JPS6011123A - Fourier transform type spectrophotometer - Google Patents

Fourier transform type spectrophotometer

Info

Publication number
JPS6011123A
JPS6011123A JP11990783A JP11990783A JPS6011123A JP S6011123 A JPS6011123 A JP S6011123A JP 11990783 A JP11990783 A JP 11990783A JP 11990783 A JP11990783 A JP 11990783A JP S6011123 A JPS6011123 A JP S6011123A
Authority
JP
Japan
Prior art keywords
mirror
wavelength
optical path
refractive index
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11990783A
Other languages
Japanese (ja)
Inventor
Katsuhiko Ichimura
市村 克彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Shimazu Seisakusho KK
Original Assignee
Shimadzu Corp
Shimazu Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp, Shimazu Seisakusho KK filed Critical Shimadzu Corp
Priority to JP11990783A priority Critical patent/JPS6011123A/en
Publication of JPS6011123A publication Critical patent/JPS6011123A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/45Interferometric spectrometry
    • G01J3/453Interferometric spectrometry by correlation of the amplitudes
    • G01J3/4535Devices with moving mirror

Abstract

PURPOSE:To enable exact data sampling by inserting a layer of a medium of which the refractive index varies with wavelength to one side of bisected two optical paths more than into the other optical path and making the two optical path asymmetrical. CONSTITUTION:A medium layer of which the refractive index varies slightly with wavelength is inserted into either of optical paths for two light beams (a), (b) asymetrically from the other. A laser light source N emits a visible light beam which is made incident to an interferometer and is detected by a detector D'. As a movable mirror M2 moves, the quantity of the visible light incident to the detector D' fluctuates periodically and therefore the output from the D' is made by waveform shaping into the sampling pulses to operate a sumple holding circuit SH. The pulses are at the same time counted by an arithmetic control circuit C. The start point for scanning of the mirror M2 is taken at the position of suitable -X and the photometric outputs in the positions x1, x2-xn for the count values 1, 2, 3-n of the sampling pulses are stored in a memory Me. The circuit C reads out the data from the memory Me and calculates power spectra after one time of scanning with the mirror M2.

Description

【発明の詳細な説明】 イ)産業上の利用分野 本発明はフーリエ変換型分光光度計に関する。[Detailed description of the invention] b) Industrial application field The present invention relates to a Fourier transform spectrophotometer.

(0)従来技術 フーリエ変換型分光光度計では、光学的セロ点では全て
の波長の光が同相で重なるため、インターフェログラム
の信号が光学的ゼロ点では非常に犬となり、他の部分の
信号に比し太き過ぎて測光系のダイナミックレンジが有
効に利用できないと云う問題があった。この点を第1図
によってもう少し詳細に説明する。
(0) In conventional Fourier transform spectrophotometers, the light of all wavelengths overlaps in phase at the optical zero point, so the interferogram signal becomes very sharp at the optical zero point, and the signal at other parts There was a problem in that the dynamic range of the photometry system could not be used effectively because it was too thick compared to the above. This point will be explained in more detail with reference to FIG.

第1図はマイケルソン型の干渉計で、lは光源、Bは半
透明鏡のビームスプリッタ、Mlは固定鏡、M2は可動
鏡で左右に移動できる。Dは光検出器である。波長λの
光を考えると、可動鏡M2を一方向に動かすと、光検出
器への入射光量は可動鏡M2の移動量をXとして光検出
器の出力を式で書くと、 色々な波長の光が入射している場合、光検出器りの出力
信号は、Xを変数として色々な周期の余弦波が重なった
形の変化をする′。即ち光検出器りの出力D(X)は1
/λ−ν(波数)として、D(x)=r”?(ν) c
os 4 rc v x * d v ・・−(1)こ
\でF(ν)は入射光のスペクトルであり、D(x)は
入射光のスペクトルのフーリエ変換になっている。
Figure 1 shows a Michelson type interferometer, where l is a light source, B is a semi-transparent mirror beam splitter, Ml is a fixed mirror, and M2 is a movable mirror that can be moved left and right. D is a photodetector. Considering light of wavelength λ, when movable mirror M2 is moved in one direction, the amount of light incident on the photodetector is expressed as When light is incident, the output signal from the photodetector changes in the form of overlapping cosine waves of various periods with X as a variable. That is, the output D(X) of the photodetector is 1
/λ−ν (wave number), D(x)=r”?(ν) c
os 4 rc v x * d v (1) Here, F(ν) is the spectrum of the incident light, and D(x) is the Fourier transform of the spectrum of the incident light.

このD (x)がインターフェログラムである。フーリ
エ変換して得られる関数をフーリエ逆変換すれば元の関
数になるから、上記D(X)をフーリエ逆変換すること
によってF’(ν)がめられる。これが本発明の対象で
あるフーリエ変換型分光光度計の原理であるが、可動鏡
M 2の移動量Xの測り方として、第1図でLx=Ll
となる可動鏡M2の位置をXの原点とする。上記(1)
式は原点をこのように決めた場合の式である。始めに述
べた光学的ゼロ点と云うのは、Lx=L1なるXの原点
である。この点でばCOB 4πνXa全てのνに対し
てlとなるから、この点におけるD (x)は最大値を
呈し、この点のインターフェログラムが測光系のダイナ
ミックレンジを決定するため他の部分では精度のよいデ
ータサンプリングができなくなる。
This D(x) is an interferogram. If the function obtained by Fourier transformation is inversely Fourier transformed, it becomes the original function, so F'(v) can be found by inversely Fourier transforming D(X). This is the principle of the Fourier transform spectrophotometer that is the object of the present invention, but as a method of measuring the amount of movement X of the movable mirror M2, Lx = Ll in Figure 1.
Let the position of the movable mirror M2 be the origin of X. Above (1)
The formula is the one when the origin is determined in this way. The optical zero point mentioned at the beginning is the origin of X where Lx=L1. At this point, COB 4πνXa is l for all ν, so D (x) at this point has a maximum value, and since the interferogram at this point determines the dynamic range of the photometric system, other parts Accurate data sampling becomes impossible.

第1図ではビームスプリッタ−Bは半透明鏡層だけが書
かれているが、従来のビームスプリッタ−は第2図に示
すような構成になっていた。1は基板であシ例えばKB
r(赤外分光用)が用″いられ、片面に半透明鏡層2、
例えばGeの蒸着層が設けられ、基板lと同材質同厚の
コンペンセータ3が貼シ合わされた構成である。コンペ
ンセータ3は、第1図で光線aとbとが光学的ゼロ点で
同じ光路長を経て会合するようにするだめに設けられて
おり、このようにすることによってインターフェログラ
ムは前記(1)式で示す形になり、Xの原点に対して正
負対称形となる。このため上述したように測光系のダイ
ナミックレンジの問題があった。
In FIG. 1, only the semi-transparent mirror layer of beam splitter B is shown, but conventional beam splitters had a configuration as shown in FIG. 1 is the board, for example KB
r (for infrared spectroscopy) is used, with a semi-transparent mirror layer 2 on one side,
For example, a vapor-deposited layer of Ge is provided, and a compensator 3 made of the same material and of the same thickness as the substrate 1 is laminated together. The compensator 3 is provided so that the rays a and b in FIG. 1 meet at the optical zero point through the same optical path length, and by doing so, the interferogram is It has the form shown by the formula, and is symmetrical with respect to the origin of X. Therefore, as mentioned above, there was a problem with the dynamic range of the photometric system.

(ハ) 目 的 本発明は従来技術における上述した問題点の解決をはか
るものである。
(c) Purpose The present invention aims to solve the above-mentioned problems in the prior art.

(ニ)構 成 本発明は第1図において、a、b2光線の光路の何れか
に一方に他方と非対称的に、波長により屈折率がわずか
に異る媒質層を挿入したものである。このようにすると
、一方の光線は他方の光線よりも余分に媒質層を通過す
ることになり、しかもその媒質層の屈折率は波長によっ
て異るから、可動鏡M2の任意の位置において、a、b
両光線の光路長の差は波長によって異ったものとなる。
(d) Structure In the present invention, in FIG. 1, a medium layer having a refractive index slightly different depending on the wavelength is inserted into one of the optical paths of the a and b2 rays asymmetrically with respect to the other. In this way, one ray passes through the medium layer more than the other ray, and the refractive index of the medium layer differs depending on the wavelength, so at any position of the movable mirror M2, a, b
The difference in optical path length between the two light beams varies depending on the wavelength.

この点が従来のフーリエ変換型分光光度計と著しく異っ
た点である。全特定の波長の光に対してa、b両光線の
光路長が等しくても他の波長の光では光路長は等しくな
い。従って従来例における光学的セロ点のようなものが
存在せず、インターフェログラムは非対称な形になるが
飛び抜けて信号強度の犬となる点はなくなる。
This point is significantly different from conventional Fourier transform spectrophotometers. Even if the optical path lengths of both the a and b rays are equal for all light of a specific wavelength, the optical path lengths are not equal for light of other wavelengths. Therefore, there is no such thing as the optical zero point in the conventional example, and although the interferogram has an asymmetrical shape, there is no point where the signal strength is extremely high.

(ホ)実施例 第3図に本発明の実施例を示す。Mlは固定鏡、M2は
移動鏡である。ビームスプリッタ−Bにおいて、1は基
板、2は半透鏡である。この実施例はビームスプリッタ
−が、第2図に示す従来例のビームスプリッタ−からコ
ンペンセータ3を取除いた構成である所に特徴がある。
(E) Embodiment FIG. 3 shows an embodiment of the present invention. Ml is a fixed mirror, and M2 is a movable mirror. In the beam splitter B, 1 is a substrate and 2 is a semi-transparent mirror. This embodiment is characterized in that the beam splitter has a structure in which the compensator 3 is removed from the conventional beam splitter shown in FIG.

コンペンセータ3は第1図において、光線a。In FIG. 1, the compensator 3 is connected to the ray a.

bの光路を対称なものとするために用いられたものであ
り、またビームスプリッタ−においてコンペンセータ3
と共に基板lもなくして半透明鏡層またけにすることに
よっても、a・ b2光路を対称的なものとすることが
できる。従ってこの実施例ニおいてビームスプリッタ−
にコンペンセータがなくて、基板1だけがあることによ
って、基板コ−そのものが、構成の項で述べた、一方の
光路すに他方の光路aと非対称的に挿入された媒質とな
っている。この実施例は2.5μmから25μmまでの
赤外分光用のもので、基板lの材質はKI3r、半透明
鏡2ばGe蒸着層である。下表ばKBrの波長と屈折率
との関係を示す。
It was used to make the optical path of
Also, the a and b2 optical paths can be made symmetrical by eliminating the substrate l and using a translucent mirror layer spanning the mirror layer. Therefore, in this embodiment, the beam splitter
Since there is no compensator and only the substrate 1 is present, the substrate itself becomes a medium inserted into one optical path asymmetrically with respect to the other optical path a, as described in the configuration section. This embodiment is for infrared spectroscopy from 2.5 μm to 25 μm, the material of the substrate 1 is KI3r, and the semi-transparent mirror 2 is a vapor deposited layer of Ge. The table below shows the relationship between wavelength and refractive index of KBr.

波 長(μm) 屈折率 2.44 1.53’i’38 1LO351,52403 25,141,46322 今入射光線が二光線a、bに分かれ、再び会合する点を
Pとし、各寸法及び角度の符号を図示のように決めて、
光線aがP点と固定鏡Mlとの間を往復する光路長OA
と光線すがP点と可動鏡との間を往復する光路長OBを
計算する。
Wavelength (μm) Refractive index 2.44 1.53'i'38 1LO351,52403 25,141,46322 The incident ray is now split into two rays a and b, and the point where they meet again is P, and each dimension and angle Decide the code as shown,
Optical path length OA of light ray a going back and forth between point P and fixed mirror Ml
The optical path length OB of the light beam traveling back and forth between point P and the movable mirror is calculated.

C)A = 2HIV 1 OB−か12+2nd/cosθ こ\でnは基板1の屈折率である。両光線の光路差Δは 上式で機(苦土の可変部分は12で、12=11なる可
動鏡M2の位置を可動鏡M2の位置変数Xの原点とし、
M2の第2図で左方への移動を正方向とすると、 こ\でn及びcosθは波長の関数であシ、波数νを用
いて、 ]コ曹「−〇(ν) と書く。波数νの光に関して光路差Δを位相角ψに換算
すると、 ψ=2πΔQシ二2πν(2x−C(ν)し・・・・・
・・・(3)前記(1)式ばX==Oにおいて、全ての
波長の光が位相角0で会合しているが、本発明の場合(
1)式に相となり、D(X)は全く対称性を持たなくな
るだめ、従来の対称的なインターフェログラムにおける
光学的ゼロ点の信号強度が他の部分より飛び抜けて強く
なると云ったことは起らない。
C) A = 2HIV 1 OB- or 12+2nd/cos θ where n is the refractive index of the substrate 1. The optical path difference Δ between the two rays is determined by the above formula (the variable part of the maggot is 12, and the position of the movable mirror M2 where 12=11 is the origin of the position variable X of the movable mirror M2,
In Figure 2 of M2, if the movement to the left is the positive direction, then n and cos θ are functions of wavelength, and using the wave number ν, it is written as ]ko ``−〇(ν). Wave number When converting the optical path difference Δ to the phase angle ψ for the light of ν, ψ=2πΔQ s22πν(2x−C(ν)...
...(3) In the equation (1) above, in X==O, the lights of all wavelengths meet at a phase angle of 0, but in the case of the present invention (
1), and D(X) has no symmetry at all, so it does not occur that the signal intensity at the optical zero point in a conventional symmetrical interferogram becomes much stronger than other parts. No.

なおこの実施例では、ビームスプリッタ−の基板を2光
路を非対称的にするための、波長によシ屈折率の異る媒
質層として利用しているが、この媒質層はビームスプリ
ッタ−を構成する構造材である必要はなく、一方の光路
中に挿入された媒質層であればよい。
In this example, the substrate of the beam splitter is used as a medium layer having a different refractive index depending on the wavelength in order to make the two optical paths asymmetrical, but this medium layer constitutes the beam splitter. It does not need to be a structural material, and may just be a medium layer inserted into one optical path.

第3図でDは光検出器、SHはサンプルホールド回路、
ADはA / D変換器でMeはメモリであり、Cは演
算制御回路である。Nけレーザ光源で可視光ビームを出
射しており、この可視光も干渉光量が周期的に変動する
から、DIの出力を波形整形してサンプルホールド回路
SHを作動させるサンプリングパルスとすると共にこの
パルスは演算制御回路Cで計数され、この計数値が前記
(5)式の変数Xの値となる。本発明では可動鏡の位置
の原点は格別な意味がなく、可動鏡M2の走査の始点は
適当な−−Xの位置に採り、サンプリングパルスの計数
値1. 2. 3・・・nに対応する位置’XI。
In Figure 3, D is a photodetector, SH is a sample and hold circuit,
AD is an A/D converter, Me is a memory, and C is an arithmetic control circuit. A visible light beam is emitted by an N-type laser light source, and since the amount of interference light in this visible light varies periodically, the output of the DI is waveform-shaped and used as a sampling pulse to operate the sample-and-hold circuit SH, and this pulse is counted by the arithmetic control circuit C, and this counted value becomes the value of the variable X in the above equation (5). In the present invention, the origin of the position of the movable mirror has no special meaning, and the scanning start point of the movable mirror M2 is set at an appropriate position of -X, and the count value of the sampling pulse is 1. 2. 3...Position 'XI corresponding to n.

x2.・・・xnの測光出力をメモリMeに記憶させる
。可動鏡M2の一回の走査の後、演算制御回路Cはメモ
リMeからデータを読出してフーリエ変換を行いパワー
スペクトルを算出する。
x2. ...The photometric output of xn is stored in the memory Me. After one scan of the movable mirror M2, the arithmetic control circuit C reads the data from the memory Me, performs Fourier transform, and calculates the power spectrum.

(へ)効 果 本発明によれば、インターフェログラム測定のだめの可
動鏡の移動距離は従来例より大きくなるが、インターフ
ェログラム測定回路に要求されるダイナミックレンジは
従来の1 / 5程度に圧縮され、これによりインタフ
ェログラムはより正確なデータサンプリングができるよ
うになる。なお実施例のようにビームスプリッタ−にお
いてコンペセータをなくすときは、光学素子を一個減ら
せると云う利点がある。
(f) Effects According to the present invention, although the moving distance of the movable mirror for interferogram measurement is larger than that of the conventional example, the dynamic range required for the interferogram measurement circuit is reduced to about 1/5 of that of the conventional example. This allows the interferogram to provide more accurate data sampling. Note that when the compensator is eliminated from the beam splitter as in the embodiment, there is an advantage that the number of optical elements can be reduced by one.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は干渉計の平面図、第2図は従来のビームスプリ
ッタ−の厚さを拡大した側面図、第3図は本発明の一実
施例の光学系の平面図と測定系のブロック図である。 l・・・光源、B・・・ビームスプリッタ−、MAL・
・・固定鏡、M2・・・可動鏡、l・・・ビームスプリ
ッタ−の基板、2・・・半透明鏡層。 代理人 弁理士 縣 浩 介
Fig. 1 is a plan view of the interferometer, Fig. 2 is a side view with the thickness of a conventional beam splitter enlarged, and Fig. 3 is a plan view of the optical system and a block diagram of the measurement system according to an embodiment of the present invention. It is. L...Light source, B...Beam splitter, MAL・
... Fixed mirror, M2... Movable mirror, l... Beam splitter substrate, 2... Semi-transparent mirror layer. Agent Patent Attorney Kosuke Agata

Claims (1)

【特許請求の範囲】[Claims] 干渉計において、2分割された2光路の一方側に、他方
の光路より余分に、波長により屈折率が変化する媒質の
層を挿入して上記2光路を非対称的としたことを特徴と
するフーリエ変換型分光光度計。
In an interferometer, a Fourier interferometer is characterized in that a layer of a medium whose refractive index changes depending on the wavelength is inserted on one side of two divided optical paths, more than the other optical path, to make the two optical paths asymmetrical. Conversion spectrophotometer.
JP11990783A 1983-06-30 1983-06-30 Fourier transform type spectrophotometer Pending JPS6011123A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11990783A JPS6011123A (en) 1983-06-30 1983-06-30 Fourier transform type spectrophotometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11990783A JPS6011123A (en) 1983-06-30 1983-06-30 Fourier transform type spectrophotometer

Publications (1)

Publication Number Publication Date
JPS6011123A true JPS6011123A (en) 1985-01-21

Family

ID=14773150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11990783A Pending JPS6011123A (en) 1983-06-30 1983-06-30 Fourier transform type spectrophotometer

Country Status (1)

Country Link
JP (1) JPS6011123A (en)

Similar Documents

Publication Publication Date Title
US5777736A (en) High etendue imaging fourier transform spectrometer
US4091281A (en) Light modulation system
JPH03148015A (en) Position measuring apparatus
US5305088A (en) Laser interferometric measuring machine
CN102486408A (en) Light splitting method for multi-light-path interferometer, and multi-light-path interferometer adopting light splitting method
CN102486572B (en) Method for implementing multiple light paths
JPH01284715A (en) Encoder
US4027976A (en) Optical interferometer
CN201897660U (en) Device for realizing multi-optical path
JPS6011123A (en) Fourier transform type spectrophotometer
JPH03200002A (en) Position measuring device
JPH01143925A (en) Michelson interferometer
JPS58727A (en) Fourier transform spectrum device
JPH07113583B2 (en) Wide wavelength simultaneous measurement spectrometer using Fabry-Perot interferometer
JPS62203024A (en) Fabry-perot spectroscope
JPH0358052B2 (en)
CA1323234C (en) Phase-controlled thin film multilayers for michelson interferometers
JPH02145927A (en) Fourier transform type interferospectroscope
JP2005003572A (en) Michelson interferometer
JPH0336898Y2 (en)
WO2001007879A1 (en) Fourier transform spectrometer using an optical block
JPH02280392A (en) Multiple reflection interferometer and stabilized laser light source using former
SU972253A1 (en) Wide-field scanning interferometer
JPH0450518Y2 (en)
RU2189017C1 (en) Method of spectrometry and interferometer for realization of this method