JPH0358052B2 - - Google Patents

Info

Publication number
JPH0358052B2
JPH0358052B2 JP13426382A JP13426382A JPH0358052B2 JP H0358052 B2 JPH0358052 B2 JP H0358052B2 JP 13426382 A JP13426382 A JP 13426382A JP 13426382 A JP13426382 A JP 13426382A JP H0358052 B2 JPH0358052 B2 JP H0358052B2
Authority
JP
Japan
Prior art keywords
optical path
mirror
interferogram
movable
path difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13426382A
Other languages
Japanese (ja)
Other versions
JPS5924225A (en
Inventor
Osamu Yoshikawa
Juji Matsui
Katsuhiko Ichimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP13426382A priority Critical patent/JPS5924225A/en
Publication of JPS5924225A publication Critical patent/JPS5924225A/en
Publication of JPH0358052B2 publication Critical patent/JPH0358052B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/45Interferometric spectrometry
    • G01J3/453Interferometric spectrometry by correlation of the amplitudes

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectrometry And Color Measurement (AREA)

Description

【発明の詳細な説明】 本発明はフーリエ変換型分光光度計の干渉計部
分に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an interferometer portion of a Fourier transform spectrophotometer.

フーリエ分光法は干渉計の一方の光路の光路長
を移動鏡を移動させてインターフエログラムを
得、インターフエログラムをフーリエ変換しても
との光のスペクトルを求めるもので、この場合得
られるインターフエログラムは干渉計の2つの光
路の光路差が0の点を中心として左右対称の形を
しているから、移動鏡の可動範囲が一定の場合、
干渉計の2光路の光路差0の点を移動鏡の可動範
囲の中心に位置させて左右対称形のインターフエ
ログラムを求めるよりも、光路差0の点を移動鏡
の可動範囲の端に位置させて左右対称であるイン
ターフエログラムの片側だけを求める方が、広い
範囲にわたる干渉データが得られ、波長分解が2
倍程度高められる。しかし発光分光分析の場合、
インターフエログラムは変動の大きな形を呈し、
分光精度を上げるためには0点を中心に置いた両
側インターフエログラムを採る必要がある。従つ
て片側インターフエログラムを採る方法は吸光分
析のような場合に適しており、発光分析の場合は
両側インターフエログラムを採る方法が適してい
る。そこで一台の干渉計で発光分析も吸光分析も
行えるようにするには片側インターフエログラム
も両側インターフエログラムも採れるようになつ
ていることが望まれる。しかし従従のフーリエ変
換型分光光度計の干渉計は移動鏡の光路差0の位
置が固定しており、片側インターフエログラムを
求める場合可動鏡の可動範囲の半分しか利用でき
ず、インターフエログラム測定の時間短縮の効果
はあつても分解向上の効果は全然得られなかつ
た。
Fourier spectroscopy is a method in which an interferogram is obtained by moving a moving mirror to change the optical path length of one optical path of an interferometer, and the interferogram is Fourier-transformed to obtain the original spectrum of the light. Since the erogram is symmetrical around the point where the optical path difference between the two optical paths of the interferometer is 0, if the movable range of the movable mirror is constant,
Rather than positioning the point where the optical path difference between the two optical paths of the interferometer is 0 at the center of the moving mirror's movable range and obtaining a symmetrical interferogram, it is better to position the point where the optical path difference is 0 at the end of the moving mirror's movable range. It is better to obtain only one side of the interferogram, which is bilaterally symmetrical, to obtain interference data over a wider range, and the wavelength resolution is 2.
It can be increased by about twice as much. However, in the case of emission spectroscopy,
The interferogram exhibits a highly variable shape;
In order to improve the spectral accuracy, it is necessary to take a double-sided interferogram centered on the 0 point. Therefore, the method of taking a one-sided interferogram is suitable for cases such as absorption analysis, and the method of taking a two-sided interferogram is suitable for emission analysis. Therefore, in order to be able to perform both emission analysis and absorption analysis with a single interferometer, it is desirable to be able to take both one-sided and double-sided interferograms. However, in conventional Fourier transform spectrophotometer interferometers, the position of the moving mirror where the optical path difference is 0 is fixed, and when obtaining a one-sided interferogram, only half of the movable range of the movable mirror can be used. Although there was an effect of shortening the measurement time, there was no effect of improving resolution at all.

本発明は干渉計の光路差0の点の位置を変更で
きるようにして、両側インターフエログラムも片
側インターフエログラムも得ることができ、かつ
片側インターフエログラムを求める場合にも移動
鏡の可動範囲の全域を利用できるようにして、片
側インターフエログラムを採ることによつて波数
分解の向上が得られるようにすることを目的とし
ている。
The present invention makes it possible to change the position of the point at which the optical path difference of the interferometer is 0, thereby obtaining both a double-sided interferogram and a single-sided interferogram. The purpose of this study is to make it possible to utilize the entire range of the wave number decomposition by taking a one-sided interferogram.

本発明は干渉計の一方の光路に鏡或は透明体を
出入できるようにして、その光路の光路長を長短
2種類に切換えられるようにし、移動鏡の光路差
0の点が移動鏡の可動範囲の中心に位置する場合
と、可動範囲の一方の端付近に位置する場合の二
つの測定モードが得られるようにしたフーリエ変
換型分光光度計を提供するものである。
The present invention allows a mirror or a transparent body to enter and exit one optical path of an interferometer, so that the optical path length of that optical path can be switched between two types, long and short. The present invention provides a Fourier transform spectrophotometer that can obtain two measurement modes: one located at the center of the range and one located near one end of the movable range.

第1図aは移動鏡の可動範囲の中心が光路差0
である場合のインターフエログラムで、Bが光路
差0の点、A,Cは移動鏡の可動範囲の端であ
る。第1図bは光路差0の点の位置をC点に近い
G点に切換えたときのインターフエログラムで、
従来は片側インターフエログラムを採る場合、第
1図aでBCの範囲しか有効でなかつたが、本発
明によれば、第1図bで従来の片側インターフエ
ログラムGBの範囲を更にBAまで拡張でき、波
数分解の面では移動鏡の可動範囲を第1図aにお
いて、Z〜Dと2倍に拡大したのに匹適し、同じ
移動鏡の可動範囲で約2倍の波数分解の向上が得
られ、干渉計の能力を片側、両側の各インターフ
エログラムを得る場合に対し、夫々最大に利用し
得ることになる。
In Figure 1a, the center of the movable range of the movable mirror is zero optical path difference.
In the interferogram for the case where B is the point where the optical path difference is 0, A and C are the ends of the movable range of the movable mirror. Figure 1b is an interferogram when the position of the point with an optical path difference of 0 is switched to point G, which is close to point C.
Conventionally, when taking a one-sided interferogram, only the range BC in Figure 1a was valid, but according to the present invention, the range of the conventional one-sided interferogram GB can be further extended to BA in Figure 1b. In terms of wave number resolution, it is comparable to expanding the movable range of the movable mirror twice from Z to D in Figure 1a, and the wave number resolution can be improved by about twice with the same movable range of the movable mirror. Therefore, the ability of the interferometer can be utilized to the maximum for obtaining interferograms on one side and on both sides.

第2図は本発明の一実施例を示す。1は光源、
2はビームスプリツタ、3は固定鏡、4は移動鏡
で、これらによつてマイケルソン型干渉計が構成
されている。B点は移動鏡の可動範囲の中心位置
であり、A,Cは可動範囲の両端位置(正確には
走査範囲の両端)で、これらの位置は構造的に決
まつている。5は光検出器で、移動鏡を動かしな
がらその移動距離を横軸にとつて光検出器5の出
力を記録したものがインターフエログラムであ
る。6が本発明に固有の要素で、ビームスプリツ
タ2で分割された2光路のうち、固定鏡3に入射
し、反射される光路内に出入される両面平行平面
の透明体である。この透明体6が上記光路から退
避されている場合、移動鏡4が可動範囲の中心位
置Bにあるとき、ビームスプリツタ2と固定鏡3
との間を往復する光路と、ビームスプリツタ2と
移動鏡4との間を往復する光路の光路差が0で、
この場合には両側インターフエログラムが得られ
る。次に図のように透明体6を上記光路内に挿入
した場合には、透明体6の厚さをd、屈折率をn
とすると、ビームスプリツタと固定鏡との間の光
路長は固定鏡3を (n−1)d だけ後退させたのと同じ値だけ長くなり、移動鏡
4の光路差0の位置が上式の値だけ右に移つて図
で例えばGの位置になり、この場合に片側インタ
ーフエログラムが得られる。
FIG. 2 shows an embodiment of the invention. 1 is a light source,
2 is a beam splitter, 3 is a fixed mirror, and 4 is a movable mirror, and these constitute a Michelson type interferometer. Point B is the center position of the movable range of the movable mirror, and points A and C are the positions at both ends of the movable range (more precisely, both ends of the scanning range), and these positions are structurally determined. Reference numeral 5 denotes a photodetector, and an interferogram is a record of the output of the photodetector 5 while moving the movable mirror, with the moving distance taken as the horizontal axis. Reference numeral 6 denotes an element unique to the present invention, which is a transparent body with parallel planes on both sides that enters and exits the optical path that enters and is reflected by the fixed mirror 3 among the two optical paths divided by the beam splitter 2. When the transparent body 6 is retracted from the optical path, when the movable mirror 4 is at the center position B of the movable range, the beam splitter 2 and the fixed mirror 3
The optical path difference between the optical path reciprocating between and the optical path reciprocating between the beam splitter 2 and the movable mirror 4 is 0,
In this case, a bilateral interferogram is obtained. Next, when the transparent body 6 is inserted into the optical path as shown in the figure, the thickness of the transparent body 6 is d, and the refractive index is n.
Then, the optical path length between the beam splitter and the fixed mirror becomes longer by the same value as moving the fixed mirror 3 back by (n-1)d, and the position of the optical path difference of the movable mirror 4 is 0 according to the above equation. is shifted to the right by the value of , for example, to position G in the figure, and in this case a one-sided interferogram is obtained.

第3図は本発明の他の実施例を示す。この実施
例は上述実施例における透明体6の代りに平面鏡
7をビームスプリツタ2と固定鏡3との間に出入
できるように設けたものである。この実施例では
鏡7を光路内に挿入することによりビームスプリ
ツタ2と固定鏡3との間の光路長が片道Xだけ短
かくなり、移動鏡4の光路差0の位置はB点より
A側へXだけ移つた点A′になる。
FIG. 3 shows another embodiment of the invention. In this embodiment, a plane mirror 7 is provided between the beam splitter 2 and the fixed mirror 3 in place of the transparent body 6 in the above embodiment. In this embodiment, by inserting the mirror 7 into the optical path, the optical path length between the beam splitter 2 and the fixed mirror 3 is shortened by X in one direction, and the position of the optical path difference of the movable mirror 4 is 0 from point B to point A. It becomes point A', which is moved by X to the side.

【図面の簡単な説明】[Brief explanation of drawings]

第1図aは両側インターフエログラムの一例、
同図bは本発明装置で得られる片側インターフエ
ログラムの一例、第2図は本発明の一実施例装置
の平面図、第3図は本発明の他の一実施例装置の
平面図である。 1…光源、2…ビームスプリツタ、3…固定
鏡、4…移動鏡、5…光検出器、6…光路長を切
換える素子透明体、7…光路長を短縮するための
鏡。
Figure 1a is an example of a bilateral interferogram.
Figure b is an example of a one-sided interferogram obtained with the apparatus of the present invention, Figure 2 is a plan view of an apparatus according to an embodiment of the invention, and Figure 3 is a plan view of an apparatus according to another embodiment of the invention. . DESCRIPTION OF SYMBOLS 1...Light source, 2...Beam splitter, 3...Fixed mirror, 4...Moving mirror, 5...Photodetector, 6...Element transparent body for switching optical path length, 7...Mirror for shortening optical path length.

Claims (1)

【特許請求の範囲】[Claims] 1 干渉計において、分割された2光路のうちの
一方の光路内に、その光路の光路長を変えるため
の素子を出入可能に設け、移動鏡の可動範囲の中
央位置が上記2光路の光路差0となる状態と、可
動範囲の一方の端近くの位置が光路差0となる状
態の2態様が得られるようにしたことを特徴とす
るフーリエ変換型分光光度計。
1. In an interferometer, an element for changing the optical path length of one of the two divided optical paths is removably provided in one of the two optical paths, and the center position of the movable range of the movable mirror is set at the optical path difference between the two optical paths. A Fourier transform spectrophotometer characterized in that two states can be obtained: a state where the optical path difference is 0 and a state where the optical path difference is 0 at a position near one end of the movable range.
JP13426382A 1982-07-30 1982-07-30 Fourier transform type spectrophotometer Granted JPS5924225A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13426382A JPS5924225A (en) 1982-07-30 1982-07-30 Fourier transform type spectrophotometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13426382A JPS5924225A (en) 1982-07-30 1982-07-30 Fourier transform type spectrophotometer

Publications (2)

Publication Number Publication Date
JPS5924225A JPS5924225A (en) 1984-02-07
JPH0358052B2 true JPH0358052B2 (en) 1991-09-04

Family

ID=15124205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13426382A Granted JPS5924225A (en) 1982-07-30 1982-07-30 Fourier transform type spectrophotometer

Country Status (1)

Country Link
JP (1) JPS5924225A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62254023A (en) * 1986-04-25 1987-11-05 Santetsuku Kk Method and apparatus for measuring wavelength dispersion
JP2821089B2 (en) * 1994-06-27 1998-11-05 株式会社菊水製作所 Rotary powder compression molding machine
US9429474B2 (en) * 2012-10-08 2016-08-30 Si-Ware Systems Fourier transform micro spectrometer based on spatially-shifted interferogram bursts

Also Published As

Publication number Publication date
JPS5924225A (en) 1984-02-07

Similar Documents

Publication Publication Date Title
US4191473A (en) Method of and apparatus for measuring the absolute wavelength of a source of unknown frequency radiation
JPH0358052B2 (en)
US3737234A (en) Spectrophotometer for measurement of derivative spectra
US3246557A (en) Dispersive spectrometric modulation simulating interferometry
US11231271B2 (en) Interferometer system and application thereof
Goedgebuer et al. Construction of an interferometric gauge system for thickness measurement in white light
Minami Fourier transform spectroscopy using image sensors
Egorova et al. Cemented-prism static Fourier spectrometers
RU2209389C1 (en) Double-beam interferometer
JPH07113583B2 (en) Wide wavelength simultaneous measurement spectrometer using Fabry-Perot interferometer
JPH01282434A (en) Fourier spectroscope
SU842427A1 (en) Spectrometer
JP2502092B2 (en) Interfering device
Till et al. A double-pass Sisam spectrometer for the near infrared
SU1573442A1 (en) Interference resolvemeter resolution meter
Vanasse Fourier spectroscopy: a critical review
Humphreys Interferometric Measurement of Wavelengths of Infrared Atomic Emission Lines in the Extraphotographic Region
Bush et al. Instrument design and test results of the new all-reflection spatial heterodyne spectrometer
JPS6011123A (en) Fourier transform type spectrophotometer
SU994966A1 (en) Phase object interprogram producing method
SU684335A1 (en) Spectrum calibration system
SU1513394A1 (en) Method of measuring dispersion of refraction of liquids and gases
Kauppinen Advantages of Cube Corner Interferometers in High Resolution Fourier Transform Spectroscopy
SU712772A1 (en) Arrangement for monitoring dc voltage
Hofmann et al. Lamellar grating Fourier spectrometer for a balloon-borne telescope