JPS60110834A - Titanium alloy and treatment - Google Patents

Titanium alloy and treatment

Info

Publication number
JPS60110834A
JPS60110834A JP59227605A JP22760584A JPS60110834A JP S60110834 A JPS60110834 A JP S60110834A JP 59227605 A JP59227605 A JP 59227605A JP 22760584 A JP22760584 A JP 22760584A JP S60110834 A JPS60110834 A JP S60110834A
Authority
JP
Japan
Prior art keywords
beta
rate
temperature
cooling
titanium alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59227605A
Other languages
Japanese (ja)
Other versions
JPH0136550B2 (en
Inventor
ダグラス・マイケル・バーズイク
ジヨージ・ブロデイ
トーマス・エドワード・オコーネル
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RTX Corp
Original Assignee
United Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Technologies Corp filed Critical United Technologies Corp
Publication of JPS60110834A publication Critical patent/JPS60110834A/en
Publication of JPH0136550B2 publication Critical patent/JPH0136550B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • C22F1/183High-melting or refractory metals or alloys based thereon of titanium or alloys based thereon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Forging (AREA)
  • Heat Treatment Of Nonferrous Metals Or Alloys (AREA)
  • Materials For Medical Uses (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、^ツノアルファーベータ・チタン合金、特に
実暫的な吊のベータ・スタビライザと少なくと63%1
−リブデンと自存するアルフア・・ベータ合金の処理に
係る。 高力チタン合金は航空機用に広く使用されている。その
用途の〜例はガスタービンエンジン内のディスクである
。ガスタービンエンジンのディスクはその周辺に配費さ
れ/c圧縮機ブレードを支1カ■拘束し、1000rp
n+のオーダの速攻で回転される。作動中、実質的な応
力が生じ、これらの応ノコは通常、部分的に、反復的で
ある。このような変動Jる応力は疲労破壊を惹起覆るこ
とが知られている。通常の疲労破壊状況では、亀裂は通
常表面又は表面付近のひび割れ又は傷の所で開始1)、
次いで亀裂は変動Jる応力の結果して成長又は伝播する
。C0裂の成長は、応力に抵抗するのに利用可能な金属
の面積を減少し、それにJ:り応力の影響を増大し、一
層急速な亀裂成長速度を惹起りる。 疲労破壊が生じないことが明らかに望ましい。 しかし、これは通常不可能である。このJ、うな疲労破
壊が危険を惹起覆る用途で疲労破壊の不存右に依存する
ことは不可能である。従って、疲労亀裂がその開始後に
できる限り緩徐に成長することが望ましい。緩徐な亀裂
成長速度は破壊の生起以前に定期的検査の間にこのよう
な亀裂の検出を可能にケる。 チタン合金の種々の機械的性質を改善する・lごめの多
くのプ
The present invention utilizes a horn alpha beta titanium alloy, particularly a temporary suspension beta stabilizer and a titanium alloy containing at least 63% 1
- Concerning the treatment of Libdene and existing alpha-beta alloys. High strength titanium alloys are widely used for aircraft applications. An example of its application is disks in gas turbine engines. The disk of the gas turbine engine is placed around the /c compressor blades and restrains them at 1000rpm.
It is rotated with a haste of the order of n+. During operation, substantial stresses are generated and these saws are usually partially repetitive. It is known that such fluctuating stress causes fatigue failure. In normal fatigue failure situations, cracks usually initiate at surface or near-surface cracks or flaws.
The crack then grows or propagates as a result of the varying stresses. C0 crack growth reduces the area of metal available to resist stress, thereby increasing the effect of the J stress and causing a more rapid crack growth rate. It is clearly desirable that no fatigue failure occurs. However, this is usually not possible. It is impossible to rely on the absence of fatigue failure in applications where fatigue failure poses a danger. Therefore, it is desirable for fatigue cracks to grow as slowly as possible after their initiation. Slow crack growth rates allow detection of such cracks during periodic inspection before failure occurs. Improves various mechanical properties of titanium alloys.

【]ヒスが存在する。これらのプロセスの大部分
は降伏及び引張強さ並びにクリープ特性のJ、うむチタ
ンの静的性質に焦点を合Uてきた。 本発明は、広く使用されているチタン合金、Ti6−2
−’l−6、内の亀裂成長速度の問題に特に焦点を合U
ている。 ブータン合金の分野の先り特許として米国特許第2 、
 ’、’368 、586号及び第2,974,076
′/】にtJ、ノ′ルフノν−ベータ・チタン合金及び
−その種々のiiJ能な加[熱処理過程が記載されてい
る。 米1j、I Q!+ ′、’16ft2.97/1.0
76号には、ベータ・トランザス温度以上からの焼入れ
を含む熱処1!I!は、ベータ・1〜フンザス(tra
++sus ) 温!i以下カラノ焼入れに比べC合金
の引張強さ及び延性を減少づる点C・望ましくないこと
が記載されている(最後のフル・パラグラフのコラム3
)。 米国特許第2.97/1.076号の特許請求の
範囲第8項及び第9項にtit、ベータ・トランザス温
l良以上への加熱と、ベータ・トランザス温度以下への
緩徐な冷却と、ベータ・トランザス温度に近く但しそれ
以下の温度での平衡と急速な焼入れとを含む熱処理が記
載されている。ベータ・トランザス温度以上での変形に
ついては記載されていない。米国特許第2,968.5
86月には、W idmanstatLc++構造を生
ずる方法としCの焼入れが記載されており、また1分間
に約1.7から16.6 ℃まで(1分間に約3下から
1分間に約30下まで)の冷却速度が開示されている(
カラム39行23・〜25 ン 。 米国特許第3,901.7/13号及び第4.053.
330号にはチタン合金の処理が記載されている。米国
特許第3,901.743F>tよ特にTi−6−2−
4−6材利を説明し’CJ3つ、また鍛造された材$3
1での開始ど、ベータ・[・ランザスの少し下の温度で
の溶液熱処理(ベータ・[・ランザスは946℃<17
35’F)であり、また示唆された熱処理は871〜9
27℃(1600〜1700’F)である)と、室温へ
の焼入れと、760〜871℃(1470℃ 1600
下)への再加熱と、それに続く510〜593℃(95
0〜1100’F)での王−ジンクとを含むh法を開示
している。従って、この文献が後記の本発明を予想する
ものどは見られない。米国特許第11,053.330
号に説明されているプロセスは、ベータ・トランザス温
度以上の温度での鍛造と、マルチ2畳ナイト椙造を生ず
る急速な焼入れと、中間温度での焼戻しとの過程を含ん
でいる。焼入れは、1分間に;)50℃(1分間に10
00丁)のA−グーの焼入れ速度を木質的に生ずる液体
媒体を用いて行われるbのとして開示されている。 米国特1.T第4.309.226月は、ニア・アルフ
ァ・・ブータン合金の処理のための加工熱処理及び特に
ri 〜6−2−/l−2(6Δ1.4Zr。 2MO,残余1−i>としく知られている合金を説明し
くいる。この1■レスは多くの貞で本発明の/1コヒス
どツ′31似しくいるが、本発明が対象とJる合金とは
実質的に異なる合金であるニア・アルフ、・合金を対象
としくいる。従って、−てれにより得られる結果LJ、
本発明に説明されている種類の合金にこのノロセスを応
用りるとにより得られる結果とは異なる。特に、低いM
O含有Mのために、本発明により処理された祠¥N1内
′C観察されるMOリッチ境界層の生成がない−。 本発明によれば、’l i −6AI−2811−47
1”−6M0という形式のチタン合金が、亀裂成長に対
づる高められた抵抗力を生ずるように加工熱処理される
。材料tiLベータ・「・ランザス以」−で鍛造され、
11〜b 1n )でベータ・トランザスを通じ?ll′冷N1さ
れ、ベータ・トランザスの近く但しイれ以下で熱処理さ
れ、またエージングされる。 その結果として管られる構造はベータ・マ(・リツクス
内にアルファν・プレートレット(platelet 
)をffi/υでおり、プレートレットはMOリッチの
ゾーンににり囲まれており、また−での414迄は粒界
アルファを含′んでいない。 この構造は疲労亀裂の伝播に対して抵抗性を4jJる。 他の特徴及び利点は特許請求の範囲に示されており、ま
た以下の図面による実施例の説明から一層明らかにイr
ろ−)、。 本発明は、特定のチタン合金に改良された機械的性質を
与えるための加工熱処理プ[1セスである。 木ブ1〕ヒスは6%△1.2%Sn 、4%Zr 、 
6%Mo 、 15余主J−シTTi (Ti −6−
2−4−6)の標I4q成分を右する合金に関して聞発
且最適化されたしのであり、この合金に関して説明され
る。この市販されている合金に於ける元素含有量の範囲
は、S11に対しCは10.25%であることを例外と
しで、ajf含有量から全て±0.5%である。幾つか
の他の合金6本プロセスに適していると信ぜられている
。本発明のプロヒスに適【ノていると信じられている主
要な他の市販されている合金は1−i−17と呼ばれて
いるQ金であり、−での標準組成は5%Δ1.2%3n
、、2%Zr、4%Mo、/1%01゛、残余主として
−「iである。 元素臼fi吊の範囲は、3 n及び7rに対しては±0
.25%であることを例外として、0.5%である。こ
れらの二つの合金は、ベータ相が比較的安定であ()よ
うに高いベータ・スタビライザ含有りを有づ−るアルフ
ァーベータ合金である。これらの合金は高い硬化性を右
づる合金であり、その〃い部分はベータ・ソルバス温僚
以上からの焼入れにより完全に硬化され(ワる。後記の
ように、合金の比較的高いモリブデン自存州(二:・3
%)も右意義である。 プロセスの最初の過程は、ベータ・トランザス温度以上
の温度で、好ましくはベータ・[・ランI7”ス温度以
上の約1/1℃へ・36℃(約25〜65下)から行わ
れる鍛造過程である n??:温n鍛造が加熱されたダ
イスを用いC行われたが、妥当な鍛造′温度変動、特に
14″〜36℃(25〜65下)範囲内の変動は、本発
明の範囲内である。変形の大きさ及び速度は、材料を再
結晶させ■粗くされ/C粒界を生ずるのに十分であるよ
うに選択されている。典型的に少くども10%、りYま
しくは少なくとも25%の面積減少ど等価な減少で十分
である。 等温変形過程に続いて、材料は制御された速度で等温鍛
造温度(好ましくは約538℃(約1000下〉以下)
から冷却される。速度は1分間に約11℃(20’F 
)から約50℃(100下)まC゛であるように制御さ
れている。この制御されたj中jmi″′の冷7JI過
程拳よ後記のような所望の微m栴造を行るのに臨界的で
ある。それJ、りも遅い冷却速段は、亀裂成長に満足に
抵抗し得ない粗い釦状椙j責の41−成に通ずるぐあろ
う。もし速度が高過ぎれば、所望の仝I状機微1構造が
19られないであう。 次いr 44石が約0.5〜5時間にnリベータ・トラ
ンザス温度の近く但しそれ以下の温度、りIまし・く(
、Lベータ・トラン)アス淘度J、リム約28℃(50
下)から約83℃(150下)までイ氏い温ID、i(
’熱処理される。材料は空気冷R1により生ずる速度と
等11i <r速Iα又はそれよりも速い速度C上記の
熱処理温l良から(りYましくは約260℃(500下
〉以下の痴1度へ)冷?J]される。 ゾ[1〔スの最終過程は/1〜8時間に厘り約482℃
(900丁〉から約849℃(1200下)までの温度
で行われる1−シンク過程である。 イの結果しての構産が第1図に示されており、ベータ相
により囲まれた鎮状アルファ相ブレートレットからなっ
ている。アルファ?プレートレットの長さと厚みとの比
は初期等温鍛造温度がらの冷fJI速度により制御され
、約4〜約20まででなけtL ハ’:う%:い。むし
速度が高価過ぎれば、プレートレフトは過度に薄・くな
り(1/dが高価過ぎ)、所望の性質を生じないことに
なる。遅い冷?、1速1哀は亀裂成長に対して抵抗性′
Cない粗い構造に通づ゛る。第1図の構造が亀裂形成後
に観察される11、t、それは7117戸・ニードルと
ベータ・マトリックス層どの間の界面に沿っ(伝1■り
るbのとして観察さ机る。この理由から、プレートレッ
1−が艮過ぎないこと、またプレーt・レッ1−がジト
ンプルされたくバスケラj・・ウィーブ)形態を右づる
ことが望ましい。もしプレー1−レットの長さが比較的
短く旦プレートレッ[−が互いに不規則イ≧方向に向t
)らりていれば亀裂の伝播経路は曲りくねり、亀裂の伝
播は減速されることになる。 本発明により処IU!された材料の一つの観察された特
徴は、アルフンν・プレートレットとベータ・ントリッ
クスとの間の界面にUディフ戸イされた組成の薄い層が
〃在づることである。この界面組成は車吊比で20〜2
5%のA−ダの高いモリブデン含有mをイ11゛る。こ
の材料は丈夫で、延性があり11亀裂成長に対して抵抗
性があり、また本発明のブ[JL−スがこの界面相の結
果として実質的な利益を)、¥成しているものと信ぜら
れる1、この高モリ/デン911而月¥81は熱処J■
!過程の間に生成されるムのと信p゛1:3れCいる。 、nみ(J、10’mm(1000△)のA−ダである
。その高いモリブデンの含f1吊の1.:めに、実質的
なく〕・3%)[リブデン・1、ノベルを曾fJシない
合金は、本発明により処理8t1.1.: 01 ニ’
l’ i −〇−2−/I −6材料ctりられる所望
のr〔1裂成長挙動を生じないものと予想される。 本発明の[り益の幾つかを以下の例にJ、り説明づ゛る
。 Ti −6−2−4〜C5’ell ill (約94
6℃(5735下)ベータ・F−ランザスを有りるもの
ンが約66 % (1) u’ii fPim 少マt
’ 982℃(1800’F ) 1−OOoF ) 
(7) 温度11分間に約22℃(/IO’F>’7)
速度で冷却された(また次いで室温に空気冷却された)
。この材料の試料が866℃(1590丁)と916℃
(1680’F) ト(7)IH16’)種々(7)温
tfr、即ち約80.5℃(145°F)から約30.
5℃(55下)までベータ・1ヘランザスよりも低い温
度で熱処理された。試料の殆どは次いで8時間に厘り5
93℃(1100,”F) テ、’ll−シン’jcl
t、また亀裂成長速度の相対的指示を得るため試験され
IC(、その結果が第2図に示されている。第2図から
、約885℃(1625下)の温度又はベータ・1ヘラ
ンザスよりも61℃(110’F)低い温度が最適の亀
裂成長速度を生ずることがa察され1? ル。ま/:、
593℃(1100’F ) cx−シンクa し/j
 X料が621℃(1150’F) T−1−;ングさ
れた試わ1よりb優れた性質を右することが観察される
。また、曲線中には、982℃(1800’F )から
の油冷及びそれに続<830’C(1525下)での熱
処理等を含む標準的な従来の゛処示されもいる。。 木ブを明に。する′+/J¥31が公知の4Aお1に比
べて実質的(、薯堤れ(いること(よ明らかCある。第
3図には。 本発明の+A l’lど公知の処In!(リーブソルバ
ス溶液処理、急速10ノJ1.093℃(5100下)
でのJ−ジンク)にJ、り処理さねた材11とに対し・
て時間対1%クリ−lのL arson −M i l
 lerブロツ1−が示され(いる。温度及び応力の類
似の条1′1に対し、で本発明の′+A利は、公知の材
料に比べて約2倍のクリープス!命をイj覆ることが観
察される。他の試験Cは、亀裂成長ステ命が本発明の材
料及び公知の材オ゛:1に対し′C’ i?+it度の
関数として評価された、その結果が第4図に示されCい
る。再び、本発明の材料が公知の祠lit (第3図の
材料と同一の公知のブ【コし!ス)J、すし浸れ(いる
が、イの侵れ゛(いる1良合は湿曵の増大と共に名士減
少することが観察される。 本発明が以上に説明し/j特定の実施例に限定されるし
のでは’J < 、神々の変形が本発明の範囲内0行わ
れ1!することは理解されよう。
[] Hiss exists. Most of these processes have focused on the static properties of titanium, such as yield and tensile strength and creep properties. The present invention is based on a widely used titanium alloy, Ti6-2.
-'l-6, with particular focus on the issue of crack growth rates within
ing. No. 2 U.S. patent in the field of Bhutan alloy,
', '368, No. 586 and No. 2,974,076
'/] describes tJ, Norfno v-beta titanium alloys and their various heat treatment processes. Rice 1j, I Q! +','16ft2.97/1.0
No. 76 includes heat treatment 1! which includes quenching from a temperature above the beta transus temperature! I! is Beta 1~Hunzas (tra
++sus) Warm! It is stated below that C is undesirable because it reduces the tensile strength and ductility of C alloys compared to Karano quenching (Column 3 of the last full paragraph).
). Claims 8 and 9 of U.S. Pat. Heat treatments are described that include equilibration and rapid quenching at temperatures near but below the beta transus temperature. Deformation above the beta transus temperature is not described. U.S. Patent No. 2,968.5
In June 1986, quenching of C was described as a method to produce the WidmanstatLc++ structure, and the temperature ranged from about 1.7 to 16.6 °C per minute (from about 3 below per minute to about 30 below per minute). ) is disclosed, the cooling rate of (
Column 39 rows 23-25. U.S. Patent Nos. 3,901.7/13 and 4.053.
No. 330 describes the treatment of titanium alloys. U.S. Pat. No. 3,901.743F>t, especially Ti-6-2-
4-6 Explaining the materials: 3 CJs, and 3 forged materials
Starting at 1, solution heat treatment at a temperature slightly below Beta [-Ranzas (946 ° C < 17
35'F) and the suggested heat treatment is 871-9
27°C (1600-1700'F)), quenching to room temperature and 760-871°C (1470'F).
(lower) followed by reheating to 510-593°C (95
0-1100'F). Therefore, there is nothing in this document that predicts the present invention described later. U.S. Patent No. 11,053.330
The process described in that issue includes forging at temperatures above the beta transus temperature, rapid quenching to produce multi-bijoite molding, and tempering at intermediate temperatures. Quenching is performed at 50℃ for 1 minute (10℃ for 1 minute).
The quenching rate of A-Goo (00 pieces) is disclosed as being carried out using a ligneously produced liquid medium. US special 1. T No. 4.309.226 is a mechanical heat treatment for the treatment of near-alpha-butan alloys and especially as I would like to explain some known alloys. Although this 1-res is similar to the /1 alloy of the present invention in many cases, it is an alloy that is substantially different from the alloy to which the present invention is directed. The target is a certain near-alf alloy.Therefore, the result obtained by -tere is LJ,
This differs from the results obtained by applying this norocess to alloys of the type described in this invention. In particular, low M
Due to the O-containing M, there is no formation of MO-rich boundary layer observed in the aqueduct N1 treated according to the present invention. According to the invention, 'li-6AI-2811-47
A titanium alloy in the form of 1"-6M0 is heat treated to produce increased resistance to crack growth. Forged in the material TiL Beta "Lanzas"-
11~b 1n) through beta transus? ll' cold N1, heat treated near but below beta transus, and aged. The resulting tubed structure consists of alpha ν platelets within the beta matrix.
) is ffi/υ, and the platelet is surrounded by an MO-rich zone, and does not contain grain boundary alpha up to 414 at -. This structure has a resistance to fatigue crack propagation of 4jJ. Other features and advantages are indicated in the claims and will become more apparent from the following description of an embodiment with the aid of the drawings.
Ro-),. The present invention is a mechanical heat treatment process for imparting improved mechanical properties to certain titanium alloys. Wood 1] Hiss is 6%△1.2%Sn, 4%Zr,
6%Mo, 15% J-SiTTi (Ti-6-
The I4q component of 2-4-6) was discovered and optimized with respect to the alloy, and will be explained with respect to this alloy. The range of element contents in this commercially available alloy is all ±0.5% from the ajf content with the exception of 10.25% C for S11. It is believed that several other alloys are suitable for the 6-piece process. The principal other commercially available alloy believed to be suitable for the present invention is Q gold, designated 1-i-17, which has a standard composition of 5% Δ1. 2%3n
,, 2% Zr, 4% Mo, /1%01゛, the remainder is mainly -'i. The range of element milling is ±0 for 3n and 7r
.. 0.5%, with the exception of 25%. These two alloys are alpha-beta alloys with high beta stabilizer contents such that the beta phase is relatively stable. These alloys are alloys with high hardenability, and their hardened parts are completely hardened by quenching from a beta solvus temperature or higher. State (2:・3
%) is also of right significance. The first step in the process is a forging step carried out at a temperature above the beta transus temperature, preferably from about 1/1 degree Celsius above the beta [run I7'' temperature to 36 degrees Celsius (approximately 25 to 65 degrees below). Temperature forging was carried out using a heated die, but reasonable forging temperature variations, particularly within the range of 14" to 36 °C (25 to 65 below), are not suitable for the present invention. Within range. The magnitude and rate of deformation are selected to be sufficient to recrystallize the material and create coarse/C grain boundaries. An equivalent reduction, such as an area reduction of typically at least 10%, more preferably at least 25%, is sufficient. Following the isothermal deformation process, the material is heated at a controlled rate to an isothermal forging temperature (preferably below about 1000°C).
cooled from The speed is approximately 11°C (20'F) per minute.
) to about 50°C (100°C). This controlled cold cooling process is critical to achieving the desired micro-pore formation as described below. If the speed is too high, the desired I-shaped structure will not be formed.Then the r 44 stone will be about 0. 5 to 5 hours at a temperature close to but below the libeta transus temperature,
, L beta tran) As selection degree J, rim approximately 28℃ (50
below) to about 83℃ (150 below), i(
'Heat treated. The material is cooled from the above heat treatment temperature at a rate equal to or faster than that produced by air cooling R1 (to about 260° C. or below 500° C.). ?J] is carried out. The final process of
It is a 1-sink process that takes place at temperatures from 900 °C to approximately 849 °C (below 1200 °C). The alpha-phase platelet length-to-thickness ratio is controlled by the initial isothermal forging temperature and the cold fJI rate, and ranges from about 4 to about 20%. However, if the speed is too expensive, the plate left will be too thin (1/d is too expensive) and will not produce the desired properties. Resistance′
It leads to a rough structure without C. The structure in Figure 1 is observed after crack formation, which is observed along the interface between the needle and the beta matrix layer (as shown in Figure 1).For this reason, It is desirable that the plate leg 1- is not too sharp, and that the plate t-leg 1- is in the right shape so that it is not pulled. If the length of the play 1-let is relatively short, then the platelets [- are irregularly oriented toward each other in the direction ≧ t.
), the crack propagation path will be twisted and the crack propagation will be slowed down. Treatment IU according to the present invention! One observed feature of the developed material is the presence of a thin layer of U-diffused composition at the interface between the alphanuclear platelets and the betatontrix. This interface composition is 20 to 2 in terms of vehicle suspension ratio.
It has a high molybdenum content of 5% A-da. This material is tough, ductile and resistant to crack growth, and the present invention provides substantial benefits as a result of this interphase. Believe it 1, this high molywood / Den 911 and ¥81 a month is a heat treatment room J ■
! It is believed that the number of particles generated during the process is 1:3. , n (J, 10'mm (1000△) A-da. Its high molybdenum content f1 is 1.: 3%) [libdenum 1, novel fJ-free alloys are treated according to the invention with 8t1.1. : 01 ni'
It is expected that the l' i -〇-2-/I-6 material will not produce the desired r[1-crack growth behavior. Some of the benefits of the invention are illustrated in the following examples. Ti -6-2-4~C5'ell ill (approximately 94
6℃ (below 5735) Approximately 66% of those with Beta F-Ranzas (1) u'ii fPim Small Mat
'982℃ (1800'F) 1-OOoF)
(7) Temperature approximately 22℃ for 11 minutes (/IO'F>'7)
cooled at speed (and then air cooled to room temperature)
. Samples of this material were 866℃ (1590 pieces) and 916℃
(1680'F) (7) IH16') Various (7) temperatures tfr, i.e. from about 80.5°C (145°F) to about 30°C.
It was heat treated at lower temperatures than Beta 1 Heranzas up to 5°C (below 55°C). Most of the sample was then removed for 8 hours.
93℃(1100,”F) te, 'll-shin'jcl
t, was also tested to obtain a relative indication of the crack growth rate (IC), the results of which are shown in Figure 2. It has been found that temperatures as low as 61°C (110'F) produce optimal crack growth rates.
593℃ (1100'F) cx-sink a/j
It is observed that Sample Also in the curve are standard conventional treatments including oil cooling from 982°C (1800'F) followed by heat treatment at <830'C (below 1525°C). . Reveal the wood. It is clear that the +/J ¥31 of the present invention is substantially lower than the known 4A1. (Liebsolvus solution treatment, rapid 10J 1.093℃ (5100 below)
J-zinc) to J, treated tanned material 11.
time vs. 1% Creel Larson-Mil
ler block 1- is shown.For similar temperature and stress profiles 1'1, the advantage of the present invention is that the creep rate is about twice as high as that of known materials. In another test C, the crack growth rate was evaluated as a function of 'C' i? Again, the material of the present invention can be used in a well-known shrine (the same known material as the material in Figure 3). It is observed that the number of cases decreases with the increase of wetlands.Since the present invention has been described above and is not limited to specific embodiments, the variations of the gods are within the scope of the present invention. It will be understood that 0 out of 1 is done and 1! is done.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明にJ二り処理された伺オ゛;1の顕微鏡
写真である。 第2図は種々の条件の処理された王i −6−4−2−
6材料に対りる亀裂成長寿命を承り図である。 第3図は公知の処理に対する亀裂ステ命ど本発明の材料
に対Jる亀裂ス1命とを比較する図Cある。 第4図は本発明により処理された拐オ′31と公知の処
理をされた材料とに対して温度の関数どじて亀裂成長速
度を比較−りる図である。 特許出願人 ユナイデッド・デクノロシーズ・コーホレ
イシコン 代 理 人 弁 理 士 明 石 昌 毅FIG、 1 00X C;公焚a n 1’0仁ス FIG、 2
FIG. 1 is a photomicrograph of a specimen treated with J2 according to the present invention. Fig. 2 shows the processed king i-6-4-2- under various conditions.
FIG. 6 is a diagram showing the crack growth life for six materials. FIG. 3 is a diagram comparing the cracking rate for the known process and the cracking rate for the material of the present invention. FIG. 4 is a comparison of crack growth rate as a function of temperature for a material treated in accordance with the present invention and a conventionally treated material. Patent Applicant United Knowledge Cohoraison Agent Patent Attorney Masaaki Akashi FIG, 100X C;

Claims (3)

【特許請求の範囲】[Claims] (1)実質的なmのベータ・スタビライザと少くとも3
%のMOとを含有し、またベータ・トランリ゛ス温度を
右りるアルフj・−ベータ・ヂタン材料の亀裂成長挙動
を改良づ゛るための方法に於て。 a 、 rrJ結晶化を生り゛るのに十分な量でベータ
・[・ランザス以上で材料を@造する過程ど、1)、1
分間に約11℃(20下)から約55℃(100下)へ
の速1良で、ベータ・トランザスを通じU、11わ1を
冷却りる過程と、 C,ベータ・1−ランザスより5約28℃(50下)か
ら約83′C(150下)まで低い温度で材料を熱処理
づる過程と、 (1,空気冷IJIにより生ずる速度、に等しい速度又
はそれを超過する速度で合金を冷却する過程と、e、月
利をエージングする過程と を含Iνでいることを特徴とする方法。
(1) Beta stabilizer of substantial m and at least 3
In a method for improving the crack growth behavior of alpha-j-beta titanium materials containing % MO and controlling the beta transition temperature. a, the process of creating a material with Beta[-Ranzas or higher in sufficient quantities to produce rrJ crystallization,
The process of cooling U, 11 through Beta Transus at a rate of about 11°C (20° C.) to about 55° C. (100° C.) per minute; The process of heat treating the material at temperatures as low as 28°C (50°C) to about 83'C (150°C) and cooling the alloy at a rate equal to or greater than that produced by air-cooled IJI. and e, a step of aging the monthly interest.
(2)チタン合金物品(標準組成6%△1.2%S11
.71%7r 、6%MO1残余主としTTt )を加
工熱処理するための方法に於て、 a、ガンマ・プライム・ソルバス以上の約14’C<2
5下〉と約36℃(65下)との間の温度で少なくとも
10%の面積減少に等fdIiな■で月利を鍛造づる過
程と、 b、1分間に約11℃(20下)と約55°C(100
’F)との間の速度で約538℃(1000°[)以下
に材料を冷却覆る過程と。 C0約0.5〜5時間に亙すガンマ・プライム・ソルバ
ス以下の約28℃(50’F )と83℃(150下)
どの間の温度で材料を熱処理する過程と、d、空気冷f
Jjにより生ずる速度に竹しい速度又は・それを超過り
る速度で約260℃(500下)以下に材料を冷173
りる過程と、 C8約482℃(900°[)と約649℃(1200
下)との間の温度で約2〜10時間に屋り材料をニージ
ングリろ過程と を含/υでいることを特徴とする特許
(2) Titanium alloy article (standard composition 6%△1.2%S11
.. 71% 7r, 6% MO1 residual main and TTt), in a method for processing and heat treating a, gamma prime solvus or higher, about 14'C
The process of forging the monthly rate at fdIi ■ with an area reduction of at least 10% at a temperature between 5°C and about 36°C (65°C), and b. about 11°C (20°C) per minute. Approximately 55°C (100
'F) and cooling the material to below about 538 °C (1000 °C) at a rate between C0 below gamma prime solvus at approximately 28°C (50'F) and 83°C (below 150'C) for approximately 0.5 to 5 hours.
The process of heat treating the material at temperatures between d and air cooling f
Cool the material to below about 260°C (500°C) at a speed equal to or exceeding that produced by Jj.
C8 about 482°C (900°[) and about 649°C (1200°
A patent characterized in that it comprises a process of kneading and refrigeration of the material for about 2 to 10 hours at a temperature between
(3)亀裂成長に対して抵抗性を右づるチタン合金物品
に於C1 a、ベータ・マトリックスを含lυて−おり、これが、 1)、約4と約20との間の平均1/(1を有する約2
0から約90までの体積百分率のアルファ・プレートレ
ットを含んでおり、 C9前記ニードルは、高いMO含有酌を有するぼすい層
にJ、り囲まれており、 d、前記月利は連続的粒界アルファ相を実質的に含/υ
でいない。 ことを特徴どづるチタン合金物品。
(3) The titanium alloy article that provides resistance to crack growth contains a C1a beta matrix, which has an average content of 1/(1) between about 4 and about 20. having about 2
0 to about 90 volume percentages of alpha platelets, C9 said needle is surrounded by a thin layer having a high MO content, and d said monthly rate is a continuous grain. Contains substantially the alpha phase of the field/υ
Not there. It is characterized by titanium alloy articles.
JP59227605A 1983-10-31 1984-10-29 Titanium alloy and treatment Granted JPS60110834A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US547270 1983-10-31
US06/547,270 US4543132A (en) 1983-10-31 1983-10-31 Processing for titanium alloys

Publications (2)

Publication Number Publication Date
JPS60110834A true JPS60110834A (en) 1985-06-17
JPH0136550B2 JPH0136550B2 (en) 1989-08-01

Family

ID=24184026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59227605A Granted JPS60110834A (en) 1983-10-31 1984-10-29 Titanium alloy and treatment

Country Status (19)

Country Link
US (1) US4543132A (en)
JP (1) JPS60110834A (en)
KR (1) KR890002986B1 (en)
AU (1) AU3287884A (en)
BE (1) BE900779A (en)
CA (1) CA1229249A (en)
CH (1) CH666287A5 (en)
DE (1) DE3438495A1 (en)
DK (1) DK516084A (en)
ES (1) ES8506812A1 (en)
FR (1) FR2554130B1 (en)
GB (1) GB2148940B (en)
IL (1) IL73253A (en)
IT (1) IT1177103B (en)
NL (1) NL192881C (en)
NO (1) NO164720C (en)
SE (1) SE460975B (en)
YU (1) YU184284A (en)
ZA (1) ZA847963B (en)

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4680063A (en) * 1986-08-13 1987-07-14 The United States Of America As Represented By The Secretary Of The Air Force Method for refining microstructures of titanium ingot metallurgy articles
FR2614040B1 (en) * 1987-04-16 1989-06-30 Cezus Co Europ Zirconium PROCESS FOR THE MANUFACTURE OF A PART IN A TITANIUM ALLOY AND A PART OBTAINED
US4842652A (en) * 1987-11-19 1989-06-27 United Technologies Corporation Method for improving fracture toughness of high strength titanium alloy
US5118363A (en) * 1988-06-07 1992-06-02 Aluminum Company Of America Processing for high performance TI-6A1-4V forgings
US4975125A (en) * 1988-12-14 1990-12-04 Aluminum Company Of America Titanium alpha-beta alloy fabricated material and process for preparation
US5171375A (en) * 1989-09-08 1992-12-15 Seiko Instruments Inc. Treatment of titanium alloy article to a mirror finish
US5032189A (en) * 1990-03-26 1991-07-16 The United States Of America As Represented By The Secretary Of The Air Force Method for refining the microstructure of beta processed ingot metallurgy titanium alloy articles
JP2841766B2 (en) * 1990-07-13 1998-12-24 住友金属工業株式会社 Manufacturing method of corrosion resistant titanium alloy welded pipe
US5039356A (en) * 1990-08-24 1991-08-13 The United States Of America As Represented By The Secretary Of The Air Force Method to produce fatigue resistant axisymmetric titanium alloy components
US5397404A (en) * 1992-12-23 1995-03-14 United Technologies Corporation Heat treatment to reduce embrittlement of titanium alloys
US5698050A (en) * 1994-11-15 1997-12-16 Rockwell International Corporation Method for processing-microstructure-property optimization of α-β beta titanium alloys to obtain simultaneous improvements in mechanical properties and fracture resistance
JP3319195B2 (en) * 1994-12-05 2002-08-26 日本鋼管株式会社 Toughening method of α + β type titanium alloy
JP3959766B2 (en) * 1996-12-27 2007-08-15 大同特殊鋼株式会社 Treatment method of Ti alloy with excellent heat resistance
US20040261912A1 (en) * 2003-06-27 2004-12-30 Wu Ming H. Method for manufacturing superelastic beta titanium articles and the articles derived therefrom
US20040168751A1 (en) * 2002-06-27 2004-09-02 Wu Ming H. Beta titanium compositions and methods of manufacture thereof
US20040241037A1 (en) * 2002-06-27 2004-12-02 Wu Ming H. Beta titanium compositions and methods of manufacture thereof
CN1665948A (en) * 2002-06-27 2005-09-07 梅莫瑞公司 Beta titanium compositions and methods of manufacture thereof
US20040221929A1 (en) 2003-05-09 2004-11-11 Hebda John J. Processing of titanium-aluminum-vanadium alloys and products made thereby
US7303638B2 (en) * 2004-05-18 2007-12-04 United Technologies Corporation Ti 6-2-4-2 sheet with enhanced cold-formability
US7837812B2 (en) * 2004-05-21 2010-11-23 Ati Properties, Inc. Metastable beta-titanium alloys and methods of processing the same by direct aging
US7449075B2 (en) * 2004-06-28 2008-11-11 General Electric Company Method for producing a beta-processed alpha-beta titanium-alloy article
US7841506B2 (en) * 2004-08-11 2010-11-30 Honeywell International Inc. Method of manufacture of dual titanium alloy impeller
US8337750B2 (en) 2005-09-13 2012-12-25 Ati Properties, Inc. Titanium alloys including increased oxygen content and exhibiting improved mechanical properties
US7611592B2 (en) * 2006-02-23 2009-11-03 Ati Properties, Inc. Methods of beta processing titanium alloys
US20090159162A1 (en) * 2007-12-19 2009-06-25 Arturo Acosta Methods for improving mechanical properties of a beta processed titanium alloy article
US10053758B2 (en) 2010-01-22 2018-08-21 Ati Properties Llc Production of high strength titanium
US9255316B2 (en) 2010-07-19 2016-02-09 Ati Properties, Inc. Processing of α+β titanium alloys
US8499605B2 (en) 2010-07-28 2013-08-06 Ati Properties, Inc. Hot stretch straightening of high strength α/β processed titanium
US9206497B2 (en) 2010-09-15 2015-12-08 Ati Properties, Inc. Methods for processing titanium alloys
US8613818B2 (en) 2010-09-15 2013-12-24 Ati Properties, Inc. Processing routes for titanium and titanium alloys
US10513755B2 (en) 2010-09-23 2019-12-24 Ati Properties Llc High strength alpha/beta titanium alloy fasteners and fastener stock
US8652400B2 (en) 2011-06-01 2014-02-18 Ati Properties, Inc. Thermo-mechanical processing of nickel-base alloys
US9050647B2 (en) 2013-03-15 2015-06-09 Ati Properties, Inc. Split-pass open-die forging for hard-to-forge, strain-path sensitive titanium-base and nickel-base alloys
US9869003B2 (en) 2013-02-26 2018-01-16 Ati Properties Llc Methods for processing alloys
US9192981B2 (en) 2013-03-11 2015-11-24 Ati Properties, Inc. Thermomechanical processing of high strength non-magnetic corrosion resistant material
US9777361B2 (en) 2013-03-15 2017-10-03 Ati Properties Llc Thermomechanical processing of alpha-beta titanium alloys
US11111552B2 (en) 2013-11-12 2021-09-07 Ati Properties Llc Methods for processing metal alloys
US10094003B2 (en) 2015-01-12 2018-10-09 Ati Properties Llc Titanium alloy
US10502252B2 (en) 2015-11-23 2019-12-10 Ati Properties Llc Processing of alpha-beta titanium alloys

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2974076A (en) * 1954-06-10 1961-03-07 Crucible Steel Co America Mixed phase, alpha-beta titanium alloys and method for making same
US2968586A (en) * 1958-09-15 1961-01-17 Crucible Steel Co America Wrought titanium base alpha-beta alloys of high creep strength and processing thereof
GB1310632A (en) * 1970-11-02 1973-03-21 Gen Electric Heat treatment for alpha-beta type titanium alloys
US3748194A (en) * 1971-10-06 1973-07-24 United Aircraft Corp Processing for the high strength alpha beta titanium alloys
US3901743A (en) * 1971-11-22 1975-08-26 United Aircraft Corp Processing for the high strength alpha-beta titanium alloys
FR2162856A5 (en) * 1971-11-22 1973-07-20 Xeros Heat treatment for alpha/beta titanium alloys - - having improved uniform ductility strength and structure
GB1449134A (en) * 1972-09-11 1976-09-15 Secr Defence Titanium alloys
US4053330A (en) * 1976-04-19 1977-10-11 United Technologies Corporation Method for improving fatigue properties of titanium alloy articles
US4309226A (en) * 1978-10-10 1982-01-05 Chen Charlie C Process for preparation of near-alpha titanium alloys

Also Published As

Publication number Publication date
BE900779A (en) 1985-02-01
NL192881C (en) 1998-04-02
AU3287884A (en) 1985-05-09
US4543132A (en) 1985-09-24
ES537196A0 (en) 1985-08-16
SE8405434D0 (en) 1984-10-30
FR2554130B1 (en) 1986-07-18
DE3438495C2 (en) 1989-06-08
KR850004127A (en) 1985-07-01
NO164720B (en) 1990-07-30
JPH0136550B2 (en) 1989-08-01
IT8423406A0 (en) 1984-10-31
DK516084D0 (en) 1984-10-30
YU184284A (en) 1987-06-30
IL73253A (en) 1987-08-31
ZA847963B (en) 1985-05-29
NL192881B (en) 1997-12-01
SE460975B (en) 1989-12-11
NO844031L (en) 1985-05-02
CH666287A5 (en) 1988-07-15
CA1229249A (en) 1987-11-17
IT8423406A1 (en) 1986-05-01
SE8405434L (en) 1985-05-01
NO164720C (en) 1990-11-07
GB2148940A (en) 1985-06-05
NL8403162A (en) 1985-05-17
IL73253A0 (en) 1985-01-31
DK516084A (en) 1985-05-01
FR2554130A1 (en) 1985-05-03
IT1177103B (en) 1987-08-26
GB8425444D0 (en) 1984-11-14
ES8506812A1 (en) 1985-08-16
DE3438495A1 (en) 1985-05-09
GB2148940B (en) 1987-05-28
KR890002986B1 (en) 1989-08-16

Similar Documents

Publication Publication Date Title
JPS60110834A (en) Titanium alloy and treatment
JP3010050B2 (en) Nickel-based article and alloy having fatigue crack propagation resistance and method of manufacturing
US4053330A (en) Method for improving fatigue properties of titanium alloy articles
JP3145091B2 (en) Fatigue crack resistant nickel-base superalloy
JPS63277745A (en) Production of titanium alloy member and member produced thereby
JP2974684B2 (en) Heat treatment method for improving fatigue properties and improved superalloy
JPS63310947A (en) High strength superalloy parts with gradual change characteristics
JPH03170632A (en) Nickel based super alloy
JP2728905B2 (en) Heat treatment method for high tensile titanium Ti-6246 alloy
US3748194A (en) Processing for the high strength alpha beta titanium alloys
JP2786443B2 (en) Method of forming fatigue crack-resistant nickel-base superalloy and formed product
US5906692A (en) Process for producing forged α-2 based titanium aluminides having fine grained and orthorhombic transformed microstructure and articles made therefrom
JP2642640B2 (en) Thermoforming formation of fatigue crack-resistant nickel-base superalloys.
US4096002A (en) High duty ductile cast iron with superplasticity and its heat treatment methods
JPH03501980A (en) Fatigue crack resistant nickel-based superalloy
EP0052911A1 (en) Single crystal (single grain) alloy
Wilkinson Forging of 718-The importance of TMP
Nicolaÿ et al. Metallurgical analysis of direct aging effect on tensile and creep properties in inconel 718 forgings
CN1014248B (en) Varied heating rate solution heat treatment for superalloy castings
JPH02115330A (en) Method for manufacturing an in-100 type nickel-base superalloy having a fatigue-failure resistance and its product
JP3926877B2 (en) Heat treatment method for nickel-base superalloy
US3372068A (en) Heat treatment for improving proof stress of nickel-chromium-cobalt alloys
JPH11199995A (en) Method for improving creep characteristic of titanium alloy and titanium alloy
Belan et al. Fatigue Test of the Inconel Alloy 718 Under Three Point Bending Load at Low Frequency
Semiatin et al. The effect of shear bands on service properties of ti-6ai-2sn-4zr-2mo-0.1 si forgings

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term