into contact with an object to be measured.
[Contact temperature measuring device that measures the temperature of the object to be measured from the wavelength of the spectral distribution of light reflected from a grating and is unaffected by variations in the characteristics of the light source and light transmission member i
Regarding K.

〔従来技術とその問題点〕[Prior art and its problems]

被t11+1定物&C接触して該被測定物の温度を直接
6(す定する接触式温度測定装置は、放射温度測定装b
iのような非接触式温度測定装置に比べて放射量1よと
の影響を受けないので正確な温度測定が行えるが、光を
用いた接触式温度測定装置はさらに耐電、牌鋳尋障沓性
や防爆性等を有するために従来多く、IP)種類のもの
が提案されている。
A contact temperature measuring device that directly measures the temperature of the object by contacting the object t11+1 is a radiation temperature measuring device b.
Compared to non-contact temperature measuring devices such as i, it is not affected by the amount of radiation, allowing for more accurate temperature measurements; In the past, many IP) types have been proposed due to their properties such as safety and explosion-proof properties.

第1図はこのような光を用いた接触式温度測定;−置の
一例の141成図で1図において1aはパルス党生器2
aと駆動回路3aとによって駆動されて波長″λ1の光
を発生する発光ダイオード、1bはパルス発生器2bと
駆動回路3bとによって駆動されて成長λ2の光を発生
する発光ダイオードで1発元ダイオード1 a 、 1
 b Piパルス発生回N 2 a 、 2 b Kよ
りて交互に発光する。発光ダイオードla、lbで発光
した光は光合波器4で合成された後光7アイパ5、光コ
ネクタ6、光ファイバ7を順次介して温度センサ8に導
かれ、このセ/す8を透過した後サラに光ファイバ9、
コネクタ10、光7フイハ11を順次介して受光ダイオ
ード12に4かれる。13は上述の光コネクタ6.10
、光ファイバ7.9および温度センサ8からなる検出部
で、この場合温度センサ8が被測定物に接触させられる
0温度センサ8は短波長の光奪吸収し長波長の元を透過
させる特性の半導体拐料で構成されており、波長λ1は
この特性の吸収端近傍の波長圧、また波長λ2はこの特
性の吸収71〜から光分離れた、光の透過部域の波長に
設定されていて、前記吸収端は材料の雌度によって変化
する。し省がって温度センサ8が被)1j定吻に接触さ
せられて温度センサ8の温1良が変y・Hしすると、波
長λlの光のこのセンサにおける透過1率が変るので受
光ダイオード12に到達する波長λ1の光の強度は′a
度センサの温度に応じた値となる、、が、波長λ2の光
の受光ダイオード12に到達する強゛度は温度センサの
温度の影響を受けない。受光ダイ゛オード12は受光し
た光の*tfに応じた信号を出力し、この信号は増幅器
14で増幅され、増幅器14の出力信号に含まれている
波長λ1.λ2の各九に部間サンプルホールドされ、両
ホールド回路15 、16の出力信号が除算器17に入
力されてこの除算器からホールド回路15 、 IGの
両出力信号の比に応じた信号17aが出力される。
Figure 1 is a 141 diagram of an example of a contact temperature measurement system using such light; in Figure 1, 1a is a pulse generator 2
1b is a light emitting diode that is driven by a pulse generator 2b and a drive circuit 3b to generate light with a wavelength of λ2; 1 a, 1
b Pi pulse generation times N 2 a and 2 b Emit light alternately from K. The light emitted by the light emitting diodes la and lb is combined by an optical multiplexer 4 and guided to a temperature sensor 8 via a backlight 7 eyeper 5, an optical connector 6, and an optical fiber 7, and is transmitted through this center 8. Optical fiber 9 in the rear panel,
The light is connected to a light receiving diode 12 via a connector 10 and a light receiving diode 11 in sequence. 13 is the optical connector 6.10 mentioned above.
, a detection section consisting of an optical fiber 7.9 and a temperature sensor 8. In this case, the temperature sensor 8 is brought into contact with the object to be measured. The wavelength λ1 is set to the wavelength pressure near the absorption edge of this characteristic, and the wavelength λ2 is set to the wavelength of the light transmission region that is separated by light from the absorption 71~ of this characteristic. , the absorption edge changes depending on the femaleness of the material. When the temperature sensor 8 is brought into contact with the 1j fixed nose and the temperature of the temperature sensor 8 changes by yH, the transmission rate of the light of wavelength λl in this sensor changes, so the light receiving diode The intensity of the light of wavelength λ1 reaching 12 is 'a
The intensity of the light with the wavelength λ2 reaching the light receiving diode 12 is not affected by the temperature of the temperature sensor. The light receiving diode 12 outputs a signal corresponding to *tf of the received light, this signal is amplified by the amplifier 14, and the wavelength λ1 . The output signals of both hold circuits 15 and 16 are sampled and held in each section of λ2, and are input to a divider 17, which outputs a signal 17a according to the ratio of both output signals of hold circuit 15 and IG. be done.

詔1図の温度(lilJ定装置は上鈍のように構成され
ているので、光ファイバ5,7,9.11および元コネ
クタ6.10を構成部材とする光伝送路には、光7アイ
パの曲げや温度変化等に起因する該ファイバの鐙みにも
とづく光の伝送損失および光コネクタの着脱時の軸ずれ
等にもとづく光の伝送損失が存在し、このため受光ダイ
オード12に達する光の強度は前記伝送損失の影シルを
受け、また受光ダイオード12に達する元の強度は発光
ダイオード1aおよび1bの出力変動の影frJIも受
ける。したがって、第1図の測定装置では、両売)′0
ダイオードに出力変動がなくかつ前記伝送損失の影響が
波長λ□および波長λ2のいずれの光に対しても同等に
及ぶものであれば、除算器17Fiホールド回路15お
よび16の各出力信号の比を% 34するものであるか
ら、ここで前記伝送損失に対する補償が行われて46号
・17、aは温度センサ8の温度すなわち僅6111定
物の温度に応じた信号となるが、一般に自発光ダイオー
ドla、Ibの各出方変動を零にすることは非常に困難
である上、光伝送部材の前記伝送111失は経時的に非
常に複雑に変化し、この伝送損失のダ励を発生させる光
ファイバや光コネクタに′icXける前記諸要因が波長
λ1の九と波長λ2の光とに対して等価に作用し、これ
らの光の強IKの比を取ることによって光伝送部材の伝
送損失変動の高栢度な補償が可能であるという実証的な
データは未だ存在しない。すなわち第1図にボしたよう
な従来の温度測定装置には、光伝送部材における伝送損
失や発光ダイオードの出力の変動によって測定結果が影
響を受けるという問題がある。
The temperature shown in Figure 1 of the Imperial Decree (lilJ) is configured like an upper tube, so the optical transmission line consisting of the optical fibers 5, 7, 9.11 and the original connector 6.10 is There are optical transmission losses due to the stirrup of the fiber due to bending and temperature changes, and optical transmission losses due to axis misalignment when connecting and disconnecting the optical connector. is affected by the transmission loss, and the original intensity reaching the light receiving diode 12 is also affected by the output fluctuations of the light emitting diodes 1a and 1b.Therefore, in the measuring device of FIG.
If there is no output fluctuation in the diode and the transmission loss affects both the wavelength λ□ and the wavelength λ2 light equally, then the ratio of the output signals of the divider 17Fi hold circuits 15 and 16 is % 34, compensation for the transmission loss is performed here, and No. 46/17, a becomes a signal corresponding to the temperature of the temperature sensor 8, that is, the temperature of a mere 6111 constant object, but it is generally a self-emitting diode. It is very difficult to reduce each output variation of la and Ib to zero, and the transmission loss of the optical transmission member changes in a very complicated manner over time, and the light that causes this transmission loss The above-mentioned factors affecting fibers and optical connectors act equally on the light of wavelength λ1 and the light of wavelength λ2, and by taking the ratio of the strong IK of these lights, the transmission loss fluctuation of the optical transmission member can be calculated. There is still no empirical data showing that a high degree of compensation is possible. That is, the conventional temperature measuring device as shown in FIG. 1 has a problem in that the measurement results are affected by transmission loss in the optical transmission member and fluctuations in the output of the light emitting diode.

〔発明の目的〕[Purpose of the invention]

本発明は上述のような従来の温度測定装置/J、 Kお
ける問題点を解災して、光源の出方変動やう光伝送部材
における伝送損失変動の影響を受けることのない、光を
用いた接触式温度測定装置を提供することを目的とする
ものである。
The present invention solves the problems of the conventional temperature measuring devices/J, K as described above, and uses light that is not affected by variations in the output direction of the light source or variations in transmission loss in the optical transmission member. The object of the present invention is to provide a contact temperature measuring device.

〔発明の要点〕[Key points of the invention]

本発明は、上述の目的を達成するために、温度1士よる
#脹または収縮によって格子定数が変化す一池回折格子
を温度センサとしてこの回ν「格子に光′を投射すると
、回折格子から所定方向に反射される反射光のスペクト
ル分布におけるピーク波長の値が回折格子の温度圧部じ
た値となるので、回」Jr格子を被測定物に接触させて
前記ピーク波長を分売機能を有する受光部で測定し、こ
の測定結果から傘測定物の温度をめるように温度測定装
置を構成したもので、このように温度測定装置を4i4
成することによって、光rMの出方変動や光伝送部材に
おける伝送損失の変動の影響を受けることの1工い温度
測定が行なえるようにしたものである。
In order to achieve the above-mentioned object, the present invention uses an Ichike diffraction grating whose lattice constant changes due to expansion or contraction due to temperature as a temperature sensor, and when light is projected onto this grating, Since the value of the peak wavelength in the spectral distribution of reflected light reflected in a predetermined direction is the value subtracted by the temperature and pressure of the diffraction grating, it has the function of distributing the peak wavelength by bringing the Jr. grating into contact with the object to be measured. The temperature measuring device is configured so that the temperature of the object to be measured is calculated using the light receiving part and the temperature of the object to be measured is determined based on the measurement result.
By doing so, it is possible to perform temperature measurement without being affected by variations in the output direction of light rM and variations in transmission loss in the optical transmission member.

〔発明の実施例〕[Embodiments of the invention]

次に本発明の実施例を図面を参照して説明する。 Next, embodiments of the present invention will be described with reference to the drawings.

第2図は本発明による光応用温度測定装置の一実施例1
8の構成図で、この611」定装置18は、光源として
LED発元水元素子19出射される比較的広いスベクト
ル分布を有する光を光ファイバ加、ハーフミラ−21、
光ファイバUを順次介して先端が被測定物に接触させら
れる棒状の温度検出部ムヘ導き、この温度検出部へ尋人
された光の、該d度検出部における後述の機構による反
射光を再び光7アイ/<22によって逆方向に伝送した
後、ハーフミラ−♀l、光7アイバムを順次介して受光
部ゐに導くよ、・知に構成され、この受光部ゐはこれに
導入される二箭記反射光をレンズ26で平行光束にして
回折格子、1.bK投射し、この回折格子によって回折
された光をレンズ路を介してホトダイオードアレイ器上
に集束するように構成され【いる。すなわち受光部25
am記反射光のスペクトル分イ11をホトダイオードア
レイ四によって測定する分光器である。
FIG. 2 shows an embodiment 1 of the optical temperature measuring device according to the present invention.
8, this 611'' fixed device 18 connects light having a relatively wide svector distribution emitted from an LED water element 19 as a light source to an optical fiber, a half mirror 21,
The optical fiber U is sequentially guided to a rod-shaped temperature detection section whose tip is brought into contact with the object to be measured, and the light that is directed to this temperature detection section is reflected by the mechanism described below in the temperature detection section again. After being transmitted in the opposite direction by the light 7 eye/<22, it is guided to the light receiving part 2 via the half mirror ♀l and the light 7 eye bum in order. A diffraction grating that converts the reflected light into a parallel beam using a lens 26;1. bK projection and is configured to focus the light diffracted by the diffraction grating onto the photodiode array through a lens path. That is, the light receiving section 25
This is a spectrometer that measures the spectral division 11 of reflected light with a photodiode array 4.

第3図は第2図に示したm度検出部んの縦断面図、第4
凶は第3図の回折格子マウント31部分の拡大図である
。両図において31は円筒状の外筒J2の一端にこれを
塞止するようにEZげた栓状の回1J’l’格子マウン
トで、このマウントの内面31aは外筒32の軸に対し
て傾斜した平面に形成され、この内面31aには、銅、
アルミニウム等の金属製平板の表面に断面が鋸歯状をし
たブレーズ33att、1iJIんだ回折格子おがその
裏面な当接させるようにして固定されている。この場合
回折格子マウント31′j−Jよび外1+;i 32は
いずれも回折格子おと同種またリュ熱膨張係数の近似し
た材りで形成され、回折格子33と回折格子マウ、ント
31とはTLf着または高温ろう付けにより置屋され、
回折格子マウント31と外筒32とは無機接着剤による
接層かまたは高温ろう付けにより固定されている。34
は外@ 32の他端にこれン真秩の石央製コリメータレ
ンズ、37はその軸に沿った細径のコア37aを有する
円柱状の石英製専元路テ、ストッパあ、レンズ語、導光
路3’7は、ストツバ、35が回折格子マウント31側
になるようにして順次外f?J32内に嵌挿され、導光
路37と蓋34との間に円筒状のばね38が圧縮状態で
仲人されてこのばねおによって回折格子マウント31の
方向にPP圧され、この場合ストッパあはコリメータレ
ンズあと回V[格子あとの間に空所39が形成されるよ
うに形成されている。ばねあは外筒32とその内部に嵌
挿された尋光シロ37#との熱展脹光により導光路37
等に生ずる歪を吸収して外筒32内に嵌挿された各部材
を安定に保持する機能を有している。22aおよび22
bはそれぞれ元ファイバnの素線および外被で、素線2
2aは蓋あを貝通させられて端部が導光路37のコア3
7aの端面にd着また接着剤で接合され、40は累M’
、naとコア37aとのJffr部を補強するために光
ファイバ范と外筒32との対間する各1m部近傍が低伸
された円筒状補強部拐で、補強部材40の各端部はそれ
ぞれ元ファイバの外被zbおよび外筒32にイHa接着
剤で接層されている。すなわちこの場合温度検出部23
は上述の光ファイバ范を除く各部拐で構’ l輯されて
おり、回折格子;i、’iが設けられた端部近傍lys
 4PL御]冗・吻甲に挿入される。
Figure 3 is a vertical cross-sectional view of the m degree detection section shown in Figure 2,
The highlight is an enlarged view of the diffraction grating mount 31 portion in FIG. 3. In both figures, reference numeral 31 denotes a plug-shaped lattice mount 1J'l' with an EZ extending over one end of the cylindrical outer cylinder J2 so as to close it, and the inner surface 31a of this mount is inclined with respect to the axis of the outer cylinder 32. The inner surface 31a is made of copper,
A diffraction grating 33att, 1iJI having a serrated cross section is fixed to the surface of a metal flat plate made of aluminum or the like so that the back surface of the blaze 33att and 1iJI are in contact with each other. In this case, the diffraction grating mount 31'j-J and the outer 1+; It is installed by TLf bonding or high temperature brazing,
The diffraction grating mount 31 and the outer cylinder 32 are fixed by contacting each other with an inorganic adhesive or by high-temperature brazing. 34
At the other end of 32 is a collimator lens made by Ishio of Shinchichi, and 37 is a cylindrical quartz special source lens with a small diameter core 37a along its axis, a stopper, a lens, and a guide. The optical path 3'7 is sequentially guided outward with the stopper 35 facing the diffraction grating mount 31 side. A cylindrical spring 38 is inserted between the light guide path 37 and the lid 34 in a compressed state, and this spring applies PP pressure in the direction of the diffraction grating mount 31. In this case, the stopper A is the collimator. The lens rear turn V [is formed so that a space 39 is formed between the grating backs. The spring is caused by the light guide path 37 due to the thermal expansion of the outer cylinder 32 and the light shield 37# fitted inside the outer cylinder 32.
It has a function of stably holding each member inserted into the outer cylinder 32 by absorbing the distortion caused by the outer cylinder 32 and the like. 22a and 22
b are the strand and jacket of the original fiber n, respectively, and strand 2
2a is a core 3 whose end is a light guide path 37, which is passed through the lid;
It is attached to the end face of 7a with adhesive, and 40 is M'
, in order to reinforce the Jffr portion between the optical fiber shaft and the core 37a, each end of the reinforcing member 40 has a cylindrical reinforcing portion that is stretched low in the vicinity of each 1 m portion between the optical fiber shaft and the outer tube 32, and each end of the reinforcing member 40 is They are bonded to the outer sheath zb and the outer tube 32 of the original fiber, respectively, using an A-Ha adhesive. In other words, in this case, the temperature detection section 23
is composed of each part except the above-mentioned optical fiber section, and the diffraction grating;
4PL] It is inserted into the proboscis.

なおこの温度検出部すにおいては、回折格子おの酸化を
防ぐ必歿がある場合は、元ファイバの素゛碕ηaが儲あ
を貝通する部分は封止剤によって気密1円封止され、さ
らに外筒32にはばね38が設けられた部分に貫通孔3
2aが形成されてこの貞迫孔によって外筒n内は真空封
止されるかあるいは不活性ガスで置換された後制止剤で
封止される。
In addition, in this temperature detection part, if it is necessary to prevent oxidation of the diffraction grating, the part where the base fiber ηa passes through the hole is hermetically sealed with a sealant. Furthermore, a through hole 3 is provided in the portion of the outer cylinder 32 where the spring 38 is provided.
2a is formed, and the inside of the outer cylinder n is vacuum-sealed by this pressure hole, or is replaced with an inert gas and then sealed with a sealant.

次に上述の温度検出部おによって温度画定が杓なえる測
定涼I!d、を第5図および第6図を参照して説明する
。第5図は回す「格子33と回折格子マウント31とこ
れら近傍の光の経路とを説明する換弐図で、37bは導
光路のコア37aのコリメータレンズ3しに当接するん
面である。すなわち第2図および第3図に示した温良検
出部んにおいては発光素子19から出射された比較的広
いスペクトル分布をもつ光が元ファイバn%導光路のコ
ア37aをj畝次通り℃端面37bに尋かれ、この端面
37bからコリメータレンズ36に投射された光はこの
レンズ36で平行/、C光束41に形成され全ハj39
を介して回折格子品に投射される。ところがこの場合、
回9丁格子おが、ブレーズのがF面33bが光束41の
方向に対して厳父する、1いわゆるリットロー形構成に
igるよう−に1回りr格;子マウント31の内面31
aが光束41の方向に対して形成されているので、回折
格子33に投射された尤の中のブレーズ波長λ0を中心
とする波長の光がこの回折格子で鏡面反射されて再び入
射光束41に平行な光束となり、コリメータレンズ蕊で
端面37bに1集束させられ、このブレーズe、長λo
nブレーズの斜面33bの回折格子お全体の平面とのな
す角、すなわちブレーズ角をθとして(11式で表され
る。
Next, the temperature can be determined using the temperature detection section mentioned above. d will be explained with reference to FIGS. 5 and 6. FIG. 5 is a perspective view illustrating the rotating grating 33, the diffraction grating mount 31, and the light path in their vicinity. 37b is the surface of the core 37a of the light guide that comes into contact with the collimator lens 3. That is, In the temperature detection section shown in FIGS. 2 and 3, the light with a relatively wide spectrum distribution emitted from the light emitting element 19 passes through the core 37a of the original fiber n% light guide path in a ridge direction and reaches the ℃ end face 37b. The light projected from this end surface 37b to the collimator lens 36 is formed into a parallel/C beam 41 by this lens 36, and the total beam is
is projected onto the diffraction grating. However, in this case,
The inner surface 31 of the child mount 31 has a lattice shape around the 9th lattice, and the blaze has a so-called Littrow configuration in which the F plane 33b is strictly aligned with the direction of the light beam 41.
a is formed in the direction of the light beam 41, so that the light with a wavelength centered on the blaze wavelength λ0 among the possibilities projected onto the diffraction grating 33 is specularly reflected by this diffraction grating and returns to the incident light beam 41. It becomes a parallel light beam and is focused on the end surface 37b by the collimator lens holder, and this blaze e has a length λo
The angle between the slope 33b of the n-blaze and the plane of the entire diffraction grating, that is, the blaze angle, is θ (expressed by equation 11).

λo = (2d/m )・sin e ・・・・・・
四・・・・・・・・・・・曲・・+11ここにdは回折
格子33の格子定数、犠は回り「次数である。
λo = (2d/m)・sin e...
4...... Song...+11 Here, d is the lattice constant of the diffraction grating 33, and the sacrifice is the rotation order.

第6図の曲線Aは上記のよう圧して端面37bK、!1
4束される回折光のスペクトル分布のm = 1 (’
)場合の概要を示したもので、図から明らかなようにこ
のスペクトル分布は中心波長λ0をピーク波長とする鋭
い山1杉の分布となり、波長λ0は(1)弐によって格
子定数dに応じた波長である。格子定数dは回折格子あ
の温度によるW3張または収輔に応じて変化するから、
した7)iって波長λ0を測定することによって回折格
子あの温度、リーなわちこの回折格子に熱の良導体であ
るI’9+の回折格子マウント31を介して接触してい
る被61す定吻の墓度を知ることができることになる。
Curve A in FIG. 6 shows the end face 37bK, ! 1
m = 1 ('
), and as is clear from the figure, this spectral distribution is a sharp mountain-like distribution with the peak wavelength at the center wavelength λ0, and the wavelength λ0 corresponds to the lattice constant d by (1) 2. It is the wavelength. Since the lattice constant d changes depending on the W3 tension or convergence due to the temperature of the diffraction grating,
7) By measuring the wavelength λ0 i, we can determine the temperature of the diffraction grating. You will be able to know the degree of grave.

なお第6図に示した曲、4Bは回折格子おに投射される
元のスペクトル分布で、この分布は前述したように比V
OVに成長範囲の広い1布となっており、曲、;、、i
t Aのピーク11まほぼ曲−一1事の上にある。
Note that the song 4B shown in Figure 6 is the original spectral distribution projected onto the diffraction grating, and as mentioned above, this distribution is
It has a wide range of growth in OV, and the song, ;,,i
t A's peak 11 is almost above the song 11.

1すなわら、以上に説明したようにF↓2121の温度
測定装置においては、発元素子19から出射された光が
温匣侠出部δ内の回v1格子に投射され、ここ゛、で反
射されたttが受光部6に導かれてこの反射光圧のスペ
クトル分布がホトダイオードアレイ」で検出される。し
たがってこのホトダイオードアレイの構出i盾果からn
(1述のピーク波長λ0をめることにより″′C温匿検
出部記における回折格子お近国の温1〈が6111定さ
れるので、このような温度測定装置に」5ける測定結果
は元Jllことしての発光索子19の出力変動および光
伝送部材としての元ファイバJ。
1. In other words, as explained above, in the temperature measuring device of F↓2121, the light emitted from the light emitting element 19 is projected onto the v1 grating in the warm box exit part δ, and here, The reflected tt is guided to the light receiving section 6, and the spectral distribution of this reflected light pressure is detected by a photodiode array. Therefore, from the configuration i of this photodiode array to n
(By calculating the peak wavelength λ0 mentioned in 1), the temperature 1〈 of the nearby country of the diffraction grating in ``C thermal detection section'' can be determined by 6111, so the measurement result obtained by using such a temperature measuring device is The output fluctuation of the light-emitting cable 19 as the original Jll and the original fiber J as the optical transmission member.

n、′d!A、ハーフミラー2エヘダの光伝11sj貝
失変劫の影gン受り゛ることがないうえ、このようlL
温り逐検出部7Aは回折格子おおよびその点Wにある回
折格子マウント31等の各部材が上述のようなIhで1
1イ成されているので耐熱曲ならびに献度応谷性が極め
て良好である。
n,'d! A, Half Mirror 2 Eheda no Koden 11sj The shadow of the shell change is not received, and it is like this lL
The temperature detection unit 7A is configured such that each member such as the diffraction grating and the diffraction grating mount 31 located at the point W is 1 at Ih as described above.
1, it has extremely good heat resistance and durability.

上述の実施例においてC1,たとえば温度横出郡乙に入
射される光の伝送部材とこの検出部から反射によって出
i1.2される光の伝送部材とを一本の光ファイバ&に
λ1−.ねさせるなどして、光学系を簡単、I19+j
i;成できるようにするために回σ「格子あをリツIB
tlロー形に配置したが、本発明は回り[格子のこのま
うな配置に限定されるものでになく、一般に記、、5f
aK示した回v1“格子、j、$においてtま光がブレ
ーズの斜面33bに対して入射角6で入射した場合、回
折角が−と7Lる正反射末件を7+”n4たず方向では
この反、゛観光1d (2d/m )・8in6@cO
Sg をピーク波長トf 71スペクトル分布を示すの
で、零発H1jれtこの反射光な第2−の光ファイバと
とは異なる別の7e 7アイバで受光部2E) Ic尋
いて分光することにより【温LLを測定するようにする
こともでさる。
In the above-described embodiment, C1, for example, a transmission member for light incident on temperature Yokode group B and a transmission member for light emitted by reflection from this detection portion i1.2 are connected to one optical fiber &λ1-. I19+j
i; In order to be able to
5f.
When a light is incident on the slope 33b of the blaze at an angle of incidence of 6 at v1' grating, j and $, the specular reflection final condition with a diffraction angle of - and 7L is 7+' in the n4 direction. On the other hand, ゛Tourism 1d (2d/m)・8in6@cO
Since Sg has a peak wavelength and 71 spectral distribution, the zero emitted H1j and this reflected light are different from the second optical fiber. It is also possible to measure the temperature LL.

〔発明の効果〕〔Effect of the invention〕

以上に説明したように不発+31J Kおい−〔は、温
度によってに眼またゲユ収編して格子に数が+j’J記
温度に対応して変化する回折格子に広いスペクトル分布
な^する光を光伝送部材を通し″C投射し、この投射さ
れた光のね1」配回4ji格子による反射光を前記光伝
送部旧と同一かまたf、を異なる光伝送郡利によって分
光機能を有する受元”C渇にJトさ、この受光部での分
)七結果にもとづく前記反射光のスペクトル分41iの
ピーク枝梗から回折格子tL3辺の温度を61す定する
ように温度測定装WY伯成したので・このようンエシリ
矩装にで利用される前記ピーク枝梗(は回折格子に’j
tを投射するつ°(、源の強さやんI記光伝送部I、7
光伝送損失とは無闇保なに6であるため、本発明の温度
測定装置には光ぶの出力変DC+や光伝送部椙゛fC3
ける伝送損失の裳〜hの影智を受けることのない温度測
定か行なえる効果がある。
As explained above, an unexploded +31J K is a light that has a wide spectral distribution in a diffraction grating that changes depending on the temperature and the number of +j'J in the grating changes depending on the temperature. is projected through a light transmission member, and the reflected light by the 4ji grid of this projected light is the same as the previous light transmission section or has a spectroscopic function by using a different light transmission group. The temperature measurement device WY is used to determine the temperature of the three sides of the diffraction grating tL from the peak branch of the spectral portion 41i of the reflected light based on the result of the spectral portion 41i of the reflected light. As a result of this, the peak branches (which are used in this type of rectangular lattice) are
When projecting t (, source strength I, light transmission part I, 7
Since the optical transmission loss is an absolute value, the temperature measurement device of the present invention includes a light output change DC+ and an optical transmission part fC3.
This has the advantage of being able to perform temperature measurements without being affected by transmission losses.

’i、’ ”を軸のti)単lよ説明 jA4.1図は従来の温度測定装はの(iイ成図、第2
図は本発明による光応用温度測定値はの一実施例の副成
図、第3図は帛2凶における温度・演出部の帆断面回、
第4図は第31の要部拡大囚、第5図および第6凶eよ
いずれも温度より定涼坤−の墨況明図である。
Figure 4.1 shows the conventional temperature measuring device (i diagram, 2nd diagram).
The figure is a sub-figure of one embodiment of the optical temperature measurement value according to the present invention, and FIG.
Fig. 4 is an enlarged view of the main part of No. 31, and Figs.

18・・・光応用温度測定装置1.′、19・・・光源
としての発光素子、加、22.24・・・いずれも光伝
送部材としての光ファイバ、5・・・受光di1.33
・・・回折格子、λ0・・・ヒーク波長。
18... Optical temperature measuring device 1. ', 19... Light emitting element as a light source, 22.24... Optical fiber as a light transmission member, 5... Light receiving di1.33
... Diffraction grating, λ0... Heak wavelength.

1菓技術院長 川 1)伯 部 可7 f 口 胃・2 図 第 5 図Ichika Technical Director Kawa 1) Hakube Possible 7 f mouth Stomach 2 diagram Figure 5

Claims (1)

【特許請求の範囲】[Claims] 1)広いスペクトル分布をもつ光源と、温度変化による
膨張または収縮によって格子定数が変化する回折格子と
、前記回折格子に前記光源の光を伝送しかつ前記回折格
子がらの反射光を伝送する光伝送部材と、前記光伝送部
材によって伝送された前記反射光を分光する受光部とを
備え、前ゎ己受光部における分光結果にもとづく前記反
射光のスペクトル分布のピーク波長の値から前記回折格
子周辺の温度を測定することを特徴とする光応用温度測
定装置。
1) A light source with a wide spectral distribution, a diffraction grating whose lattice constant changes due to expansion or contraction due to temperature change, and optical transmission that transmits light from the light source to the diffraction grating and transmits reflected light from the diffraction grating. member, and a light receiving section that spectrally spectrally reflects the reflected light transmitted by the light transmitting member, and calculates the area around the diffraction grating from the value of the peak wavelength of the spectral distribution of the reflected light based on the spectral results in the light receiving section. An optical temperature measuring device characterized by measuring temperature.
JP21867283A 1983-11-22 1983-11-22 Light applied temperature measuring apparatus Pending JPS60111931A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21867283A JPS60111931A (en) 1983-11-22 1983-11-22 Light applied temperature measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21867283A JPS60111931A (en) 1983-11-22 1983-11-22 Light applied temperature measuring apparatus

Publications (1)

Publication Number Publication Date
JPS60111931A true JPS60111931A (en) 1985-06-18

Family

ID=16723610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21867283A Pending JPS60111931A (en) 1983-11-22 1983-11-22 Light applied temperature measuring apparatus

Country Status (1)

Country Link
JP (1) JPS60111931A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0341882A2 (en) * 1988-05-11 1989-11-15 Simmonds Precision Products Inc. Optical sensors

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57157124A (en) * 1981-03-24 1982-09-28 Yutaka Ono Optical rod fabry-perot thermometer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57157124A (en) * 1981-03-24 1982-09-28 Yutaka Ono Optical rod fabry-perot thermometer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0341882A2 (en) * 1988-05-11 1989-11-15 Simmonds Precision Products Inc. Optical sensors

Similar Documents

Publication Publication Date Title
US5767976A (en) Laser diode gas sensor
US4790669A (en) Spectroscopic method and apparatus for optically measuring temperature
US6233373B1 (en) Optical spectrometer with improved geometry and data processing for monitoring fiber optic bragg gratings
JP4800244B2 (en) Terahertz wave measuring device
JPS6298218A (en) Fiber optical detecting system
CN107976263B (en) Photothermal reflection temperature measurement method and system
JPS6049847B2 (en) Method and spectrometer for measuring light intensity
US8139212B2 (en) Measurement of volume holographic gratings
JP2001141563A (en) Spectrometry, its device, temperature measuring device, and film pressure measurement device
JPH01502052A (en) Optical sensors and optical fiber networks for optical sensors
EP1120637A2 (en) Method and means for calibrating a grating monochromator
US20080129985A1 (en) Slanted Bragg Grating Refractometer, Using the Optical Power Diffracted to the Radiation-Mode Continuum
JPS61292043A (en) Photodetecting probe for spectocolorimeter
US20070002429A1 (en) Optical channel monitor
JPS60111931A (en) Light applied temperature measuring apparatus
US4576447A (en) Compact, single piece laser beam analyzer
JPH05501007A (en) Broadband RF spectrum analyzer
RU81574U1 (en) FIBER OPTICAL MEASURING SYSTEM (OPTIONS)
JPS6230921A (en) Optical sensor
JPS61225627A (en) Photometer
JPS57157124A (en) Optical rod fabry-perot thermometer
JP2000097772A (en) Spectrophotometer
GB2096784A (en) Optical fibre temperature sensors
JPS58109828A (en) Temperature measuring device
JPS6362691B2 (en)