JPS60110291A - Porous gel containing immobilized biocatalyst and its production - Google Patents

Porous gel containing immobilized biocatalyst and its production

Info

Publication number
JPS60110291A
JPS60110291A JP21418683A JP21418683A JPS60110291A JP S60110291 A JPS60110291 A JP S60110291A JP 21418683 A JP21418683 A JP 21418683A JP 21418683 A JP21418683 A JP 21418683A JP S60110291 A JPS60110291 A JP S60110291A
Authority
JP
Japan
Prior art keywords
biocatalyst
gel
gelled
producing
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21418683A
Other languages
Japanese (ja)
Other versions
JPH0327196B2 (en
Inventor
Masahiko Ishida
昌彦 石田
Tetsuo Yamaguchi
哲男 山口
Hitoshi Ishibashi
整 石橋
Masako Katsurayama
桂山 政子
Yoji Otahara
緒田原 蓉二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP21418683A priority Critical patent/JPS60110291A/en
Publication of JPS60110291A publication Critical patent/JPS60110291A/en
Priority to JP7329190A priority patent/JPH02273183A/en
Publication of JPH0327196B2 publication Critical patent/JPH0327196B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)

Abstract

PURPOSE:To increase the effective area for reaction, and to enable the smooth release of bubbles from the gelled material in the gas-forming reaction, by including minute continuous pores in a gelled materials imobilized with a biocatalyst. CONSTITUTION:A solution of a gel substrate is mixed with a biocatalyst, gelatinized, and cooled to freeze the solvent in the gelled product. The solidified solvent in the frozen gel is sublimed under reduced pressure to obtain a porous gel. Continuous pores having pore diameter of 1-100mum can be produced by the freezing process, and the catalytic activity per unit area of the untreated gel can be increased to 1.2- several times.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、生体触媒、いわゆる酵素、オルガネラ、細胞
を固定化した、反応面積の太きい、生体触媒固定化多孔
質ゲル化物、及びその製造方法に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention provides a biocatalyst-immobilized porous gel with a large reaction area, in which biocatalysts, so-called enzymes, organelles, and cells are immobilized, and a method for producing the same. Regarding.

〔発明の背景〕[Background of the invention]

従来、酵素は反応に際し、水溶液の形で使われてきたた
め、反復使用は困難であった。近年、酵素や微生物菌体
を固定化して、通常の固形触媒に近い形で取扱いできる
様になりつつある。
Conventionally, enzymes have been used in the form of aqueous solutions during reactions, making repeated use difficult. In recent years, it has become possible to immobilize enzymes and microbial cells and handle them in a form similar to ordinary solid catalysts.

各種の固定化方法のうち、親水性の高分子マトリックス
中に酵素を封じ込めるゲル包括法は、比較的操作が簡単
でかつ温和な条件下で行えるため適用範囲が広い利点が
ある。具体的ICは、酵素や菌体をカラギーナン、寒天
、アクリルアミド及びウレタン等のゲル基拐液に溶解若
しくは分散てせた後、ゲル化して調製芒れる。使用形態
が粒状の場合、これらのゲル粒子の粒径は実用性の観点
から直径05〜5順に調製芒れる。
Among various immobilization methods, the gel entrapment method, in which enzymes are encapsulated in a hydrophilic polymer matrix, has the advantage of being relatively easy to operate and can be performed under mild conditions, and therefore has a wide range of applications. Specifically, IC is prepared by dissolving or dispersing enzymes and bacterial cells in a gel-based solution such as carrageenan, agar, acrylamide, or urethane, and then gelling the solution. When the form of use is granular, the particle size of these gel particles is adjusted in the order of diameters 05 to 5 from the viewpoint of practicality.

反応に際しては基質分子がゲル粒子の表面からマトリッ
クス内部へと拡散する。しかし、実用的な反応条件下で
はゲル表層のみが反応VC関与し、内部は反応に寄与し
ない。すなわち、ゲル包括法は反応面積を大きく取れな
い軸点をイアする。もちろん、粒径を小さくするほど反
応面積は増加するが、固定床、流動床でのゲル粒子の保
持が困難となる。またゲル粒子はその1″1.ではイ幾
械的強度が低く、固定床として使用する際、圧密化され
るため、圧損失が太きいし、流動床で使用する際には、
かくはんによシ粒子の破壊が起シやすい。更に気体を生
成する反応に際して、ゲル内部に発生した気泡によシゲ
ル粒子が破壊されやすい。これらはゲル粒子に限らず、
ゲル膜等すべての形態のゲル化物に共通な欠点である。
During the reaction, substrate molecules diffuse from the surface of the gel particles into the interior of the matrix. However, under practical reaction conditions, only the surface layer of the gel participates in the reaction VC, and the inside does not contribute to the reaction. That is, the gel entrapment method targets axial points where a large reaction area cannot be obtained. Of course, as the particle size becomes smaller, the reaction area increases, but it becomes difficult to retain the gel particles in a fixed bed or a fluidized bed. In addition, gel particles have low mechanical strength at 1"1. When used in a fixed bed, they are consolidated, resulting in large pressure loss, and when used in a fluidized bed,
Stirring tends to destroy the particles. Furthermore, during the reaction to generate gas, the Shigel particles are likely to be destroyed by air bubbles generated inside the gel. These are not limited to gel particles,
This is a common drawback of all forms of gelatinized products, such as gel membranes.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上記し−たゲル包括法の欠点を改善し
、反応面積が大きく、かつ機械的強度が大きく、更に気
体生成反応に際しゲル化物内部から円滑に気泡を放出可
能な新規な生体触媒固定化ゲル化物、及びその製造方法
を提供することにある。
The purpose of the present invention is to improve the above-mentioned drawbacks of the gel entrapment method, and to develop a new biological material that has a large reaction area and high mechanical strength, and that can smoothly release bubbles from inside the gel during the gas production reaction. An object of the present invention is to provide a catalyst-immobilized gelled product and a method for producing the same.

〔発明の概要〕[Summary of the invention]

本発明を概説すれば、本発明の第1の発明は生体触媒固
定化多孔質ゲル化物、に関する発明でめシ、生体触媒を
固定化したゲル化物において、該ゲル化物内に微細な連
続胞を包含していることを特徴とする。
To summarize the present invention, the first invention of the present invention relates to a porous gelled material with a biocatalyst immobilized thereon, in which microscopic continuous cells are formed in the gelled material with a biocatalyst immobilized thereon. It is characterized by being inclusive.

また本発明の第2の発明は、上記第1の発明の多孔質ゲ
ル化物を製造する方法に関する発明であり、ゲル基材浴
液に生体触媒を添加混合する第1工程、第1工程で得ら
れる混合物を処理してゲル化物を調製する第2工程、第
2工程で得られるゲル化物を冷却してゲル化物中の溶媒
を凍結する第3工程、第3工程で得られる凍結ゲル化物
中の固体化した溶媒を減圧下で昇華して除去する第4工
程、の各工程を包含することを特徴とする。
The second invention of the present invention is an invention relating to a method for producing the porous gelled product of the first invention, which includes a first step of adding and mixing a biocatalyst to the gel base bath liquid, and a first step of adding and mixing a biocatalyst to the gel base bath liquid. The second step is to process the mixture obtained in the second step to prepare a gelled product, the third step is to cool the gelled product obtained in the second step and freeze the solvent in the gelled product, and the frozen gelled product obtained in the third step is It is characterized by including each step of a fourth step of sublimating and removing the solidified solvent under reduced pressure.

更に本発明の第3の発明は、同じく第1の発−明の多孔
質ゲル化物を製造する他の方法に関する発明であって、
ゲル基材液に生体触媒と繊維状物質を添加混合する第1
工程、第1工程で得られる混合物を処理してゲル化物を
調製する第2工程、第2工程で得られるゲル化物を繊維
状物のみを分解する酵素と接触δせ、該ゲル化物中の繊
維状物を分解して除去する第6エ程、の各工程を包含す
ることを特徴とする。
Furthermore, the third invention of the present invention is an invention regarding another method for producing the porous gelled product of the first invention,
The first step is to add and mix the biocatalyst and fibrous material to the gel base liquid.
A second step of treating the mixture obtained in the first step to prepare a gelled product; a second step in which the gelled product obtained in the second step is brought into contact with an enzyme that decomposes only the fibrous material, and the fibers in the gelled material are and a sixth step of decomposing and removing the solid matter.

本発明者等は、ゲル粒子を貫通する細孔を設け、ゲル粒
子の有効面積の増加を図るべく、ゲル粒子の製造方法に
つき鋭意検討を重ねた。その結果、ゲル粒子の触媒活性
を損うことなく粒□子に多数の細孔を設けることに関す
る本発明を完成した。
The present inventors have conducted intensive studies on a method for producing gel particles in order to increase the effective area of the gel particles by providing pores that penetrate the gel particles. As a result, the present invention relating to providing a large number of pores in gel particles without impairing the catalytic activity of the gel particles was completed.

本発明による製造方法は、大別して凍結法と、分解除去
法の2つとなる。
The manufacturing method according to the present invention can be roughly divided into two types: freezing method and decomposition removal method.

本発明に適用できる目的の生体触媒としては、従来の包
括法で固定化できる公知のものに広く適用できる。すな
わち、酵素、オルガネラ、細胞等が対象となる。
As the target biocatalyst that can be applied to the present invention, a wide range of known ones that can be immobilized by conventional entrapment methods can be used. That is, enzymes, organelles, cells, etc. are targeted.

ゲル基拐としては、包括法で用いられた公知の材料が使
用できる。例えば、加熱によシゾル化し、冷却によシゲ
ル化する材料の代表例とし□て、カラギーナン、アルギ
ン酸及び寒天等があげられる。耐アルカリ性の酵素の場
合にはマンナン、30℃以下の比較的低温で使用する場
合にはゼラチンも使用できる。このほか、可視光、紫外
線、放射線及びラジカル開始剤で硬化させるタイプのア
クリルアミド、メタクリル酸メチル、及びデキストラン
やゼ′ラテンのように架橋剤で架橋して三次元マトリッ
クス形成によシゲル化するものも十分用いることができ
る。ま邂、水で膨潤するゲル以外に有機溶媒系で膨潤す
るボリウVタン、ポリスチレン等も使用できる。
As the gel base, known materials used in the entrapment method can be used. For example, carrageenan, alginic acid, agar, and the like are representative examples of materials that can be sizolized by heating and sigelized by cooling. Mannan can be used in the case of an alkali-resistant enzyme, and gelatin can also be used in the case of use at a relatively low temperature of 30° C. or lower. In addition, there are acrylamides and methyl methacrylates that are cured with visible light, ultraviolet rays, radiation, and radical initiators, and those that are crosslinked with a crosslinking agent to form a three-dimensional matrix to form a sigella, such as dextran and Ze'Latin. It can be fully used. In addition to gels that swell with water, polyurethane, polystyrene, and the like that swell with organic solvents can also be used.

これらの材料は、1f/crn2以上のゲル破壊強度が
得られるように材料の濃度を調整する。第1工程では、
生体触媒の安定剤、例えば、十血清アルブミン゛のよう
な酵素安定剤を添加してもよい。
The concentration of these materials is adjusted so that a gel breaking strength of 1f/crn2 or more can be obtained. In the first step,
Biocatalyst stabilizers, for example enzyme stabilizers such as serum albumin, may be added.

以下、本発明の製造方法について、各方法ごとに、更に
具体的に説明する。
Each manufacturing method of the present invention will be explained in more detail below.

まず、第2の発明の凍結法において、凍結は、使用する
溶媒の融点よシも一3℃以下で60分以下で行うのがよ
い。
First, in the freezing method of the second invention, freezing is preferably carried out for 60 minutes or less at a temperature of -3°C or less, which is higher than the melting point of the solvent used.

溶媒の融点〜融点よ勺も−2℃低い温度範囲で1時間以
上を要して凍結すると、ゲルが収縮し、ゲル化物外部に
固化した溶媒が生成しゲル化物が破壊されやすい。凍結
したゲル化物は10wIHg以下の減圧下で乾燥するこ
とができる。
If the gel is frozen for one hour or more in a temperature range of -2° C. below the melting point of the solvent, the gel will shrink and a solidified solvent will be formed outside the gelled product, which will easily destroy the gelled product. The frozen gelled product can be dried under reduced pressure of 10wIHg or less.

本発明の凍結法による多孔質ゲル化物の製造に訃いては
、上記した第4工程で得られる乾燥ゲル化物に、水又は
pH緩衝液等の溶媒を吸収させる第5工程を包含させて
もよい。また、既述の該第4工程で得られる乾燥ゲル化
物を機械的に圧密化する第5工程、第5工程で得られる
圧密化した乾燥ゲル化物に水又はpH緩衝液等の溶媒を
添加して膨潤させる第6エ程の各工程をも包含させても
よい。
When producing a porous gelled product by the freezing method of the present invention, a fifth step may be included in which the dried gelled product obtained in the fourth step described above absorbs a solvent such as water or a pH buffer. . Further, a fifth step of mechanically compacting the dried gelled product obtained in the fourth step described above, and a solvent such as water or a pH buffer solution is added to the compacted dried gelled product obtained in the fifth step. The sixth step of swelling may also be included.

更に、前記した各方法において、該第2工程における処
理が、粒子化、線状化又は膜状化処理を包含するもので
あってもよい。しかして該粒子化、線状化又は膜状化処
理を行う場合、その方法に2通りあシ、(4)該第2工
程における処理が、第1工程で得られる混合物をゲル化
してから粒子化、線状化又は膜状化する方法と、0)該
第2工程における処理が、第1工程で得られる混合物を
粒子化、線状化又は膜状化してから各粒子体、線状体又
は膜状体ごとにゲル化する方法とがある。
Furthermore, in each of the above-mentioned methods, the treatment in the second step may include particle formation, linearization, or film formation treatment. However, when performing the granulation, linearization, or film formation treatment, there are two methods: 0) The process in the second step involves forming the mixture obtained in the first step into particulates, linearizing or into a film, and then forming each particulate body or linear body. Alternatively, there is a method of gelling each membranous body.

前記した圧密化は、乾燥ゲルを1 kg/am”以上の
圧力で行うことが最適でちる。上記の圧力の範囲外で行
うと、圧密化後、溶媒を吸収させると元の体積の50〜
95チに復元する。好ましくは、1.5 kg7cm2
以上で圧密化すれば膨潤しても元の体積の3D%以下に
保つことができる。
The compaction described above is optimally carried out at a pressure of 1 kg/am" or higher. If the compaction is carried out outside the pressure range mentioned above, after compaction, when the solvent is absorbed, the dry gel will lose 50 to 50% of its original volume.
Restore to 95chi. Preferably 1.5 kg7cm2
If it is compacted in the above manner, even if it swells, it can be kept at 3D% or less of its original volume.

また、圧密化の際、好ましくはゲル化物の溶媒含有率を
20チ以下で行うことが好ましい。溶媒含有率が40チ
を越えると、圧密化後、溶媒で膨潤嘔せると元の体積の
90%以上に復元するためである。
Furthermore, during compaction, it is preferable that the solvent content of the gelled product be 20 or less. This is because if the solvent content exceeds 40%, the material will swell and swell with the solvent after compaction and will return to more than 90% of its original volume.

前記した本発明の凍結法によれば、1〜100μmの孔
径の連続胞を形成させることができた。
According to the freezing method of the present invention described above, continuous cells with a pore size of 1 to 100 μm could be formed.

その結果、未処理のゲル化物単位体積当シの酵素活性を
1.2〜数倍に向上させることができた。
As a result, the enzyme activity per unit volume of untreated gelled material could be improved by 1.2 to several times.

更に乾燥ゲル化物を圧搾して圧密片化してから、水中で
膨潤嘔せても元の体積のる以下にしか戻らないことも判
明した。それだけでなく、ゲル化物単位乾物重量当りの
活性は、変化しないか、又は若干低下するだけであるこ
とも見出した。すなわち、元の未処理のゲル化物に対し
て、単位体積当シの酵素活性を、大幅に向上させること
に成功した。また、ゲル化物の機械的強度も著しく向上
すると共に、気体発生反応に対してもゲル化物内部に発
生した気泡を、外部に円滑に放出できることも見出した
Furthermore, it has been found that even if the dried gelled material is compressed into pieces and swelled in water, it will return to less than its original volume. Moreover, it was also found that the activity per unit dry weight of gelled product remained unchanged or only slightly decreased. That is, we succeeded in significantly improving the enzyme activity per unit volume compared to the original untreated gelled product. It has also been found that the mechanical strength of the gelled product is significantly improved, and that bubbles generated inside the gelled product can be smoothly released to the outside in response to a gas generation reaction.

次に、本発明の第3の発明である分解除去法について具
体的に説明する。
Next, the decomposition and removal method, which is the third aspect of the present invention, will be specifically explained.

繊維状物質としては、セルロース、デンプン、DNA、
RNA等が用いられる。
Fibrous substances include cellulose, starch, DNA,
RNA etc. are used.

セルロースとしては、綿花、濾紙等の天然繊維若しくは
セロファン、スフ等の天然繊維を加工したものが用いら
れる。これらの繊維を新たに調製する場合には、繊維の
直径を調節できる点で紡糸が極めて適している。繊維の
直径はゲル化物直径のCtS〜10俤、長さは直径の5
0〜150%の範囲で使用できる。また、添加量はゲル
1 mllクシ10〜500■範囲で用いる。
As cellulose, natural fibers such as cotton and filter paper, or processed natural fibers such as cellophane and soap can be used. When these fibers are newly prepared, spinning is extremely suitable since the diameter of the fibers can be adjusted. The diameter of the fiber is CtS ~ 10 of the gel diameter, and the length is 5 of the diameter.
It can be used in a range of 0 to 150%. Further, the amount to be added is in the range of 10 to 500 cm per ml of gel.

繊維の直径、長さ並びに添加量共、上記範囲の下限未満
であると、ゲル化物内に円滑な液の導通が困難となυ、
触媒活性は向上しない。他方、上記範囲の上限超とする
と、多孔質化彼のゲルとしての実用的な機械的強度を保
持できなくなる。
If the fiber diameter, length, and amount added are less than the lower limit of the above range, it will be difficult to smoothly conduct the liquid into the gelled product.
Catalytic activity does not improve. On the other hand, if it exceeds the upper limit of the above range, it becomes impossible to maintain practical mechanical strength as a porous gel.

次に得られる混合物を処理してゲル化物を得、次いで、
ゲル化物を高分子繊維の加水分解酵素と接触させ、繊維
を表面に節用した部分からゲル化物内部に向は分解する
。加水分解酵素との接触は加水分解酵素液中に浸漬する
か、あるいは、ゲル化物に酵素を塗布する等の手段を用
いる。加水分解酵素は、繊維に対し基質特異性が高いだ
けでなく、不純物としてのグロテアーゼを実用濃度以上
に含まない純度のものを用いる必要がある。セルロース
に対してはセルラーゼ、デンプンについてはα−アミラ
ーゼ、DNAICついてはDNasθ、RNAについて
はRNaseを用いる。
The resulting mixture is then processed to obtain a gelled product, and then
The gelled product is brought into contact with a hydrolyzing enzyme of the polymeric fibers, and the fibers are decomposed into the interior of the gelled product from the portion where the fibers are applied on the surface. For contact with the hydrolytic enzyme, methods such as immersion in a hydrolytic enzyme solution or coating the gelled product with the enzyme are used. It is necessary to use a hydrolytic enzyme that not only has high substrate specificity for fibers but also has a purity that does not contain grotease as an impurity above a practical concentration. Cellulase is used for cellulose, α-amylase is used for starch, DNAsθ is used for DNAIC, and RNase is used for RNA.

加水分解酵素処理の条件は目的酵素の安定性、加水分解
酵素の反応特性によって異なる。すなわち、目的#累の
活性を損わず、かつ各使用加水分解酵素の加水分解作用
にできるだけ適した条件で行う。加水分解処理が終了後
、必要に応じ水、若しくは酵素活性に安定な緩衝液で洗
浄する。
Conditions for hydrolase treatment vary depending on the stability of the target enzyme and the reaction characteristics of the hydrolase. That is, it is carried out under conditions that do not impair the activity of the target compound and are as suitable as possible for the hydrolytic action of each hydrolytic enzyme used. After the hydrolysis treatment is completed, wash with water or a buffer solution stable to enzyme activity, if necessary.

上記した分解除去法においても、既述の本発明の凍結法
の場合におけるように、該第2工程の処理が粒子化処理
を包含してもよく、その際、既述の(4)又は(B)の
いずれの方法を採用してもよい。
In the above-mentioned decomposition and removal method, the second step may also include a particleization treatment, as in the case of the freezing method of the present invention, and in that case, the above-mentioned (4) or ( Either method B) may be adopted.

上記した分解除去法においても、ゲル化物内に多数の貫
通孔を生じ、かつゲル化物の単位体積当シの酵素活性が
上昇した。
Even in the decomposition and removal method described above, a large number of through holes were formed in the gelled product, and the enzyme activity per unit volume of the gelled product increased.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明を実施例及び比較例によシ更に具体的に説
明するが、本発明はこれら実施例に限定されない。
Hereinafter, the present invention will be explained in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples.

なお、添付の第1図〜第6図は、反応時間と酵素活性と
の関係を示すグラフである。
Incidentally, the attached FIGS. 1 to 6 are graphs showing the relationship between reaction time and enzyme activity.

比較例1 カラギーナン0.15f、水4.85 rをオートクレ
ーブ中120℃、15分加熱してカラギーナン溶液5t
k得た。上記のカラギーナン溶液を40℃に冷却した。
Comparative Example 1 0.15 f of carrageenan and 4.85 r of water were heated in an autoclave at 120°C for 15 minutes to make 5 t of carrageenan solution.
I got k. The above carrageenan solution was cooled to 40°C.

このカラギーナン溶液に、ウレアーゼ10Iv(ナタマ
メ起源)と牛血清アルブミン20り(酵素用安定剤とし
て使用)5I:水3dに俗解した水溶液を添加して混合
した。
To this carrageenan solution, an aqueous solution of 10 Iv of urease (originated from sea cucumber) and 20 Iv of bovine serum albumin (used as an enzyme stabilizer): 5 I: 3 d of water was added and mixed.

混合液を直ちに平板上に流し、厚さ1.7〜2.4■の
板状のゲルとし、2×2−角に細断した。
The mixed solution was immediately poured onto a flat plate to form a plate-shaped gel with a thickness of 1.7 to 2.4 square centimeters, which was cut into 2×2 square pieces.

得られたゲル粒子の内部は、顕微鏡写真によって観察し
たところ、均質な透明ゲルからなっていた。ついで、こ
のゲル粒子を0,5f分取し、10チ尿素5+++/!
、1Mクエン酸カリウム緩衝液(pH&7)20vt及
び水5dを添加して、40℃、30分往復振とうした(
振幅3crn、30ストロ一ク/分)。尿素の分解によ
り生ずるアンニア態N生成量の時間経過を測定した。
The interior of the resulting gel particles was observed by microscopic photography and was found to consist of a homogeneous transparent gel. Then, the gel particles were separated at 0.5 f, and 10 thiurea 5+++/!
, 20vt of 1M potassium citrate buffer (pH & 7) and 5d of water were added, and the mixture was shaken back and forth at 40°C for 30 minutes (
amplitude 3 crn, 30 strokes/min). The time course of the amount of annia-N produced by the decomposition of urea was measured.

その結果を第1図に示す。すなわち第1図は、反応時間
(分)(横軸)と酵素活性(2gN−NH3/ f無処
理ゲル)(縦軸)との関係を示すグラフであシ、後記実
施例のものも一緒に示す。
The results are shown in FIG. In other words, Fig. 1 is a graph showing the relationship between reaction time (minutes) (horizontal axis) and enzyme activity (2 gN-NH3/f untreated gel) (vertical axis), and the graph of the examples described later is also shown. show.

他方、ゲル粒子α1tを分取し、水SmTh加えて40
℃で1時間振とり後、遠心分離(45002,10分)
して、パックドボリューム(packθ+l vo1u
mθ)を測定した。その結果ケ第1表に示す。
On the other hand, the gel particles α1t were collected, water SmTh was added, and 40
After shaking at °C for 1 hour, centrifuge (45002, 10 minutes)
Then, the packed volume (packθ+l vo1u
mθ) was measured. The results are shown in Table 1.

実施例1 比較例1で調製した同一バッチのゲル粒子2f?ナスフ
ラスコに入れ、−50℃で2分以内に凍結した。この凍
結したゲル粒子を1 mmHg以下の減圧下で乾燥して
、乾燥ゲル46■を得た。この乾燥ゲルに水を吸収させ
て顕微鏡下に見ると、多数の連続胞の形成が観察された
Example 1 Gel particles 2f of the same batch prepared in Comparative Example 1? It was placed in an eggplant flask and frozen at -50°C within 2 minutes. The frozen gel particles were dried under reduced pressure of 1 mmHg or less to obtain a dry gel of 46 cm. When this dried gel was allowed to absorb water and viewed under a microscope, the formation of numerous continuous cells was observed.

次いで、この乾燥ゲル粒子から乾燥前のゲル粒子換算で
0.5fを分取し、比較例1と同じ手順によシ尿素の分
解の時間経過を測定した。その結果を第1図に示す。他
方、乾燥ゲル粒子から乾燥前のゲル換算でQ、11を分
取し、比較例1と同じ手順によυパックドボリュームを
測定した。その結果を第1表に示す。
Next, 0.5 f in terms of gel particles before drying was collected from the dried gel particles, and the time course of decomposition of shiurea was measured using the same procedure as in Comparative Example 1. The results are shown in FIG. On the other hand, Q, 11 was fractionated from the dried gel particles in terms of gel before drying, and the υ packed volume was measured using the same procedure as in Comparative Example 1. The results are shown in Table 1.

実施例2 実施例1で調製したものと同一バッチの乾燥ゲル粒子3
0■(乾燥前ゲル換算13f)を10 kg/cm”の
圧力で圧密化し、薄片状とした。
Example 2 Dry gel particles 3 from the same batch as prepared in Example 1
0.0 mm (gel equivalent before drying: 13 f) was compacted at a pressure of 10 kg/cm'' to form a flake.

この薄片状の乾燥ゲル10■を水に入れ、実施例1と同
様にしてパックドボリュームを測定シた。その結果を第
1表に示す。また、水によって膨潤した後のゲルを顕微
鏡下に観察した。実施例1の連続胞が圧密化していた。
Ten squares of this flaky dry gel were placed in water, and the packed volume was measured in the same manner as in Example 1. The results are shown in Table 1. In addition, the gel after being swollen with water was observed under a microscope. The continuous cells of Example 1 were compacted.

比較例1、実施例1及び2につき、ゲル粒子乾物1を当
シのウレアーゼ活性及びパックドボリューム1d当勺の
ウレアーゼ活性を整理し、第1表に合せ示す。乾物重量
当シのウレアーゼ活性は、無処理ゲル粒子(比較例1)
に比べ、凍結乾燥処理ゲル粒子(実施例1)が1.5倍
、凍結乾慄−圧密化処理ゲル粒子(実施例2)はt3倍
に向上した。他方、実施例2の乾物12当シのパックド
ボリュームは比較例1の4分の1に減少できる。したが
って、実施例2のパックドボリューム1−当シの活性は
比較fl1105.2倍に向上し、固定床のコンパクト
化に大きく寄与する。
For Comparative Example 1, Examples 1 and 2, the urease activity of gel particle dry matter 1 and the urease activity of packed volume 1 d are summarized and shown in Table 1. The urease activity based on dry weight is that of untreated gel particles (Comparative Example 1)
Compared to this, the freeze-drying gel particles (Example 1) improved by 1.5 times, and the freeze-drying-consolidation gel particles (Example 2) improved by 3 times. On the other hand, the packed volume of 12 kg of dry matter in Example 2 can be reduced to one quarter of that in Comparative Example 1. Therefore, the activity of the packed volume 1 of Example 2 was improved by a factor of 1105.2 compared to that of Example 2, which greatly contributed to making the fixed bed more compact.

第 1 表 矢 10分間で生成したN−NU3量から算出した初速
塵を使用 実施例3 精製寒天Q、 15 f、水4.85 S’を90℃、
15分加熱して寒天溶液St’(得た。上記の寒天液を
40℃に冷却した。この寒天溶液にウレアーゼ3 ov
g(ナタマメ起源、比活性4U/■、1U:1μモルN
 −NH3/分)と牛血清アルブミン30■(酵素用安
定剤として使用)を水1、O2に溶解した水溶液1.6
31F、及び脱脂綿を長さ2〜3+n+nに細断した繊
維(繊維径50〜60μm)io、6f添加して混合し
た。混合液を直ちに平板上に流し、厚さ1.7〜2.3
カの板状に固化成型した。次いで、100qのセルラー
ゼ(トリコデルマ起源、100FPA−U/q)k7m
7!の005M酢酸ソーダ緩衝液(pH4,5)に溶解
した溶液に、上記繊維入りウレアーゼ固定寒天ゲル粒子
1.52を添加し、40℃で2時間処理した。セルラー
ゼ処理後の繊維入シウレアーゼ固定寒天ゲル粒子を顕微
鏡下に観察すると、セルラーゼ処理によシ、処理以前に
紹められたセルロース繊維が消失し、消失部分に貫通孔
が生じていることが観察てれた。セルラーゼ処理後のゲ
ル粒子を分離回収し、1Mクエン酸緩衝液(pH6,7
)20m7!及び10%尿素溶液10dを添加して40
℃で2時間往復振とうした(振幅3crn1 ろ0スト
ロ一ク/分)。
1st Table Arrow Initial velocity dust calculated from 3 amounts of N-NU generated in 10 minutes Example 3 Purified agar Q, 15 f, water 4.85 S' at 90°C.
The agar solution St' (obtained) was heated for 15 minutes. The above agar solution was cooled to 40°C. Urease 3 ov was added to this agar solution.
g (origin from sea cucumber, specific activity 4 U/■, 1 U: 1 μmol N
- NH3/min) and bovine serum albumin (used as a stabilizer for enzymes) at 30% in water and 1.6% in O2.
31F, and fibers (fiber diameter 50 to 60 μm) obtained by chopping absorbent cotton to lengths of 2 to 3+n+n were added and mixed. Immediately pour the mixture onto a flat plate to a thickness of 1.7 to 2.3
It was solidified and molded into a mosquito plate shape. Then, 100q cellulase (Trichoderma origin, 100FPA-U/q) k7m
7! To a solution dissolved in 005M sodium acetate buffer (pH 4, 5), 1.52 of the above fiber-containing urease-fixed agar gel particles were added and treated at 40°C for 2 hours. When the fiber-containing shiurease-fixed agar gel particles were observed under a microscope after cellulase treatment, it was observed that the cellulose fibers that were introduced before the cellulase treatment disappeared and that through-holes were created in the disappeared areas. It was. The gel particles after cellulase treatment were separated and collected, and added to 1M citrate buffer (pH 6, 7).
)20m7! and adding 10 d of 10% urea solution to 40
The mixture was shaken reciprocally at ℃ for 2 hours (amplitude 3crn1 filter 0 strokes/min).

尿素の分解により生ずるアンモニア態N生成量の時間経
過を第2図に示す。
Figure 2 shows the time course of the amount of ammonia N produced by the decomposition of urea.

すなわち第2図は、反応時間(分)(横軸)と酵素活性
(μ9N −NU3/y) (縦軸)との関係を示すグ
ラフであり、後記比較例の結果も併記した。
That is, FIG. 2 is a graph showing the relationship between reaction time (minutes) (horizontal axis) and enzyme activity (μ9N −NU3/y) (vertical axis), and also shows the results of the comparative example described later.

比較例2 実施例3で調製した同一バッチの繊維入シウレアーゼ固
定ゲル粒子1.5t’x、セルラーゼを添加しないQ、
 05 M酢酸ソーダ緩衝液(pH4,7)に添加し、
同じ要領で40℃、2時間保温した。上記処理後、実施
例3と同一要領で尿素の分解試験を行った。アンモニア
態N生成の時間経過を第2図に示す。
Comparative Example 2 The same batch of fiber-containing shiurease-fixed gel particles prepared in Example 3, 1.5 t'x, Q without adding cellulase,
05 M sodium acetate buffer (pH 4,7),
The temperature was kept at 40°C for 2 hours in the same manner. After the above treatment, a urea decomposition test was conducted in the same manner as in Example 3. Figure 2 shows the time course of ammonia N production.

比較例3 実施jpH5Tf−て調製した同一バッチの繊維入りつ
Vアーゼ固定ゲル粒子1.5 fIを5℃で2時間保存
後、実施例3と同一要領で尿素の分解試験を行った。ア
ンモニア態N生成の時間経過を第2図に併記する。
Comparative Example 3 After storing the same batch of fiber-containing Vase-immobilized gel particles (1.5 fI) prepared at pH 5Tf for 2 hours at 5°C, a urea decomposition test was conducted in the same manner as in Example 3. The time course of ammonia N production is also shown in Figure 2.

比較例4 つVアーゼ固定ゲル粒子の調製に際して、綿繊維の代シ
にCL6fの水を添加して、実施例3と同一要領でウレ
アーゼ固定ゲル粒子を調製した。このゲル粒子1.52
を実施例3と同一要領で尿素の分解試験を行った。アン
モニア態N生成の時間経過を第2図に併記する。
Comparative Example 4 In preparing Vase-immobilized gel particles, urease-immobilized gel particles were prepared in the same manner as in Example 3 by adding CL6f water to a cotton fiber substitute. This gel particle 1.52
A urea decomposition test was conducted in the same manner as in Example 3. The time course of ammonia N production is also shown in Figure 2.

実施例3及び比較例2〜4の結果をゲル粒子12当りの
ウレアーゼ活性で整理し第2表に示す。比較例に比べ実
施例3は約1.4倍の活性を示し、本発明によシ従来の
単純な包括法に比べ40係の活性上昇を認めた。
The results of Example 3 and Comparative Examples 2 to 4 are summarized in terms of urease activity per 12 gel particles and are shown in Table 2. Example 3 showed about 1.4 times the activity as compared to the comparative example, and the activity of the present invention was increased by 40 times compared to the conventional simple comprehensive method.

第 2 表 簀 10分間で生成したN−NHg量から算出した初速
度を使用 比較例5 アルギン酸0.4?、水4.6 f’ft105℃、1
0分加熱してアルギン酸溶液5fを得た。上記のアルギ
ン酸溶液にラクターゼ(サツカロミセス属酵母起源)1
01Iv1に水2−に溶解した水溶液を添加して混合し
た。混合液を2チ塩化カルシウム溶液中に滴下して固化
し、直径1.5〜4畷の球状粒子を得た。次いで、この
ゲル粒子を水洗し、0.5fを分取して、0.1Mリン
酸カリウム緩衝液pH6,5を1d加え、これに基質と
してオルト・ニトロフェノール−β−D−ガラクトピラ
ノ7ド(0ムGF)の05係水溶液3−を添加した。上
記混合液を30℃で10分間反応させた後、氷冷し、酵
素固定化粒子全炉別した。次いで、p液中の生成オルト
フェノール量をa 20 nm で比色定量した。10
分間で生成したオルトフェノール量よシ算出した初速度
からラクターゼ活性を算出した。他方、ゲル粒子IIL
1tを分取し、水5mft加えて30℃で10分間振と
う後、遠心分離(45009,10分)して、パックド
ボリュームを測定した。ノ(ツクドボリューム及びパッ
クドボリューム当シのラクターゼ活性及び乾量クシのラ
クターゼ活性を第6表に示した。
2nd Table Using the initial velocity calculated from the amount of N-NHg generated in 10 minutes Comparative Example 5 Alginic acid 0.4? , water 4.6 f'ft105℃, 1
After heating for 0 minutes, alginic acid solution 5f was obtained. Add 1 lactase (originated from Satucharomyces yeast) to the above alginate solution.
An aqueous solution dissolved in water 2- was added to 01Iv1 and mixed. The mixed solution was dropped into a dicalcium chloride solution and solidified to obtain spherical particles with a diameter of 1.5 to 4 mm. Next, the gel particles were washed with water, 0.5f was collected, 1d of 0.1M potassium phosphate buffer pH 6.5 was added, and ortho-nitrophenol-β-D-galactopyrano7d ( 05 aqueous solution 3- of 0mGF) was added. The mixture was reacted at 30° C. for 10 minutes, cooled on ice, and all the enzyme-immobilized particles were separated in a furnace. Next, the amount of produced orthophenol in the p solution was determined colorimetrically at a 20 nm. 10
Lactase activity was calculated from the initial rate calculated from the amount of orthophenol produced per minute. On the other hand, gel particles IIL
1 t was collected, 5 mft of water was added, and the mixture was shaken at 30°C for 10 minutes, centrifuged (45009, 10 minutes), and the packed volume was measured. Table 6 shows the lactase activity of packed volume and packed volume, and the lactase activity of dry comb.

実施例4 比較例5で調製した同一パッチのゲル粒子2グをナスフ
ラスコに入れ、液体窒素中で1分以内に凍結した。この
凍結したゲル粒子を1 mHg以下の減圧下で乾燥して
、乾燥ゲル40qを得た。この乾燥ゲルに水を吸収式せ
て顕微鏡下に見ると、多数の連続胞の形成が観察された
。次いで、この乾燥ゲル粒子から乾燥前ゲル粒子換算で
0.5fを分取し、比較例5と同じ手順によジオルト・
ニトロフェノール−β−D−i59トピラノンドの分解
の初速度を測定した。他方、乾燥ゲル粒子から乾燥前の
ゲル換算で0.1gを分取し、比較例1と同じ手順によ
シパックドボリュームを測定した。その結果と、パック
ドボリューム当如のラフター ゼ活性及び乾量当如のラ
クターゼ活性を第3表に示した。
Example 4 Two grams of gel particles of the same patch prepared in Comparative Example 5 were placed in an eggplant flask and frozen within 1 minute in liquid nitrogen. The frozen gel particles were dried under reduced pressure of 1 mHg or less to obtain dry gel 40q. When this dried gel was soaked with water and viewed under a microscope, the formation of numerous continuous cells was observed. Next, 0.5f in terms of pre-drying gel particles was collected from the dried gel particles, and diortho.
The initial rate of decomposition of nitrophenol-β-D-i59 topyranondo was determined. On the other hand, 0.1 g in terms of gel before drying was collected from the dried gel particles, and the packed volume was measured using the same procedure as in Comparative Example 1. The results, lactase activity as per packed volume and lactase activity as per dry weight are shown in Table 3.

実施例5 実施例4で調製したものと同一バッチの乾燥ゲル粒子2
0TIl!(乾燥前ゲル換算1.3 t ) t” 8
、kg/1yn2の圧力でプレスして圧密化し、2X2
m+の薄片状とした。この薄片状の乾燥ゲル10qを水
に入れ、実施例4と同様にしてパックドボリュームを測
定した。その結果を第3表に示す。
Example 5 Dry gel particles 2 from the same batch as prepared in Example 4
0TIl! (Gel equivalent before drying: 1.3 t) t" 8
, compressed by pressing at a pressure of kg/1yn2, 2X2
It was made into a flaky shape of m+. 10 q of this flaky dry gel was placed in water, and the packed volume was measured in the same manner as in Example 4. The results are shown in Table 3.

第 3 表 実施例6 カラギーナン0.2 f 、水4.82をオートクV−
ブ中110℃、5分間加熱してカラギーナン溶液51を
得た。上記のカラギーナン溶液を40℃に冷却した。こ
のカラギーナン溶液に、つVアーゼ25 rug (ナ
タマメ起源、比活性4U/η、1U:1μモルN −N
H37分)と牛血清アルブミンxoI+9(酵素用安定
剤として使用)を水1fに溶解した水溶液1.06 S
’、及び脱脂綿を長さ2〜6w11に細断した繊維(繊
維径60〜60μm )を0.62添加して混合した。
Table 3 Example 6 0.2 f of carrageenan and 4.82 g of water were added to an autoclave V-
Carrageenan solution 51 was obtained by heating at 110° C. for 5 minutes in a vacuum chamber. The above carrageenan solution was cooled to 40°C. To this carrageenan solution, 25 rug of Vase (originated from sea cucumber, specific activity 4 U/η, 1 U: 1 μmol N - N
1.06 S of an aqueous solution of H37 min) and bovine serum albumin xoI+9 (used as an enzyme stabilizer) dissolved in 1 F of water.
', and 0.62 of fibers (fiber diameter 60-60 μm) obtained by cutting absorbent cotton into pieces of length 2-6W11 were added and mixed.

混合液を直ちに平板上に流し、浮式1.7〜2.3■の
板状に固化成型し、1.5〜2.5 X 1.5〜2.
5節×1.D〜1.5咽の太き嘔に細断しセルロース繊
維入シのウレアーゼ固定化カラギーナンゲル粒子を調製
した。次いで、100ηのセルラーゼ(トリコデルマ起
源、1ooypA−n/q)を7艷の0.05M酢酸ソ
ーダ緩衝液(pH4,5)に溶解した溶液に、上記の繊
維入りつVアーゼ固定カラギーナンゲル粒子1.59を
添加し、40℃で2時間処理した。セルラーゼ処理によ
υ、処理以前に認められたセルロース繊維が消失し、消
失部分に貫通孔が生じていることが観察4fLだ。セル
ラーゼ処理後のゲル粒子を分離回収し、1Mクエン酸緩
衝i(pH6,7) 20mi及び10チ尿素溶液10
艷を添加して、40℃で2時間往徂振とつした(振幅3
crn、30ストロ一クス/分)。尿素の分解により生
ずるアンモニア態N生成量の時間経過を第5図に示す。
Immediately pour the mixed solution onto a flat plate, solidify and mold it into a floating plate of 1.7-2.3 cm, 1.5-2.5 x 1.5-2.
5 verses x 1. D ~ 1.5 mm thick pieces were shredded to prepare urease-immobilized carrageenan gel particles containing cellulose fibers. Next, the above fiber-containing Vase-immobilized carrageenan gel particles 1. 59 was added and treated at 40°C for 2 hours. As a result of the cellulase treatment, the cellulose fibers that had been observed before the treatment disappeared, and through-holes were observed in the disappeared portions, as observed at 4fL. The gel particles after cellulase treatment were separated and collected, and mixed with 1M citrate buffer (pH 6,7) 20mi and 10 thiurea solution 10
The mixture was shaken for 2 hours at 40°C (amplitude 3).
crn, 30 strokes/min). FIG. 5 shows the time course of the amount of ammonia N produced by decomposition of urea.

すなわち第6図は、反応時間(分)(横軸)と酵素活性
(py N −NH3/mlり (縦軸)との関係を示
すグラフであシ、後記比較例の結果も併記した。
That is, FIG. 6 is a graph showing the relationship between reaction time (minutes) (horizontal axis) and enzyme activity (py N -NH3/ml (vertical axis)), and also shows the results of a comparative example described later.

比較例6 実施例6で調製した同一バッチの繊維入υウレアーゼ固
定カラギーナンゲル粒子1.59 i、セルラーゼを添
加しないQ、05M酢酸ソーダ緩衝液(pH4,7)に
添加し、同じ要領で40℃、2時間保温した。上記処理
後、実施例6と同要領で尿素の分解実験を行った。アン
モニア態N生成の時間経過を第3図に併記する。
Comparative Example 6 The same batch of fiber-containing urease-fixed carrageenan gel particles prepared in Example 6 (1.59 i), Q without cellulase added, was added to 05M sodium acetate buffer (pH 4,7) and incubated at 40°C in the same manner. , and kept warm for 2 hours. After the above treatment, a urea decomposition experiment was conducted in the same manner as in Example 6. The time course of ammonia N production is also shown in Figure 3.

比較例7 実施例3にて調製した同一ノくツテの繊維入シウレアー
ゼ固定カラギーナンゲル粒子1.5 f Th5℃で2
時間保存後、実施例6と同一要領で尿素ノ分解試験を行
った。アンモニア態窒素生成の時間経過を第3図に併記
する。
Comparative Example 7 Fiber-containing ciurease-fixed carrageenan gel particles of the same length prepared in Example 3 1.5 f Th 2 at 5°C
After storage for a period of time, a urea decomposition test was conducted in the same manner as in Example 6. The time course of ammonia nitrogen production is also shown in Figure 3.

比較例8 ウレアーゼ固定ゲル粒子の調製に際して、綿繊維の代シ
に0.6 tの水を添加して、実施例3と同一要領でウ
レアーゼ固定ゲル粒子を調製した。このゲル粒子1.5
gを実施例6と同一要領で尿素の分解試験を行った。ア
ンモニア態N生成の時間経過を第3図に併記する。
Comparative Example 8 In preparing urease-immobilized gel particles, 0.6 t of water was added to the cotton fiber substitute, and urease-immobilized gel particles were prepared in the same manner as in Example 3. This gel particle 1.5
A urea decomposition test was conducted on the sample g in the same manner as in Example 6. The time course of ammonia N production is also shown in Figure 3.

実施例6及び比較例6〜8の結果をゲル粒子12当υの
つVアーゼ活性で整理し、第4表に示す。比較例に比べ
、実施例6は約1.4倍の活性を示し、本発明によシ従
来の単純な包括法に比べ40チの活性上昇を認めた。
The results of Example 6 and Comparative Examples 6 to 8 are summarized by Vase activity of 12 gel particles and are shown in Table 4. Example 6 showed about 1.4 times more activity than the comparative example, and the present invention showed a 40% increase in activity compared to the conventional simple inclusion method.

第4表 実施例7 下記の5成分を混合した液をi、 5 an間隙のガラ
ス壁間に流し、15℃、40分間静置してゲル化させ、
厚さ1.5団のゲルプV−トを調製した。
Table 4 Example 7 A liquid mixture of the following five components was poured between the glass walls with gaps i and 5 an, and allowed to stand at 15°C for 40 minutes to gel.
A gel plate having a thickness of 1.5 layers was prepared.

A二1NTIC14,8sd トリスヒドロキシメチルアミノメタン五7− 蒸溜水&3− Bニアクリルアミド61 メチレンビスアクリルアミドα161Fフエリシアン化
カリウム1,4■ 蒸溜水141d O: [1,14qb過硫酸アンモニウム40@gD=
ウレアーゼrJ、3f(ナタマメ起源、比活性4 U/
q、1ty : 1fモルn −NH3/分)牛血清ア
ルブミンα5fc酵素安定剤として使用) 蒸溜水9.4 m B:デンプン繊維(繊維長2〜Sm、繊維径50〜15
0μm 1本繊維は馬鈴しよデンプン糊をフィルム状に
乾燥した薄膜を細断して調製)10f 上記ゲルプレートを1.5〜L 5 X 1.5〜2.
5雪の大きさに細断してデンプン繊維入シのウレアーゼ
固定化ポリアクリルアミドゲル粒子を調製した 次いで
、50ηのα−アミラーゼ(枯草耐起源、7oOU/!
、IU:1fモルデンプンからのマルトース/3分)ケ
アーの0.05 Mリン酸カリウム緩衝液(pH6,8
)に溶解した溶液に、上記の繊維入シウVアーゼ固定ポ
リアクリルアミドゲル粒子1.5fを添加し、37℃で
、15分処理した5、光学顕微鏡観察にょシα−アミラ
ーゼ処理により、処理以前に紹められたデンプン繊維が
消失し、消失部分に貫通孔が生じていることが観察され
た。α−アミラーゼ処理後のゲル粒子分を分離回収し、
1Mクエン酸緩衝液(pH6,7)20m7!及びio
n尿素溶液107を添加して、40℃で2時間往復振と
うした(振幅Scm、50ストロークス/分)。尿素の
分解にょシ生ずるアンモニア態N生成量の時間経過を測
定し、初速度からα−アミラーゼ無処理ゲル2当りの見
掛けの比活性を算出し、4. OU / fの値を得た
A21NTIC14,8sd Trishydroxymethylaminomethane 57- Distilled water & 3- B Niacrylamide 61 Methylenebisacrylamide α161F Potassium ferricyanide 1,4■ Distilled water 141d O: [1,14qb Ammonium persulfate 40@gD=
Urease rJ, 3f (originated from sea cucumber, specific activity 4 U/
q, 1ty: 1 fmol n -NH3/min) bovine serum albumin α5fc used as enzyme stabilizer) Distilled water 9.4 m B: Starch fiber (fiber length 2-Sm, fiber diameter 50-15
0 μm 1 fiber is prepared by cutting a thin film of potato starch paste dried into a film) 10f The above gel plate is 1.5~L 5 x 1.5~2.
Urease-immobilized polyacrylamide gel particles containing starch fibers were prepared by chopping into pieces the size of 5 snowflakes.Next, 50η of α-amylase (hay resistant origin, 7oOU/!) was prepared.
, IU: maltose from 1f molar starch/3 min) Kjaer's 0.05 M potassium phosphate buffer (pH 6,8
) was added with 1.5 f of the above fiber-containing α-Vase-fixed polyacrylamide gel particles and treated at 37°C for 15 minutes. 5. Observation using an optical microscope. It was observed that the introduced starch fibers disappeared and through holes were formed in the disappeared parts. Separate and collect the gel particles after α-amylase treatment,
1M citrate buffer (pH 6,7) 20m7! and io
n-urea solution 107 was added and shaken reciprocally at 40° C. for 2 hours (amplitude Scm, 50 strokes/min). Measure the time course of the amount of ammonia N produced during the decomposition of urea, calculate the apparent specific activity per 2 α-amylase-untreated gels from the initial rate, and 4. The value of OU/f was obtained.

比較例9 実施例7で調製した同一バッチの繊維入りウレアーゼ固
定ポリアクリルアミドゲル粒11.5?を、α−アミラ
ーゼを添加しない0.05M!Jン酸カリウム緩衝液(
pH6,8)に添加し、同じ要領で37℃、15分保温
した。上記処理後、実施例7と同要領で尿素の分解実験
を行った。
Comparative Example 9 Urease-fixed fiber-filled polyacrylamide gel particles of the same batch prepared in Example 7 11.5? , 0.05M without adding α-amylase! Potassium J phosphate buffer (
pH 6,8) and kept at 37°C for 15 minutes in the same manner. After the above treatment, a urea decomposition experiment was conducted in the same manner as in Example 7.

尿素の分解によシ生ずるアンモニア態N生成量の時間経
過から初速度を測定し、α−アミラーゼ無処理ゲルを当
シの見掛けのウレアーゼ比活性を算出し2.7U/fの
値を得た。
The initial velocity was measured from the time course of the amount of ammonia N produced by the decomposition of urea, and the apparent specific urease activity of the α-amylase-untreated gel was calculated, and a value of 2.7 U/f was obtained. .

比較例10 実施例7で調製した同一バッチの繊維入シウレアーゼ固
定ポリアクリルアミドゲル粒子1.52を5℃で2時間
保存後、実施例7と同一要領で尿素の分解試験を行った
。アンモニア態N生成量の時間経過から初速度を測定し
、α−アミラーゼ無処理ゲル2当シの見掛けのウレアー
ゼ比活性を算出し2.6 U / fの値を得た。
Comparative Example 10 After storing 1.52 of the same batch of fiber-containing ciurease-fixed polyacrylamide gel particles prepared in Example 7 at 5° C. for 2 hours, a urea decomposition test was conducted in the same manner as in Example 7. The initial rate was measured from the time course of the amount of ammonia N produced, and the apparent specific urease activity of 2 gels without α-amylase treatment was calculated to obtain a value of 2.6 U/f.

比較例11 ウレアーゼ固定ゲル粒子の調製に際して、デンプン繊維
の代シに1Ofの水を添加して、実施例7と同一要領で
ウレアーゼ固定ゲル粒子を調製した。このゲル粒子1.
52を実施例7と同一要領で尿素の分解試験を行った。
Comparative Example 11 During the preparation of urease-immobilized gel particles, urease-immobilized gel particles were prepared in the same manner as in Example 7 by adding 1Of water to the starch fibers. This gel particle 1.
52 was subjected to a urea decomposition test in the same manner as in Example 7.

アンモニア態N生成量の時間経過から初速度を測定し、
α−アミラーゼ無処理2当シの見掛けのつVアーゼ比活
性5c算出し、2.yU/fの値を?Uた。
The initial rate is measured from the time course of the amount of ammonia N produced,
2. Calculate the apparent Vase specific activity 5c of α-amylase-free 2. What is the value of yU/f? Uta.

実施例B カラギーナンα22、水4.89 kオートクレーブ中
110℃、5分加熱してカラギーナン溶液5fを得た。
Example B Carrageenan α22, water 4.89 k Heated at 110° C. for 5 minutes in an autoclave to obtain carrageenan solution 5f.

上記のカラギーナン溶液を40℃に冷却した。このカラ
ギーナン溶液t1rc 、インベルターゼ30■〔カン
ジダ ウテイリス(Candida utilis )
 起源、比活性20口U/■、1Uニスクロ一ス1fモ
ル分WfZ分〕ヲ水1fK浴解した水溶液1.03 f
及び脱脂綿を長さ2〜3簡に細断した繊維(繊維径30
〜60μm )を0.6f添加して混合した。混合液を
泊ちに平板上に流し、厚さ0.8〜1.2箇の膜状に固
化した。次いで150■のセルラーゼ(トリコデルマ起
源、1o OFPA −ty/1Iv)を7−の0.0
5M酢酸ソーダ緩衝液(pH4,5)に溶解した溶液に
、上記繊維入シウレアーゼ固定カラギーナンゲル膜1.
5r(4o、x4o耽)を浸漬し、40℃で1時間処理
した。セルラーゼ処理によシ、処理以前に認められたセ
ルロース繊維が消失し、消失部分に貫通孔が生じている
ことが観察された。セルラーゼ処理後のゲル粒子を分離
回収し、α1M酢酸緩衝液(pH4,7)20tnl及
び5%スクロース溶液10djを添加して、45℃で2
時間往復振とうした(振幅3crn1TJOストロ一ク
ス/分)。スクロースの分解によシ生ずるグルコース生
成量の時間経過から初速度を測定し、セルラーゼ無処理
ゲル2当シの見掛けのウレアーゼ比活性を算出しa 2
 U / yの値を得た。
The above carrageenan solution was cooled to 40°C. This carrageenan solution t1rc, invertase 30 [Candida utilis]
Origin, specific activity 20 units U/■, 1U varnish cloth 1f moles WfZ minutes] water 1fK aqueous solution 1.03 f
and fibers made by shredding absorbent cotton into 2 to 3 pieces (fiber diameter 30
~60 μm) was added and mixed. The mixed solution was poured onto a flat plate overnight and solidified into a film having a thickness of 0.8 to 1.2 points. Then 150μ of cellulase (originated from Trichoderma, 1o OFPA-ty/1Iv) was added to 7-0.0
The above fiber-containing ciurease-immobilized carrageenan gel membrane 1.
5r (4o, x4o) was soaked and treated at 40°C for 1 hour. Due to the cellulase treatment, the cellulose fibers that had been observed before the treatment disappeared, and it was observed that through holes were formed in the disappeared areas. The gel particles after cellulase treatment were separated and collected, 20 tnl of α1M acetate buffer (pH 4,7) and 10 dj of 5% sucrose solution were added, and incubated at 45°C for 2 hours.
It was shaken back and forth for an hour (amplitude 3 crn 1 TJO strokes/min). The initial rate was measured from the time course of the amount of glucose produced by the decomposition of sucrose, and the apparent specific urease activity of the cellulase-free gel 2 was calculated.
The value of U/y was obtained.

比較例12 実施例8で調製した同一バッチの繊維入シインベルター
ゼ固定カラギーナンゲル膜t s tを、セルラーゼを
添加しない0.05 M酢酸ソーダ緩衝液(pH6,8
)に添加し、同じ要領で40℃、1時間保温した。上記
処理後、実施例8と同じt領−c’スクロースの分解実
験を行った。スクロースの分解によシ生ずるグルコース
生成量の時間経過から初速度を測定し、セルラーゼ無処
理ゲルを当りの見掛けのインベルターゼ比活性を算出し
28 U / fの値を得た。
Comparative Example 12 The same batch of fiber-containing cyinvertase-immobilized carrageenan gel membrane tst prepared in Example 8 was added to 0.05 M sodium acetate buffer (pH 6,8
) and kept at 40°C for 1 hour in the same manner. After the above treatment, the same t-domain-c' sucrose decomposition experiment as in Example 8 was conducted. The initial rate was measured from the time course of the amount of glucose produced by the decomposition of sucrose, and the apparent specific invertase activity per cellulase-untreated gel was calculated to obtain a value of 28 U/f.

比較例13 実施例8で調製した同一バッチの繊維入シインベルター
ゼ固定カラギーナンゲル膜1.5 f i5℃で2時間
保存後、実施例8と同一要領でスクロースの分解実験を
行った。スクロースの分解によ)生ずるグルコース生成
量の時間経過から初速度を測定し、セルラーゼ無処理ゲ
ル1当勺の見掛けのインベルターゼ比活性を算出し25
 U / yの値を得た。
Comparative Example 13 The same batch of fiber-containing cyinvertase-fixed carrageenan gel membrane prepared in Example 8 was stored at 5° C. for 2 hours, and then a sucrose decomposition experiment was conducted in the same manner as in Example 8. The initial rate of glucose production (due to the decomposition of sucrose) was measured over time, and the apparent specific invertase activity of the cellulase-free gel was calculated.
The value of U/y was obtained.

比較例14 インベルターゼ固定化カラギーナンゲル膜の調製に際し
て、セルロース繊維の代シに109の水を添加して、実
施例8と同一要領でゲル膜を調製した。このゲル膜1.
5fを用い、実施例8と同じ要領でスクロースの分解実
験を行った。
Comparative Example 14 In preparing an invertase-immobilized carrageenan gel membrane, a gel membrane was prepared in the same manner as in Example 8 by adding 109 water to the cellulose fibers. This gel film 1.
A sucrose decomposition experiment was conducted in the same manner as in Example 8 using 5f.

スクロースの分解によシ生ずるグルコース生成量の時間
経過から初速度を測定し、セルラーゼ無処理ゲルを当シ
の見掛けのインベルターゼ比活性を算出し27 U /
 fの値を得た。
The initial rate was measured from the time course of the amount of glucose produced by the decomposition of sucrose, and the apparent specific activity of invertase was calculated from the cellulase-free gel.
The value of f was obtained.

実施例9 実施例6と同要領でウレアーゼ、脱脂綿繊維を含むカラ
ギーナン液61を調製し、これを5チ塩化カリウム溶液
(6℃)中に滴下し2〜3−のビーズ状に成型した。上
記のゲル粒子1.51を分離し実施例6と同要領でセル
ラーゼ処理を行った。その結果、処理以前に認められた
セルロース繊維が消失し、消失部分に貫通孔を生じてい
ることを確認した。セルラーゼ処理後のゲル粒子を分離
して実施例6と同要領でセルラーゼ無処理ゲルを当りの
見掛けの比活性ケ算出し五9 U / tの値を得た。
Example 9 A carrageenan solution 61 containing urease and absorbent cotton fibers was prepared in the same manner as in Example 6, and this was dropped into a 5-tripotassium chloride solution (6°C) and formed into 2- to 3- beads. The above gel particles 1.51 were separated and treated with cellulase in the same manner as in Example 6. As a result, it was confirmed that the cellulose fibers that had been observed before the treatment had disappeared, and that through-holes had been created in the disappeared areas. The gel particles after cellulase treatment were separated, and the apparent specific activity of the cellulase-untreated gel was calculated in the same manner as in Example 6 to obtain a value of 59 U/t.

比較例15 実施例9で調製した同一バッチのゲル粒子1、s t 
’zセルラーゼを添加しない[LO5M酢酸ソーダ緩凋
液(pH4,7)に添加し、同じ要領でセルラーゼ無処
理ゲル2当りの見掛けの比活性を算出し2.4 U /
 yの値2得た。
Comparative Example 15 Same batch of gel particles prepared in Example 9, s t
'Z without adding cellulase [added to LO5M sodium acetate slowing solution (pH 4,7) and calculated the apparent specific activity per 2 cellulase-free gels in the same manner as 2.4 U/
We obtained a value of 2 for y.

実施例6〜9及び各科に対応する比較例eこつき、ゲル
粒子1f当シの比活性を比べると、実施例は比較例に比
べ1.4〜1.6倍に見掛けの比活性が向上している。
Comparing the specific activities of Examples 6 to 9 and Comparative Examples corresponding to each family, the apparent specific activity of the Examples was 1.4 to 1.6 times that of the Comparative Examples. It's improving.

比較例16 下記の4成分を混合した液を、幅1.5 X 1.5X
60mのアクリル板上の溝に流し、15℃、40分間静
置してゲル化させ、線状ゲル化物を調製した。
Comparative Example 16 A liquid containing the following four components was mixed in a width of 1.5 x 1.5 x
The mixture was poured into a groove on a 60 m acrylic plate and allowed to stand at 15° C. for 40 minutes to gel, thereby preparing a linear gelled product.

A) I N Hot 4.8m7! トリスヒドロキシメチルアミノメタン3,7ゴ 蒸溜水6.3− B)アクリルアミド 62 メチVンビス7クリルアミド Q、16rフエリシアン
化カリウム 1.4 tng蒸溜水 14− 0)0.14%過硫酸アンモニウA4.0m7!D)マ
ルターゼ(サツカロミセス属酵母起源0.22 (21
0ロ U ) 蒸溜水 9.4d 上記線状ゲル化物2. Of ’r、分取して5℃水5
を中に3時間浸漬して洗浄した。次いで0.1 Mリン
酸カリウム緩衝液pH6,8を10dを加え、これに基
質としてオルト・ニトロフェノール−β−D−グルコピ
ラノシドの0.5チ水溶13ydを添加した。上記混合
液分37℃で10分間反応させた後、氷冷し、酵素固定
化線状ゲル化物を得た。このゲル化物を炉別したろ液中
のオルトフェノール生成量f 420 nm で比色定
量した。10分間で生成したオルトフェノール量から算
出した初速度からマルターゼ活性を算出した。他方、線
状ゲル化物o、 s t を分取し、水5M!、を加え
て、遠心分離(4500t、10分)して、パックドボ
リュームを測定した。ノくツクドボリューム及びパック
ドボリューム当シのマルターゼ活性及び乾量当シのマル
ターゼ活性を第5表に示した。
A) I N Hot 4.8m7! Trishydroxymethylaminomethane 3,7 tng Distilled water 6.3- B) Acrylamide 62 MethyVn Bis 7 Acrylamide Q, 16r Potassium ferricyanide 1.4 tng Distilled water 14- 0) 0.14% Ammonium persulfate A4.0 m7! D) Maltase (Saccharomyces yeast origin 0.22 (21
0ro U) Distilled water 9.4d The above linear gelled product 2. Of'r, separate and add 5℃ water 5
was soaked in the water for 3 hours and washed. Next, 10 d of 0.1 M potassium phosphate buffer pH 6.8 was added, and to this was added 13 yd of a 0.5 t aqueous solution of ortho-nitrophenol-β-D-glucopyranoside as a substrate. After reacting the above liquid mixture at 37° C. for 10 minutes, the mixture was cooled on ice to obtain an enzyme-immobilized linear gel. This gelled product was colorimetrically determined based on the amount of orthophenol produced f 420 nm in the filtered filtrate. Maltase activity was calculated from the initial velocity calculated from the amount of orthophenol produced in 10 minutes. On the other hand, separate the linear gelled product o, s t and add 5M water! , and centrifuged (4500t, 10 minutes) to measure the packed volume. Table 5 shows maltase activity based on packed volume and packed volume, and maltase activity based on dry weight.

実施例10 比較例16で訓ルノした同一バッチの線状ゲル化物22
を5℃水5を中eころ時間浸漬して洗浄した。次いでゲ
ル化物をナスフラスコに入れ、−50℃で2分以内に凍
結した。この凍結した線状ゲル粒子を1℃mHg 以下
の減圧下で乾燥して、乾燥ゲル0.27S’を得た。こ
れを直径1crn、深さ1crnの凹金型に入れ3 k
P/6n2の圧力でプレスし、円板状のマツトラ得た。
Example 10 Linear gelled product 22 of the same batch tested in Comparative Example 16
The sample was washed by immersing it in 5°C water for a medium hour. The gelled product was then placed in an eggplant flask and frozen at -50°C within 2 minutes. The frozen linear gel particles were dried under reduced pressure of 1°C mHg or less to obtain a dry gel of 0.27S'. Put this into a concave mold with a diameter of 1 crn and a depth of 1 crn and mold for 3 k.
It was pressed at a pressure of P/6n2 to obtain a disc-shaped Matsutra.

このマットを2X 2 m角に裁断した。次いで、Il
IMIJン偵カリウム緩衝液pH6,8′f!:10f
nl加え、とれVこ基¥lL、Cオルト・ニトロフェノ
ール−β−り一グルコビラノシドの0,5チ水溶液r−
を添加した。上記混合液を37℃で10分間反応婆せた
後、氷冷し、固定化酵素粒子を炉別したp液中のオルト
フェノール生成蓋を420 nmで比色定量した。10
分間で生成したオルトフェノール量から算出した初速度
からマルターゼ活性分算出した。他方、同じ操作で調製
したマットを裁断して調製したゲル化直後の線状ゲル化
物052に相当量を取り、水5−を加えて、遠心分離(
45008’、10分)して、パックドボリュームを測
定した。パックドボリューム、ノ(ツクドボリューム当
シのマルターゼ活性及び乾量当シのマルターゼ活性を第
5表に示した。
This mat was cut into 2×2 m squares. Then Il
IMIJ potassium buffer pH 6,8'f! :10f
Add nl, remove V this group ¥lL, C 0.5% aqueous solution of ortho-nitrophenol-β-ri-glucobyranoside r-
was added. The mixture was allowed to react at 37° C. for 10 minutes, cooled on ice, and the immobilized enzyme particles were separated in a furnace. 10
The maltase activity was calculated from the initial velocity calculated from the amount of orthophenol produced per minute. On the other hand, a corresponding amount of gelled product 052 immediately after gelling was prepared by cutting a mat prepared in the same manner, and water 5- was added thereto, followed by centrifugation (
45008', 10 minutes), and the packed volume was measured. The maltase activity per packed volume and the maltase activity per dry weight are shown in Table 5.

第 5 表 比較例17 カラギーナンαsy、水4.5 t 1にオートクレー
ブ中120℃で15分間加熱してカラギーナy溶H5t
2得た。上記のカラギーナン溶液2、Ωtを4D℃に冷
却した。これに、スクラーゼ(サツカロミセス属酵母起
源)α1 f (1500U)、塩化カルシウム0.2
2を水3−に溶解した水溶液を添加し、−辺が50簡の
正方形の分析用濾紙(範型174■)を内部に敷いた内
法50X50mm、深さ10ffill+の容器に注ぎ
、室温に静置して固化した。濾紙を封入した厚さ2酪の
膜状ゲル化物を5℃の水5を中に6時間浸漬して洗浄し
た。次いでゲル化物を25X50111+1に2等分し
た。上記のゲル化物の一方’1100ゴービーカーに入
れ、10チ蔗糖溶液10m7!、α5M酢酸酸緩衝液p
H5,9,5m1k加え、ゆるやかに振とうさせ、40
℃で10分間反応畑せた。反応液中のグルコース生成量
から、ゲル化物のスクラーゼ活性を算出した。一方、ゲ
ル化物の体積を測定し、ゲル体積当シのスクラーゼ活性
及び乾量当フの活性を算出し第6表に示した。
Table 5 Comparative Example 17 Carrageenan αsy, water 4.5t 1 was heated in an autoclave at 120°C for 15 minutes to form a carrageenan y solution H5t.
I got 2. The above carrageenan solution 2, Ωt, was cooled to 4D°C. In addition, sucrase (originated from yeast of the genus Satucharomyces) α1 f (1500 U), calcium chloride 0.2
Add an aqueous solution of 2 dissolved in water 3- and pour it into a container with an internal dimension of 50 x 50 mm and a depth of 10 ffill+, which is lined with a square analytical filter paper (model 174) with 50 strips on the side, and let it stand still at room temperature. It was left to solidify. A membrane-like gelled product with a thickness of 2 mm containing filter paper was immersed in 5° C. water for 6 hours to be washed. The gel was then divided into two equal parts of 25×50111+1. Put one of the gelled products above in a '1100 go beaker and add 10ml of 10ml sucrose solution! , α5M acetate buffer p
Add H5, 9, 5ml 1k, shake gently, 40
The reaction field was incubated at ℃ for 10 minutes. Sucrase activity of the gelled product was calculated from the amount of glucose produced in the reaction solution. On the other hand, the volume of the gelled product was measured, and the sucrase activity per gel volume and the activity per dry weight were calculated and shown in Table 6.

実施例11 比較例17モ調製した未使用の25X50fiのゲル化
物を、広口1tナスフラスコに入れ、壁面に付着させた
状態で一45℃で凍結した。
Example 11 Comparative Example 17 The unused 25×50fi gelled product prepared in Mo was placed in a wide-mouthed 1-ton eggplant flask, and the flask was frozen at -45° C. with the flask attached to the wall.

この凍結ゲル化物f 1 tm Hg 以下の減圧下で
乾燥して、乾燥膜92■を得た。この乾燥膜を湿度80
%の空気中に1時間置いた後、油圧プレス機(50kg
/crn2)でプレスして圧密化し、紙状の膜を得た。
This frozen gelled product was dried under a reduced pressure of f 1 tm Hg or less to obtain a dry film 92■. This dry film is dried at a humidity of 80%.
% in air for 1 hour, then press a hydraulic press machine (50 kg
/crn2) to obtain a paper-like membrane.

上記の膜を100−ビーカーに入れ、比較例17と同要
領でスクラーゼ活性及び湿潤膜の容積を測定した。湿潤
膜体積当りのスクラーゼ活性及び乾量当りの活性を算出
し、第6表中に示した。
The above membrane was placed in a 100-beaker, and sucrase activity and wet membrane volume were measured in the same manner as in Comparative Example 17. The sucrase activity per wet membrane volume and the activity per dry weight were calculated and shown in Table 6.

第6表 比較例18 精製寒天[115S’、水4.85 ?をオートクレー
ブ中で120℃、90分加熱して寒天溶液51を得た。
Table 6 Comparative Example 18 Purified agar [115S', water 4.85? was heated in an autoclave at 120°C for 90 minutes to obtain agar solution 51.

上記の寒天溶液を40℃に冷却した。The above agar solution was cooled to 40°C.

この寒天溶液にパン酵母ケーキ200■(乾物42■)
k水1dに懸濁した溶液を添加しく昆合し、直ちに平板
上に流して固化した。板状のゲル(厚さ1.8〜Z6−
)を2×2叫角に卸l断した。上記ゲル粒子Q、52を
100−三角フラスコに分取し、10%グルコース溶液
5−11M酢酸緩衝液pH5,6,5rnt、水10d
’i添加し、30℃、10分間往復振とうした(振幅2
.5 cm 。
Add this agar solution to 200 ■ baker's yeast cake (42 ■ dry matter)
A solution suspended in 1 d of water was added and immediately poured onto a flat plate to solidify. Plate-shaped gel (thickness 1.8~Z6-
) was cut into a 2×2 square. The above gel particles Q, 52 were separated into a 100-Erlenmeyer flask, 10% glucose solution 5-11M acetate buffer pH 5,6,5rnt, water 10d.
'i was added and shaken reciprocally at 30°C for 10 minutes (amplitude 2
.. 5 cm.

30ストロ一ク/分)、反応後5℃に冷却して菌体を遠
心分離し、p液中のエタノール濃度をガスクロマトグラ
フにより測定した。一方、ゲル粒子0.5fk水中に添
加してゲル粒子の体積をめ、湿ゲル粒子体積当りのアル
コール生成速度、乾量当シのアルコール生成速度を算出
し、第7表に示した。
After the reaction, the cells were cooled to 5° C., the cells were centrifuged, and the ethanol concentration in the p solution was measured by gas chromatography. On the other hand, the gel particles were added to 0.5 fk water, the volume of the gel particles was measured, and the alcohol production rate per wet gel particle volume and the alcohol production rate per dry weight were calculated and shown in Table 7.

実施例12 比V例18で調製した同一バッチのゲル粒子o、sr6
分取し、50(]dナスフラスコ中に入れ、−45℃で
1分以内に凍結した。この凍結物をlmmHg 以下の
減圧下で乾量して、乾燥ゲル粒子を得た。これを、個々
の粒子毎にプレス機で(5kg/crn2)でプレスし
て圧密化し、薄片状物を得た。この薄片状物を用い比較
例18と同要但でエタノール生成速度及び水に浸漬した
ときの体積を測定した。その結果を第7表にボした。
Example 12 Same batch of gel particles o, sr6 prepared in Example 18
It was collected, placed in a 50 (] d eggplant flask, and frozen at -45°C within 1 minute. This frozen product was dried under reduced pressure of lmmHg or less to obtain dry gel particles. Each individual particle was pressed with a press machine at (5 kg/crn2) to obtain a flake-like material. Using this flake-like material, the ethanol production rate and immersion in water were determined in the same manner as in Comparative Example 18. The volume of the sample was measured and the results are shown in Table 7.

第7表 〔発明の効果〕 以上詳細に説明したように、本発明によれば、ゲル包括
法による固定化牛体触媒粒子の単位容積当シの比活性を
格段に向上でき、それだけ反応槽の有効容積を減少する
ことによシ、効率よく反応させることが可能となるとい
う顕著が奏せられる。
Table 7 [Effects of the Invention] As explained in detail above, according to the present invention, the specific activity per unit volume of the immobilized bovine body catalyst particles by the gel entrapment method can be significantly improved, and the reaction tank can be reduced accordingly. It is remarkable that by reducing the effective volume, it becomes possible to react efficiently.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第3図は、各側における尿素分解によるアンモ
ニア態窒素生成の時間経過を、反応時間と酵素活性との
関係で示したグラフである。 特許出願人 株式会社 日立製作所 代理人 中 本 宏 第1図 に 第2図 反疵・時間4分) 第1頁の続き @発明者 緒田原 蓉二 日立車輪3丁目所内
FIGS. 1 to 3 are graphs showing the time course of ammonia nitrogen production by urea decomposition on each side in terms of the relationship between reaction time and enzyme activity. Patent Applicant: Hitachi, Ltd. Agent: Hiroshi Nakamoto Figure 1 and Figure 2: Flaws (Time: 4 minutes) Continued from page 1 @ Inventor: Yoji Odawara Hitachi Wheels 3-chome Office

Claims (1)

【特許請求の範囲】 1、 生体触媒を固定化したゲル化物におφて、該ゲル
化物内に微細な連続胞を包含して―ることを特徴とする
生体触媒固定化多孔質ゲル化物。 λ ゲル基材溶液に生体触媒を添加混合する第1工程、
第1工程で得られる混合物を処理してゲル化物を調製す
る第2工程、第2工程で得られるゲル化物を冷却してゲ
ル化物中の溶媒を凍結する第3工程、第3工程で得られ
る凍結ゲル化物中の固体化した溶媒を減圧下で昇華して
除去する第4工程、の各工程を包含することを特徴とす
る生体触媒固定化多孔質ゲル化物の製造方法。 五 第4工程で得られる乾燥ゲル化物に、溶媒fj−西
1!+7(オ入笛5丁烏をも包含するものである特許請
求の範囲第2項記載の生体触媒固定化多孔質ゲル化物の
製造方法。 4、 該第4、工程で得られる乾燥ゲル化物を機械的に
圧密化する第5工程、第5工程で得られる圧密化した乾
燥ゲル化物に溶媒を添加して膨潤させる第6エ程の各工
程をも包含するものである特許請求の範囲第2項記載の
生体触媒固定化多孔質ゲル化物の製造方法。 & 該第2工程における処理が、粒子化処理を包含する
ものである特許請求の範囲第2項〜第4項のいずれかに
記載の生体触媒固定化多孔質ゲル化物の製造方法。 & 該第2工程における処理が、第1工程で得られる混
合物をゲル化してから粒子化するものである特許請求の
範囲第5項記載の生体触媒固定化多孔質ゲル化物の製造
方法。 l 該第2工程における処理が、第1工程で得られる混
合物を粒子化してから各粒子体ごとにゲル化するもので
ある特許請求の範囲第5項記載の生体触媒固定化多孔質
ゲル化物の製遣方法。 a 該第2工程における処理が、第1工程で得られる混
合物をゲル化してから線状化するものである特許請求の
範囲第2項〜第4項のいずれかに記載の生体触媒固定化
多孔質ゲル化物の製造方法。 9 該第2工程における処理が、第1工程で得られる混
合物を線状化してから各線状体ごとにゲル化するもので
ある特許請求の範囲第2項〜第4項のいずれかに記載の
生体触媒固定化多孔質ゲル化物の製造方法。 10、該第4工程で得られる乾燥ゲル線状体を、織るか
、又は集積して圧密化する第5工程をも包含するもので
ある特許請求の範囲第8項又は第9項記載の生体触媒固
定化多孔質ゲル化物の製造方法。 11、該第2工程における処理が、第1工程で得られる
混合物をゲル化してから膜状化するものである特許請求
の範囲第2項〜第4項のいずれかに記載の生体触媒固定
化多孔質ゲル化物の製造方法。 12、該第2工程における処理が、第1工程で得られる
混合物を膜状化してから各膜状体ごとにゲル化するもの
である特許請求の範囲第2項〜第4項のいずれかに記載
の生体触媒固定化多孔質ゲル化物の製造方法。 1五 ゲル基材液に生体触媒と繊維状物質を添加混合す
る第1工程、第1工程で得られる混合物を処理してゲル
化物を調製する第2工程、第2工程で得られるゲル化物
を繊維状物のみを分解する酵素と接触嘔せ、該ゲル化物
中の繊維状物を分解して除去する第3工程、の各工程を
包含することを特徴とする生体触媒固定化多孔質ゲル化
物の製造方法。 14、該第2工程における処理が、粒子化処理を包含す
るものである特許請求の範囲第13項記載の生体触媒固
定化多孔質ゲル化物の製造方法。 15、該第2工程における処理が、第1工程で得られる
混合物をゲル化してから粒子化するものである特許請求
の範囲第14項記載の生体触媒固定化多孔質ゲル化物の
製造方法。 16、該第2工程における処理が、第1工程で得られる
混合物を粒子化してから各粒子体ごとにゲル化するもの
である特許請求の範囲第14項記載の生体触媒固定化多
孔質ゲル化物の製造方法。
[Claims] 1. A biocatalyst-immobilized porous gelled material, characterized in that the biocatalyst-immobilized gelled material contains minute continuous cells in the gelled material. λ The first step of adding and mixing the biocatalyst to the gel base solution,
A second step in which the mixture obtained in the first step is processed to prepare a gelled product, a third step in which the gelled product obtained in the second step is cooled and the solvent in the gelled product is frozen, and a gelled product obtained in the third step is A method for producing a biocatalyst-immobilized porous gelled material, comprising the following steps: a fourth step of sublimating and removing the solidified solvent in the frozen gelled material under reduced pressure. 5 Add the solvent fj-Nishi 1! to the dried gelled product obtained in the fourth step. +7 (The method for producing a biocatalyst-immobilized porous gelled material according to claim 2, which also includes the method of producing a porous gelled material with immobilized biocatalysts. 4. The dried gelled material obtained in the fourth step. Claim 2, which also includes the steps of a fifth step of mechanically compacting and a sixth step of adding a solvent to the compacted dry gel obtained in the fifth step to swell it. The method for producing a biocatalyst-immobilized porous gelled material according to claim 1. & The method according to any one of claims 2 to 4, wherein the treatment in the second step includes a granulation treatment. A method for producing a biocatalyst-immobilized porous gelled product. & The biocatalyst according to claim 5, wherein the treatment in the second step is to gel the mixture obtained in the first step and then to form particles. A method for producing an immobilized porous gelled material.l The treatment in the second step is to granulate the mixture obtained in the first step and then gel each particle separately. A method for producing a biocatalyst-immobilized porous gelled material.a The treatment in the second step comprises gelling the mixture obtained in the first step and then linearizing it. The method for producing a biocatalyst-immobilized porous gelled material according to any one of Item 4. 9. The treatment in the second step includes linearizing the mixture obtained in the first step and then gelling each linear body. A method for producing a biocatalyst-immobilized porous gelled material according to any one of claims 2 to 4. 10. Weaving the dried gel linear body obtained in the fourth step. 11. The method for producing a biocatalyst-immobilized porous gelled material according to claim 8 or 9, which also includes a fifth step of accumulating and compacting. 11. The second step. The production of a biocatalyst-immobilized porous gelled product according to any one of claims 2 to 4, wherein the treatment in step 1 gels the mixture obtained in the first step and then forms a membrane. Method. 12. Any one of claims 2 to 4, wherein the treatment in the second step is to form the mixture obtained in the first step into a film and then gel each film. The method for producing a biocatalyst-immobilized porous gelled product as described in 1.5. The first step of adding and mixing a biocatalyst and a fibrous material to a gel base liquid, and processing the mixture obtained in the first step to produce a gelled product. a second step of preparing a gel, and a third step of contacting the gelled product obtained in the second step with an enzyme that decomposes only the fibrous material to decompose and remove the fibrous material in the gelled material. 1. A method for producing a biocatalyst-immobilized porous gel, comprising: 14. The method for producing a biocatalyst-immobilized porous gelled material according to claim 13, wherein the treatment in the second step includes a granulation treatment. 15. The method for producing a biocatalyst-immobilized porous gelled material according to claim 14, wherein the second step comprises gelling the mixture obtained in the first step and then forming particles. 16. The biocatalyst-immobilized porous gelled material according to claim 14, wherein the treatment in the second step is to granulate the mixture obtained in the first step and then gel each particle. manufacturing method.
JP21418683A 1983-11-16 1983-11-16 Porous gel containing immobilized biocatalyst and its production Granted JPS60110291A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP21418683A JPS60110291A (en) 1983-11-16 1983-11-16 Porous gel containing immobilized biocatalyst and its production
JP7329190A JPH02273183A (en) 1983-11-16 1990-03-26 Production of biocatalyst immobilized porous gelatinized substance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21418683A JPS60110291A (en) 1983-11-16 1983-11-16 Porous gel containing immobilized biocatalyst and its production

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP7329190A Division JPH02273183A (en) 1983-11-16 1990-03-26 Production of biocatalyst immobilized porous gelatinized substance

Publications (2)

Publication Number Publication Date
JPS60110291A true JPS60110291A (en) 1985-06-15
JPH0327196B2 JPH0327196B2 (en) 1991-04-15

Family

ID=16651658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21418683A Granted JPS60110291A (en) 1983-11-16 1983-11-16 Porous gel containing immobilized biocatalyst and its production

Country Status (1)

Country Link
JP (1) JPS60110291A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61173779A (en) * 1985-01-28 1986-08-05 Agency Of Ind Science & Technol Immobilized enzyme and production thereof
JPS62224289A (en) * 1986-03-25 1987-10-02 Agency Of Ind Science & Technol Immobilized enzyme and production thereof
US6420040B1 (en) 1999-04-30 2002-07-16 The Valspar Corporation Coating composition for metal substrates
US6461688B1 (en) 1999-04-29 2002-10-08 The Valspar Corporation Coating composition for metal substrates
JP2005224160A (en) * 2004-02-12 2005-08-25 Yakult Honsha Co Ltd Method for producing immobilized microorganism carrier or immobilized enzyme carrier

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4891270A (en) * 1972-03-09 1973-11-28

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4891270A (en) * 1972-03-09 1973-11-28

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61173779A (en) * 1985-01-28 1986-08-05 Agency Of Ind Science & Technol Immobilized enzyme and production thereof
JPH0154038B2 (en) * 1985-01-28 1989-11-16 Kogyo Gijutsuin
JPS62224289A (en) * 1986-03-25 1987-10-02 Agency Of Ind Science & Technol Immobilized enzyme and production thereof
JPH0249710B2 (en) * 1986-03-25 1990-10-31 Kogyo Gijutsuin
US6461688B1 (en) 1999-04-29 2002-10-08 The Valspar Corporation Coating composition for metal substrates
US6420040B1 (en) 1999-04-30 2002-07-16 The Valspar Corporation Coating composition for metal substrates
JP2005224160A (en) * 2004-02-12 2005-08-25 Yakult Honsha Co Ltd Method for producing immobilized microorganism carrier or immobilized enzyme carrier

Also Published As

Publication number Publication date
JPH0327196B2 (en) 1991-04-15

Similar Documents

Publication Publication Date Title
FI85283B (en) FOER FARING FRAMSTAELLNING AV IMMOBILISERADE ENZYMER.
DE2633259C3 (en) Method for immobilizing enzymes or enzyme-containing cells
Jo et al. Development of cellulose hydrogel microspheres for lipase immobilization
CN102630240A (en) Three dimensional porous structures
JPS59500350A (en) Encapsulation method of biological substances using bead polymers
KR920009499B1 (en) Process for preparation of porous matters containing an enzyme immobilized by means of pva-gel
Alloue et al. Comparison of Yarrowia lipolytica lipase immobilization yield of entrapment, adsorption, and covalent bond techniques
EP1131383B1 (en) Composite material and its use
JPS60110291A (en) Porous gel containing immobilized biocatalyst and its production
WO1987002704A1 (en) Process for cell immobilisation
US5916789A (en) Immobilized enzyme
DE2345185A1 (en) NEW ENZYME PREPARATION AND THE PROCESS FOR THEIR MANUFACTURING AND USE
Iyengar et al. Urease bound to chitin with glutaraldehyde
Kumakura et al. Immobilization of Streptomyces phaeochromogenes cells at a high concentration by radiation-induced polymerization of glass-forming monomers
JPH02273183A (en) Production of biocatalyst immobilized porous gelatinized substance
CA1229808A (en) Preparation of hydrophobic cotton cloth
JPS5946594B2 (en) Immobilized biologically active substance and its production method
Svec et al. Engineering aspects of carriers for immobilized biocatalysts
Mulko et al. Smart Hydrogels: Application in bioethanol production
Rahayu et al. Encapsulation of Lipase Enzyme in Silica Gel Matrix from Rice Husk Ash and Transesterification Reaction Activity Test on Palm Oil
EP0533763A1 (en) Fractionated agaroid compositions, their preparation, and use
DD294729A5 (en) PROCESS FOR THE PRODUCTION OF IMMOBILISATES WITH BIOLOGICALLY ACTIVE, MACROMOLECULAR COMPOUNDS
Kaur et al. Effective immobilization of lipase onto a porous gelatin‐co‐Poly (vinyl alcohol) copolymer and evaluation of its hydrolytic properties
US4184919A (en) Method of gelling microbial mycelia
Koch-Schmidt Gel-entrapment of Enzymes