JPH0154038B2 - - Google Patents

Info

Publication number
JPH0154038B2
JPH0154038B2 JP60014114A JP1411485A JPH0154038B2 JP H0154038 B2 JPH0154038 B2 JP H0154038B2 JP 60014114 A JP60014114 A JP 60014114A JP 1411485 A JP1411485 A JP 1411485A JP H0154038 B2 JPH0154038 B2 JP H0154038B2
Authority
JP
Japan
Prior art keywords
enzyme
gel
enzymes
droplets
activity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP60014114A
Other languages
Japanese (ja)
Other versions
JPS61173779A (en
Inventor
Shigeru Kajiwara
Hideo Suzuki
Hidekatsu Maeda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP1411485A priority Critical patent/JPS61173779A/en
Publication of JPS61173779A publication Critical patent/JPS61173779A/en
Publication of JPH0154038B2 publication Critical patent/JPH0154038B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、固定化酵素及びその製造方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an immobilized enzyme and a method for producing the same.

従来より、酵素反応を利用して、有用物質の生
産を行つてきたが、触媒である酵素は水溶性であ
るため、一回の使用だけで廃棄していた。しかし
ながら、酵素は高価であるため、酵素を固定化
し、再利用を図るとともに工程の連続化を行い、
製造コストを大巾に低減させてきた。近年、アミ
ラーゼ、プロテアーゼ等の加水分解酵素以外に、
ATPやNAD(P)といつた補酵素を必要とする
ような合成酵素、酸化還元酵素も医療分析の分野
に応用され始め、医薬品、工業原料等の製造に順
次用いられようとしている。しかし、補酵素を必
要とする酵素は、従来の加水分解酵素あるいは異
性化酵素より更に高価でしかも安定性に劣るた
め、従来の固定化法よりも数等優れた固定化法の
出現が期待されている。
Traditionally, enzyme reactions have been used to produce useful substances, but because the enzymes that act as catalysts are water-soluble, they are discarded after one use. However, enzymes are expensive, so we try to immobilize them, reuse them, and make the process continuous.
Manufacturing costs have been significantly reduced. In recent years, in addition to hydrolytic enzymes such as amylase and protease,
Synthetic enzymes and oxidoreductases that require coenzymes such as ATP and NAD (P) are also beginning to be applied in the field of medical analysis, and are gradually being used in the production of pharmaceuticals, industrial raw materials, etc. However, enzymes that require coenzymes are more expensive and less stable than conventional hydrolases or isomerases, so it is hoped that an immobilization method that is superior to conventional immobilization methods will emerge. ing.

酵素の固定化法は大きく3つの方法に大別され
る。第1の方法は、イオン交換樹脂や活性炭など
に酵素を物理的に吸着させる方法である。この方
法では、操作が簡便であるものの、比較的弱い結
合で担体と相互作用している為に、連続反応時に
酵素の脱離が起り、利用できる条件が限られる。
Enzyme immobilization methods can be broadly classified into three methods. The first method is to physically adsorb the enzyme onto an ion exchange resin, activated carbon, or the like. Although this method is easy to operate, since the enzyme interacts with the carrier through relatively weak bonds, desorption of the enzyme occurs during continuous reactions, which limits the conditions that can be used.

第2の方法は、共有結合法で、担体と酵素を化
学的に共有結合させるものであり、担体と酵素が
強い結合で結ばれる為に、酵素の脱離は極めて少
ないが、酵素分子を化学修飾する為失活などが起
りやすい。特に脱水素酵素及びモノオキシゲナー
ゼなどは不安定な場合が多く、その反応の影響を
大きく受ける。
The second method is a covalent bonding method, in which the carrier and the enzyme are chemically covalently bonded.Since the carrier and the enzyme are bonded together with a strong bond, the detachment of the enzyme is extremely rare. Due to modification, deactivation is likely to occur. In particular, dehydrogenases and monooxygenases are often unstable and are greatly affected by their reactions.

第3の方法は、包括法であり、酵素をアクリル
アミドやK−カラギーナンなどのゲルマトリツク
スやマイクロカプセルで包括する方法である。こ
の包括法は、共有結合法と異なり、酵素分子を直
接化学修飾しないので、失活などが起らない。ま
た、ゲルの網目やマイクロカプセル膜の孔径を適
当に調整することにより、酵素分子をゲル及びマ
イクロカプセル内に捕捉、固定しながら小さな基
質分子のみを通すようにすることが可能であり、
酵素分子の脱離を防止することができる。
The third method is an entrapment method, in which the enzyme is encapsulated in a gel matrix or microcapsules such as acrylamide or K-carrageenan. Unlike the covalent bond method, this comprehensive method does not directly chemically modify the enzyme molecule, so deactivation does not occur. In addition, by appropriately adjusting the gel mesh and the pore size of the microcapsule membrane, it is possible to capture and fix enzyme molecules within the gel and microcapsules while allowing only small substrate molecules to pass through.
Desorption of enzyme molecules can be prevented.

一方、前述の補酵素を必要とする酵素は2量体
あるいは4量体を形成している場合が多い。そし
て、各単量体同士の結合力は非常に弱く、4量体
のどこか一個所を担体に共有結合させた場合、4
量体のままで長時間維持させるのはきわめて困難
である。このような場合ではゲル包括法による固
定化が望ましい。また、NAD(P)Hの再生反応
を組合せるために2種類の酵素(リンゴ酸脱水素
酵素及びギ酸脱水素酵素)を同時に固定する場合
は、今までの固定化法で対応できるのはマイクロ
カプセル内に酵素群を包括固定化する方法のみで
ある。ゲル包括法といえどもゲルの1区画に2種
類の酵素をはめ込むのはきわめて困難である。ま
た、酵素の安定条件とゲル化の最適条件がかなら
ずしも一致するとは限らない。しかしながら、既
存のマイクロカプセルでは、カラムに充填して連
続的な生産を行う場合、マイクロカプセルが変形
し、目詰りが起り、圧損失が高くなるという実用
上根本的な欠陥を有している。
On the other hand, the enzymes that require the aforementioned coenzymes often form dimers or tetramers. The bonding force between each monomer is very weak, and if one part of the tetramer is covalently bonded to the carrier, 4
It is extremely difficult to maintain the same amount for a long time. In such cases, immobilization by gel entrapment is preferable. Furthermore, when simultaneously immobilizing two types of enzymes (malate dehydrogenase and formate dehydrogenase) in order to combine the regeneration reactions of NAD(P)H, conventional immobilization methods can only support microorganisms. The only method is to comprehensively immobilize the enzyme group within the capsule. Even with the gel entrapment method, it is extremely difficult to fit two types of enzymes into one compartment of the gel. Furthermore, the stability conditions for the enzyme and the optimal conditions for gelation do not necessarily match. However, existing microcapsules have fundamental deficiencies in practical use, such as deformation of the microcapsules, clogging, and high pressure loss when they are packed into columns for continuous production.

本発明は、かかる従来技術の問題を解決するた
になされたもので、酵素を水とほとんど混和しな
い有機溶媒に包まれた液滴中に包含し、その液滴
をゲル素材を含む溶液に分散した後に、ゲル化反
応を起し、ゲルが生成した後に有機溶媒を除いて
非カプセル化状態で多数の独立した酵素を含有す
る液滴を分散保持する液滴固定化酵素ゲルを調製
することを特徴とする。
The present invention was made to solve the problems of the prior art, and includes enzymes contained in droplets surrounded by an organic solvent that is almost immiscible with water, and the droplets are dispersed in a solution containing a gel material. After that, a gelation reaction occurs, and after the gel is formed, the organic solvent is removed to prepare a droplet-immobilized enzyme gel that disperses and holds a large number of independent enzyme-containing droplets in a non-encapsulated state. Features.

この方法では、ゲル化反応の起る場と、酵素が
存在する場とが有機溶媒層により遮断される為
に、異つた条件にすることが出来るので、酵素が
安定な条件とゲル化の最適条件とがかなり異つて
いても安定に固定化することが出来る。また、通
常のゲル包括法の場合、酵素の含有量を増すと、
酵素分子がゲルマトリツクスの生成そのものを妨
害し、酵素の漏出が著しく増す場合があるが、こ
の方法では、そういつたこともない。また、特に
共役反応系を固定した場合、ゲル包括体中の無数
の独立した液滴中に全て濃縮して配置される為、
共役反応が効率よく行われる。また従来あまり行
われていない、細胞破砕物と酵素の共役反応の固
定などを容易に行うことができる。温度条件を除
いて、酵素、菌体、菌体破砕物、動植物細胞等の
安定化のために必要とする制限条件にかかわら
ず、ゲル化の最適条件を選ぶことが出来るため、
固く且つ弾性のあるゲルを作ることが出来る。さ
らにカラム中での連続使用に適した液滴包括固定
化酵素ゲルを得ることも可能である。
In this method, the field where the gelation reaction occurs and the field where the enzyme exists are blocked by the organic solvent layer, so different conditions can be set, so the conditions are suitable for the enzyme to be stable and for gelation to be optimal. Stable immobilization can be achieved even under considerably different conditions. In addition, in the case of the usual gel entrapment method, when the enzyme content is increased,
Enzyme molecules may interfere with the formation of the gel matrix itself, resulting in a significant increase in enzyme leakage, but this has never happened with this method. In addition, especially when the conjugate reaction system is immobilized, it is all concentrated and arranged in countless independent droplets in the gel enclosing body.
The conjugation reaction is carried out efficiently. Furthermore, it is possible to easily perform the fixation of a coupling reaction between a cell fragment and an enzyme, which has not been carried out very often in the past. With the exception of temperature conditions, it is possible to select the optimal conditions for gelation, regardless of the limiting conditions necessary for stabilizing enzymes, bacterial cells, crushed bacterial cells, animal and plant cells, etc.
A hard and elastic gel can be made. Furthermore, it is also possible to obtain a droplet-entrained immobilized enzyme gel suitable for continuous use in a column.

本発明により得られる固定化酵素は、高分子ゲ
ルマトリツクス中に、酵素を含有する液滴を非マ
イクロカプセル化状態で分散保持させた構造を有
している点で新規である。
The immobilized enzyme obtained by the present invention is novel in that it has a structure in which droplets containing the enzyme are dispersed and held in a non-microencapsulated state in a polymer gel matrix.

基本的には、この固定化酵素の調製法は以下の
とうりである。
Basically, the method for preparing this immobilized enzyme is as follows.

酵素及び必要ならば安定剤を含む緩衝液もしく
は水溶液(W1層)を界面活性剤を含有し、水と
混和しない有機溶媒(O層)に撹拌分散し、油中
水の液滴を作り、1次乳化液とする。この1次乳
化液を更にゲル素材を含む緩衝液もしくは水溶液
(W2層)中に撹拌分散して、(W1/O)/W2
の複合乳化液(2次乳化液)とする。この2次乳
化液を例えば重合開始剤などを加えることによ
り、直ちにゲル化を行なわせ、液滴を無数に包含
したゲル包括体を得る。このゲルを適当な大きさ
に、粉砕、切断等により加工し、緩衝液での洗滌
を行うことによつて、O層の有機溶媒を徐々に水
中に溶け込ませ、更に洗滌液面から、この有機溶
媒を蒸発させて、O層を除くことによつて、酵素
を含有した液滴を包括した固定化酵素を調製す
る。このようにして酵素の洩出を認めず、しかも
充填カラム反応器に適した液滴包括固定化酵素ゲ
ルを得る。この固定化法を用いることによつて、
複数の共役反応系を固定化することが出来、しか
も、オルガネラ、菌体破砕物、乾燥菌体、生菌
体、動植物細胞等をそのまま液滴中に包括、固定
化することができる。このような新しい固定化法
は現在まで報告されておらず、酵素利用技術の発
展に寄与する効果はきわめて大きい。
A buffer or aqueous solution containing an enzyme and, if necessary, a stabilizer ( W layer) is stirred and dispersed in an organic solvent that contains a surfactant and is immiscible with water (O layer) to form water-in-oil droplets. Make a primary emulsion. This primary emulsion is further stirred and dispersed in a buffer or aqueous solution (W 2 layer) containing a gel material to obtain a (W 1 /O)/W 2 type composite emulsion (secondary emulsion). By adding, for example, a polymerization initiator to this secondary emulsion, it is immediately gelled to obtain a gel-enclosed body containing countless droplets. By processing this gel into an appropriate size by crushing, cutting, etc., and washing it with a buffer solution, the organic solvent in the O layer is gradually dissolved in water, and the organic solvent is removed from the washing solution surface. The immobilized enzyme containing enzyme-containing droplets is prepared by evaporating the solvent and removing the O layer. In this way, a droplet-enclosed immobilized enzyme gel is obtained which does not allow enzyme leakage and is suitable for a packed column reactor. By using this immobilization method,
A plurality of coupled reaction systems can be immobilized, and organelles, crushed bacterial cells, dried bacterial cells, live bacterial cells, animal and plant cells, etc. can be encapsulated and immobilized in droplets as they are. Such a new immobilization method has not been reported to date, and the effect of contributing to the development of enzyme utilization technology is extremely large.

本発明を以下具体的に詳述する。 The present invention will be specifically explained in detail below.

本発明に用いられる酵素は、反応条件が厳しく
ないため、特に不安定な酵素でない限り使用可能
である。具体的酵素名としては、アルコール脱水
素酵素、アルデヒド脱水素酵素、グルタミン酸脱
水素酵素、イソロイシン脱水素酵素、ギ酸脱水素
酵素、乳酸脱水素酵素、リンゴ酸脱水素酵素、グ
ルコース−6−リン酸脱水素酵素、グリセルアル
デヒド−3−リン酸脱水素酵素などの脱水素酵
素、オルシノール−2−モノオキシゲナーゼ、フ
エノール−2−モノオキシゲナーゼなどのモノオ
キシゲナーゼ、酢酸キナーゼ、ヘキソキナーゼ、
グリセロールキナーゼなどのキナーゼなどの補酵
素を必要とする酵素群の他、β−アミラーゼ、グ
ルコアミラーゼ、β−グルコシダーゼ、リパー
ゼ、ホスフアターゼ、プロテアーゼ、エステラー
ゼなどの加水分解酵素、グルコースオキシダー
ゼ、パーオキシダーゼのようなオキシゲナーゼな
どがあげられる。また、酵素は、精製されたもの
でなくて良い。したがつて、必要酵素活性を持つ
培養液、培養濾液、生菌体、乾燥菌体、菌体破砕
物、オルガネラ、プロトプラスト、動・植物細
胞、細胞破砕物でも良い。但し、それらのものが
固体である場合、液滴内に入り得るような微細な
ものにする必要がある。更にこれらの酵素を混合
物として使用してもよい。補酵素を仲介とするよ
うな共役反応を行う酵素系の場合は、より好都合
である。なぜならば、酵素は液滴中に閉じ込めら
れているにもかかわらず、遊離で存在するため、
共有結合法に見られるように物理的あるいは立体
的な障害による反応阻害が存在せず、また、ゲル
中では液滴という限られた空間に酵素が濃縮され
て存在するために、反応が速く行なわれるためで
ある。
Since the enzyme used in the present invention does not require severe reaction conditions, it can be used unless the enzyme is particularly unstable. Specific enzyme names include alcohol dehydrogenase, aldehyde dehydrogenase, glutamate dehydrogenase, isoleucine dehydrogenase, formate dehydrogenase, lactate dehydrogenase, malate dehydrogenase, and glucose-6-phosphate dehydrogenase. dehydrogenases such as glyceraldehyde-3-phosphate dehydrogenase, monooxygenases such as orcinol-2-monooxygenase and phenol-2-monooxygenase, acetate kinase, hexokinase,
In addition to enzymes that require coenzymes such as kinases such as glycerol kinase, hydrolytic enzymes such as β-amylase, glucoamylase, β-glucosidase, lipase, phosphatase, protease, and esterase, glucose oxidase, and peroxidase Examples include oxygenase. Furthermore, the enzyme does not need to be purified. Therefore, it may be a culture solution, culture filtrate, live bacterial cells, dried bacterial cells, crushed bacterial cells, organelles, protoplasts, animal/plant cells, or crushed cells that have the necessary enzyme activity. However, if they are solid, they need to be so fine that they can fit into the droplets. Furthermore, these enzymes may be used as a mixture. An enzyme system that performs a coupling reaction mediated by a coenzyme is more convenient. This is because enzymes exist free even though they are confined in droplets.
Unlike the covalent bonding method, there is no reaction inhibition due to physical or steric hindrance, and because the enzyme is concentrated in the limited space of droplets in the gel, the reaction occurs quickly. This is for the purpose of

しかしながら、酵素が高分子のゲル中に含まれ
るため、高分子を基質とするような酵素、α−ア
ミラーゼ、キチナーゼ、セルラーゼなどの加水分
解酵素の場合には、この固定化法は有効ではな
い。しかし、これらの酵素を用いて、低分子基質
を分解する場合には、有効である。
However, since the enzyme is contained in a polymer gel, this immobilization method is not effective for enzymes that use polymers as substrates, hydrolytic enzymes such as α-amylase, chitinase, and cellulase. However, these enzymes are effective when decomposing low molecular weight substrates.

本発明でいう安定剤とは、酵素を安定化する薬
剤のことであり、ヘモグロビン、ゼラチン、血清
アルブミンのような蛋白質、アラビアゴム、澱粉
のような多糖類、ポリエチレングリコール、ポリ
ビニルアルコールのような水溶性合成高分子、
NAD(P),ATPのような補酵素、EDTAのよう
なキレート剤、特別の場合では、金属塩、グルタ
チオンなどの抗酸化剤などであり、どのような物
を組合わせるかは使用される酵素により異る。こ
れらのものは、市販の酵素標品に含まれるもの
で、長期間の酵素活性の維持に役立つものであ
り、本来安定性の高い酵素の場合には、必要では
なく、本固定化酵素調製の際にも添加する必要は
ない。
The stabilizer in the present invention refers to a drug that stabilizes enzymes, including proteins such as hemoglobin, gelatin, and serum albumin, polysaccharides such as gum arabic and starch, and water-soluble substances such as polyethylene glycol and polyvinyl alcohol. synthetic polymer,
Coenzymes such as NAD(P) and ATP, chelating agents such as EDTA, and in special cases, metal salts, antioxidants such as glutathione, etc. The combination of these substances depends on the enzyme used. It depends. These substances are included in commercially available enzyme preparations and are useful for maintaining long-term enzyme activity. They are not necessary for enzymes that are naturally highly stable, and are used in this immobilized enzyme preparation. There is no need to add it at any time.

また、ゲル化に際しW1層とW2層はO層により
へだてられている為、本来的にゲル架橋反応を阻
害するようなものでも安定剤として使用すること
が出来る。
Furthermore, since the W 1 layer and W 2 layer are separated by the O layer during gelation, even substances that inherently inhibit the gel crosslinking reaction can be used as a stabilizer.

本発明でいう緩衝液は、架橋反応や酵素活性の
安定に適したものならばいずれのものでも良く、
W1層とW2層はゲル化時にO層によりへだてられ
ている為、全く異つたものでも良いので、架橋反
応や酵素活性の安定に最適のものを選択すること
が出来る。
The buffer as used in the present invention may be any buffer as long as it is suitable for cross-linking reactions and stabilizing enzyme activity.
Since the W 1 layer and the W 2 layer are separated by the O layer during gelation, they may be completely different, so it is possible to select the one that is most suitable for stabilizing the crosslinking reaction and enzyme activity.

本発明で用いる有機溶媒は、沸点が100℃以下
で且つ水とほとんど混和しない性質のものであれ
ば良く、例えば、ベンゼン、シクロヘキサン、エ
チルエーテル、酢酸エチル、四塩化炭素、クロロ
ホルム、ハロゲン化エチレンなどが挙げられる。
The organic solvent used in the present invention may be one having a boiling point of 100°C or less and being almost immiscible with water, such as benzene, cyclohexane, ethyl ether, ethyl acetate, carbon tetrachloride, chloroform, halogenated ethylene, etc. can be mentioned.

本発明で用いるゲル素材は、W2層に含有され、
固定化酵素のゲルマトリツクスを供給するような
ものならばいずれのものでも良く、生成する液滴
が数μm〜数百μmの大きさを有するので、大抵
のゲルから脱落することはない。例えば、普通よ
く用いられるアクリルアミドによる重合法やメタ
クリルアミド、アクリル酸、ヒドロキシエチルメ
タクリレートなどのコポリマーとの共重合法、光
架橋性モノマーや光架橋性プレポリマーやウレタ
ンプレポリマーなどによる方法がある。また、以
下に示した架橋と組合せた親水性高分子によるゲ
ル化法がある。
The gel material used in the present invention is contained in the W 2 layer,
Any material that can supply a gel matrix of immobilized enzymes may be used, and since the droplets produced have a size of several μm to several hundred μm, they will not fall off from most gels. For example, there are polymerization methods using commonly used acrylamide, copolymerization methods with copolymers such as methacrylamide, acrylic acid, and hydroxyethyl methacrylate, and methods using photocrosslinkable monomers, photocrosslinkable prepolymers, urethane prepolymers, and the like. There is also a gelation method using a hydrophilic polymer combined with crosslinking as shown below.

アルギン酸(多価陽イオンによる架橋);寒天、
カラギーナン(冷却によるゲル化)などの多糖
類;ゼラチン、コラーゲン、アルブミン、カゼイ
ン(グルタルアルデヒドなどとのシツフ塩基によ
る架橋)などの蛋白質;ポリエチレングリコール
ジアクリレート(二重結合のラジカル架橋重合)
ようなビニル基をもつ合成高分子;ポリビニルア
ルコール(PVA)(グルタルアルデハイドなどに
よる架橋);PVA、ポリエチレンイミン(エピク
ロルヒドリンによる架橋);PVA、ポリアクリル
アミド、ポリビニルピロリドン(放射線架橋);
PVA(安息香酸ナトリウムとともにUV照射する
事による光架橋)など。
Alginic acid (crosslinked with polyvalent cations); agar,
Polysaccharides such as carrageenan (gelling upon cooling); proteins such as gelatin, collagen, albumin, casein (crosslinking with glutaraldehyde etc. via Schiff base); polyethylene glycol diacrylate (radical crosslinking polymerization of double bonds)
Synthetic polymers with vinyl groups such as; polyvinyl alcohol (PVA) (crosslinked with glutaraldehyde, etc.); PVA, polyethyleneimine (crosslinked with epichlorohydrin); PVA, polyacrylamide, polyvinylpyrrolidone (crosslinked with radiation);
PVA (photocrosslinking by UV irradiation with sodium benzoate), etc.

以下、本発明を実施例を用いて説明する。本発
明はこれらの実施例により限定されるものではな
い。
The present invention will be explained below using examples. The present invention is not limited to these examples.

実施例 1 耐熱性リンゴ酸脱水素酵素(以下MDHと略
記、Thermus thermophilus(サーマスサーモフ
イルス)由来、生化学工業製)150U(国際標準単
位)、ギ酸脱水素酵素(以下FDHと略記、
Candida boidinii(キヤンデイダボイデイニ)由
来、ベーリンガー社製)45Uを含む0.01Mピロリ
ン酸緩衝液(PH8.5)1mlを、界面活性剤
(Span85)4滴を加えたベンゼン1mlに激しく撹
拌しながら滴下した。生成した1次乳化液をポリ
エチレングリコールジアクリレート(分子量約
4000)2g、メチレンビスアクリルアミド100mg
を含む0.01Mピロリン酸緩衝液(PH8.5)10mlに
激しく撹拌しながら滴下した。生成した2次乳化
液に直ちに6%過硫酸カリウム水溶液500μと
ジメチルアミノプロピオニトリル100μを加え、
よく撹拌した後に、窒素ガスを吹きつけながら、
30℃で静置した。約5分でゲル化が起り、その後
2時間、30℃に保つた。生成したゲルをワーリン
グブレンダーで粉砕し、100mlの0.1Mトリス塩酸
緩衝液とともにビーカー中で30℃に保ち、振とう
しながら、ベンゼンを除いた。2時間の振とうの
後吸引濾過し、固定化酵素標品(14.5g)を得
た。
Example 1 Thermostable malate dehydrogenase (hereinafter abbreviated as MDH, derived from Thermus thermophilus, manufactured by Seikagaku Corporation) 150U (international standard unit), formate dehydrogenase (hereinafter abbreviated as FDH,
Add 1 ml of 0.01 M pyrophosphate buffer (PH8.5) containing 45 U (derived from Candida boidinii, manufactured by Boehringer) to 1 ml of benzene containing 4 drops of surfactant (Span 85) while stirring vigorously. dripped. The resulting primary emulsion was mixed with polyethylene glycol diacrylate (molecular weight approx.
4000) 2g, methylenebisacrylamide 100mg
The mixture was added dropwise to 10 ml of 0.01M pyrophosphate buffer (PH8.5) with vigorous stirring. Immediately add 500μ of 6% potassium persulfate aqueous solution and 100μ of dimethylaminopropionitrile to the generated secondary emulsion,
After stirring well, while blowing nitrogen gas,
It was left standing at 30°C. Gelation occurred in about 5 minutes, and then kept at 30°C for 2 hours. The resulting gel was ground with a Waring blender, kept in a beaker at 30°C with 100ml of 0.1M Tris-HCl buffer, and benzene was removed while shaking. After shaking for 2 hours, the mixture was filtered with suction to obtain an immobilized enzyme preparation (14.5 g).

この固定化酵素標品及び洗浄液の活性を測定し
た所、洗浄液中には投入MDH活性の19%、投入
FDH活性の0.5%が測定され、また固定化酵素標
品には、投入MDH活性の19%、投入FDH活性の
10%が測定された。なお、MDHの活性測定はオ
キザロ酢酸0.52mM及びNADH0.2mMの濃度条
件の0.1Mリン酸緩衝液(PH7.5)を用い、30℃で
340nmの吸光度の減少の初速度から求めた(1ユ
ニツトは、PH7.5、30℃の時に1分間に1μmoleの
オキザロ酢酸を還元するのに必要な酸素活性)。
また、FDHの活性測定は、ギ酸33mM及び
NAD1mMの濃度条件の0.1Mリン酸緩衝液(PH
7.5)を用い、30℃で340nmの吸光度の増加の初
速度からFDH活性を求めた(1ユニツトはPH
7.5、30℃の時に1分間に1μmoleのギ酸を酸化す
るのに必要な酵素活性)。
When we measured the activity of this immobilized enzyme preparation and the washing solution, we found that the washing solution contained 19% of the input MDH activity.
0.5% of the FDH activity was measured, and the immobilized enzyme preparation contained 19% of the input MDH activity and 19% of the input FDH activity.
10% was measured. The activity of MDH was measured using a 0.1M phosphate buffer (PH7.5) containing 0.52mM oxaloacetate and 0.2mM NADH at 30°C.
It was determined from the initial rate of decrease in absorbance at 340 nm (1 unit is the oxygen activity required to reduce 1 μmole of oxaloacetic acid per minute at pH 7.5 and 30°C).
In addition, FDH activity measurement was performed using 33mM formic acid and
0.1M phosphate buffer (PH
7.5), FDH activity was determined from the initial rate of increase in absorbance at 340 nm at 30°C (1 unit is PH
7.5, the enzyme activity required to oxidize 1 μmole of formic acid per minute at 30°C).

実施例 2 実施例1で調製したゲル600mgを、キチンフレ
ーク300mg(湿重量)とともに、内径5mm×全長
100mmのカラムに充填し、更に両端をグラスウー
ルで密封した。ついで、このカラムを30℃の恒温
水槽に沈め、基質液を15ml/時間の流速で送液
し、共役反応を行なわせた。なお、基質液として
オキザロ酢酸15mM、ギ酸100mM、NAD0.3mM
を含み、更に安定剤として、システイン1mM、
EDTA0.1mM、防腐剤としてソルビン酸カリウ
ム0.01%を含む0.1Mトリス塩酸緩衝液(PH7.5)
を用いた。基質液は毎日取替え、2週間共役反応
を行わせた。溶出液は7.5mlづつフラクシヨンコ
レクターで分取し、生成リンゴ酸量を測定した。
Example 2 600 mg of the gel prepared in Example 1 was mixed with 300 mg of chitin flakes (wet weight) into a container with an inner diameter of 5 mm x total length.
It was packed into a 100 mm column, and both ends were further sealed with glass wool. Next, this column was submerged in a constant temperature water bath at 30° C., and the substrate solution was fed at a flow rate of 15 ml/hour to carry out a conjugation reaction. In addition, as a substrate solution, oxaloacetic acid 15mM, formic acid 100mM, NAD 0.3mM
Contains 1mM cysteine as a stabilizer,
0.1M Tris-HCl buffer (PH7.5) containing 0.1mM EDTA and 0.01% potassium sorbate as preservative
was used. The substrate solution was replaced every day, and the conjugation reaction was carried out for 2 weeks. The eluate was collected in 7.5 ml portions using a fraction collector, and the amount of malic acid produced was measured.

なお、リンゴ酸量の測定は、NAD2mM及びリ
ンゴ酸脱水素酵素(ブタ心臓由来、ベーリンガー
社製)10ユニツト/mlの濃度条件の0.2Mヒドラ
ジン塩酸緩衝液(PH9.3)を用い、30℃で反応を
行い、初発応時と反応終了時の340nmの吸光度差
から生成NADH量を求め、試料中のリンゴ酸量
を算出した。
The amount of malic acid was measured using 0.2M hydrazine hydrochloride buffer (PH9.3) with a concentration of 2mM NAD and 10 units/ml of malate dehydrogenase (derived from pig heart, manufactured by Boehringer) at 30℃. The reaction was carried out, and the amount of NADH produced was determined from the difference in absorbance at 340 nm between the initial reaction and the end of the reaction, and the amount of malic acid in the sample was calculated.

この結果、初期(2〜4日)において共役活性
の上昇が見られ、この活性は2週間にわたつて維
持され、安定したリンゴ酸の生産が見られた。こ
の場合、約12日目における基質変換率は約3.5%
であつた。
As a result, an increase in conjugated activity was observed in the early stage (days 2 to 4), and this activity was maintained over two weeks, indicating stable production of malic acid. In this case, the substrate conversion rate at about day 12 is about 3.5%
It was hot.

実施例 3 MDH160Uを含む0.1Mトリス塩酸緩衝液(PH
7.5)1mlをSpan85 4滴を加えたベンゼン1ml
に激しく撹拌しながら滴下した。生成した1次乳
化液をアクリルアミド1.9g、メチレンビスアク
リルアミド100mgを含む0.01Mピロリン酸緩衝液
(PH8.5)10mlに激しく撹拌しながら滴下した。生
成した2次乳化液に直ちに0.6%過硫酸カリウム
とジメチルアミノプロピオニトリル10μを加え
撹拌した後、窒素ガスを吹きつけながら30℃に静
置した。約3分でゲル化し、その後2時間30℃に
保つた。生成したゲルをワーリングブレンダーで
粉砕し、100mlのトリス塩酸緩衝液(PH7.5)とと
もに、ビーカー中で、30℃に保ち、振とうしなが
ら、ベンゼンを飛ばした。2時間の振とうの後、
吸引濾過して固定化酵素標品(14.6g)を得た。
Example 3 0.1M Tris-HCl buffer (PH
7.5) 1 ml of benzene with 4 drops of Span85 added to 1 ml
was added dropwise to the solution while stirring vigorously. The resulting primary emulsion was added dropwise to 10 ml of 0.01M pyrophosphate buffer (PH8.5) containing 1.9 g of acrylamide and 100 mg of methylenebisacrylamide with vigorous stirring. Immediately, 0.6% potassium persulfate and 10μ of dimethylaminopropionitrile were added to the resulting secondary emulsion, and the mixture was stirred and left at 30°C while blowing nitrogen gas. It gelated in about 3 minutes and was then kept at 30°C for 2 hours. The resulting gel was pulverized using a Waring blender and placed in a beaker with 100 ml of Tris-HCl buffer (PH7.5), kept at 30°C and shaken to remove benzene. After shaking for 2 hours,
The immobilized enzyme preparation (14.6 g) was obtained by suction filtration.

この結果、ゲルの洗浄液中には投入MDH活性
の14%が検出された。またゲルの総酵素活性は、
投入MDH活性の5%が測定され、アクリルアミ
ドがポリエチレングリコールジアクリレートと同
様に使用できることが分つた。
As a result, 14% of the input MDH activity was detected in the gel washing solution. In addition, the total enzyme activity of the gel is
5% of input MDH activity was measured and it was found that acrylamide could be used similarly to polyethylene glycol diacrylate.

実施例 4 キヤンデイダ・トロピカリス(Candida
tropicalis,IAM12202)をリン酸2水素カリウ
ム0.1%、硫酸マグネシウム7水塩0.05%、塩化
カルシウム2水塩0.01%、食塩0.02%、カザミノ
酸0.4%、イーストエキストラクト0.1%、D−キ
シロース8%を含むPH5.0の培養液に接種し、30
℃、48時間振とう培養した。菌体を遠心分離で回
収し、洗浄した後に凍結乾燥を行い、アルドース
レダクターゼ活性のある細胞破砕物を得た。
Example 4 Candida tropicalis
tropicalis, IAM12202), potassium dihydrogen phosphate 0.1%, magnesium sulfate heptahydrate 0.05%, calcium chloride dihydrate 0.01%, salt 0.02%, casamino acid 0.4%, yeast extract 0.1%, D-xylose 8%. Inoculate into a pH5.0 culture solution containing 30
The cells were cultured with shaking at ℃ for 48 hours. The bacterial cells were collected by centrifugation, washed, and then freeze-dried to obtain a cell lysate with aldose reductase activity.

凍結乾燥菌体110mgを0.4mlの0.1Mトリス塩酸
緩衝液(PH7.5)に懸濁し、Span85 2滴を含む
ベンゼン0.5mlに激しく撹拌しながら滴下し、乳
化を行つた。この1次乳化液をポリエチレングリ
コールジアクリレート(分子量約4000)1.2g及
びメチレンビスアクリルアミド50mgを含む0.01M
ピロリン酸緩衝液(PH8.5)5mlに激しく撹拌し
ながら滴下し、2次乳化液を得た。2次乳化液に
6%過硫酸カリウム250μとジメチルアミノプ
ロピオニトリル50μを加え、よく混和した後に
窒素ガスを吹きつけながら30℃で静置した。約5
分でゲル化が起り、その後3時間25℃に保つた。
生成したゲルをワーリングブレンダーで粉砕し、
50mlのトリス塩酸緩衝液(PH7.5)とともにビー
カー中で30℃に保ち、振とうしながらベンゼンを
除いた。1時間の振とうの後、吸引濾過し、7.7
gの固定化細胞破砕物を得た。
110 mg of freeze-dried bacterial cells were suspended in 0.4 ml of 0.1 M Tris-HCl buffer (PH7.5) and added dropwise to 0.5 ml of benzene containing 2 drops of Span 85 with vigorous stirring to effect emulsification. This primary emulsion was 0.01M containing 1.2g of polyethylene glycol diacrylate (molecular weight approximately 4000) and 50mg of methylene bisacrylamide.
The mixture was added dropwise to 5 ml of pyrophosphate buffer (PH8.5) with vigorous stirring to obtain a secondary emulsion. 250μ of 6% potassium persulfate and 50μ of dimethylaminopropionitrile were added to the secondary emulsion, mixed well, and then allowed to stand at 30°C while blowing nitrogen gas. Approximately 5
Gelation occurred within minutes and then kept at 25°C for 3 hours.
Grind the generated gel with a Waring blender,
The mixture was kept at 30°C in a beaker with 50 ml of Tris-HCl buffer (PH7.5), and benzene was removed while shaking. After shaking for 1 hour, filter with suction, 7.7
A fixed cell lysate of g was obtained.

この固定化細胞破砕物及び洗浄液を
NADP2mM、グルコース1M、グルコース−6
−リン酸0.3M、グルコース−6−リン酸脱水素
酵素(酵母由来、ベーリンガー社製)5unit/ml
を含む0.1Mトリス塩酸緩衝液(PH7.5)とともに
30℃で5時間反応を行い、反応液の一部を採り、
固型物を除いた後、イオン交換樹脂によるHPLC
により生成したソルビトール量を測定した。
This fixed cell lysate and washing solution are
NADP 2mM, glucose 1M, glucose-6
-Phosphoric acid 0.3M, glucose-6-phosphate dehydrogenase (yeast derived, manufactured by Boehringer) 5 units/ml
with 0.1M Tris-HCl buffer (PH7.5) containing
React at 30℃ for 5 hours, take a portion of the reaction solution,
After removing solids, HPLC using ion exchange resin
The amount of sorbitol produced was measured.

この結果、洗浄液中にはソルビトールの生成は
認められず、また固定化細胞破砕物ゲルには投入
アルドースレダクターゼ活性の35%が測定され
た。このような方法でも固定化アルドースレダク
ターゼを得ることができ、実用的な観点からもき
わめて有用と考えられる。
As a result, no production of sorbitol was observed in the washing solution, and 35% of the input aldose reductase activity was measured in the fixed cell lysate gel. Immobilized aldose reductase can also be obtained by such a method, and it is considered to be extremely useful from a practical standpoint.

実施例 5 サツカロミセス・セレビシエ
(Saccharomyces cerevisiae、発研1号)をグル
コース1%、イーストエキストラクト0.3%、ペ
プトン0.5%、マルツエキス0.3%を含む培地に接
種し、30℃で2日間振とう培養を行つた。菌体を
遠心分離で回収し、洗浄した後、菌体300mg(湿
重量)を採り700μの0.1Mリン酸緩衝液(PH
6.0)に懸濁した。菌体懸濁液を、Span85を4滴
含むベンゼン1mlに激しく撹拌しながら滴下し1
次乳化液を得た。この乳化液を約60℃の3%カツ
パー・カラギーナン水溶液に激しく撹拌しながら
滴下し、2次乳化液を得た。この2次乳化液をガ
ラス板上に3mm厚にひろげ、ゲル化したものを4
℃に1時間保つた。このゲルを5mm×5mmに切断
し、50mlの1.2%KCl溶液中で30℃で振とうする
ことによつて、ゲルの強化とベンゼンの除去を行
つた。2時間の振とうの後、吸引濾過し、8gの
固定化微生物標品を得た。
Example 5 Saccharomyces cerevisiae (Haken No. 1) was inoculated into a medium containing 1% glucose, 0.3% yeast extract, 0.5% peptone, and 0.3% malt extract, and cultured with shaking at 30°C for 2 days. Ivy. After collecting the bacterial cells by centrifugation and washing, take 300 mg (wet weight) of the bacterial cells and add them to 700μ of 0.1M phosphate buffer (PH
6.0). Drop the bacterial cell suspension into 1 ml of benzene containing 4 drops of Span85 while stirring vigorously.
A second emulsion was obtained. This emulsion was added dropwise to a 3% aqueous Katsupar carrageenan solution at about 60° C. with vigorous stirring to obtain a secondary emulsion. Spread this secondary emulsion on a glass plate to a thickness of 3 mm and gel it.
It was kept at ℃ for 1 hour. This gel was cut into 5 mm x 5 mm pieces and shaken in 50 ml of 1.2% KCl solution at 30°C to strengthen the gel and remove benzene. After shaking for 2 hours, suction filtration was performed to obtain 8 g of an immobilized microbial specimen.

この標品の2gをグルコース1%、イーストエ
キストラクト0.3%、ペプトン0.5%、マルツエキ
ス0.3%、塩化カリウム1.2%を含む培養液に投入
し、30℃で2日間静置した。この結果、顕微鏡下
でゲル中で菌体の生育が認められ、培養濾液に著
しいエタノールの蓄積を認めた。
2 g of this sample was put into a culture solution containing 1% glucose, 0.3% yeast extract, 0.5% peptone, 0.3% malt extract, and 1.2% potassium chloride, and left at 30° C. for 2 days. As a result, microbial cell growth was observed in the gel under a microscope, and significant ethanol accumulation was observed in the culture filtrate.

Claims (1)

【特許請求の範囲】 1 高分子ゲルマトリツクス中に、酵素を含有す
る多数の独立した液滴を非マイクロカプセル化状
態で分散保持させた構造を有する固定化酵素。 2 酵素を含有する水性液滴が有機溶媒溶液中に
分散している一次乳化液を、ゲル素材を含有する
水性媒体中に分散させて二次乳化液となし、該ゲ
ル素材をゲル化させた後、該有機溶媒を除去して
該液滴を包括固定化することを特徴とする固定化
酵素の製造法。
[Scope of Claims] 1. An immobilized enzyme having a structure in which a large number of independent droplets containing the enzyme are dispersed and held in a non-microencapsulated state in a polymer gel matrix. 2 A primary emulsion in which aqueous droplets containing an enzyme are dispersed in an organic solvent solution is dispersed in an aqueous medium containing a gel material to form a secondary emulsion, and the gel material is gelled. A method for producing an immobilized enzyme, which comprises subsequently removing the organic solvent and entrappingly immobilizing the droplets.
JP1411485A 1985-01-28 1985-01-28 Immobilized enzyme and production thereof Granted JPS61173779A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1411485A JPS61173779A (en) 1985-01-28 1985-01-28 Immobilized enzyme and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1411485A JPS61173779A (en) 1985-01-28 1985-01-28 Immobilized enzyme and production thereof

Publications (2)

Publication Number Publication Date
JPS61173779A JPS61173779A (en) 1986-08-05
JPH0154038B2 true JPH0154038B2 (en) 1989-11-16

Family

ID=11852087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1411485A Granted JPS61173779A (en) 1985-01-28 1985-01-28 Immobilized enzyme and production thereof

Country Status (1)

Country Link
JP (1) JPS61173779A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60110291A (en) * 1983-11-16 1985-06-15 Hitachi Ltd Porous gel containing immobilized biocatalyst and its production
JPS6156076A (en) * 1984-08-25 1986-03-20 Agency Of Ind Science & Technol Immobilized enzyme and its preparation

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60110291A (en) * 1983-11-16 1985-06-15 Hitachi Ltd Porous gel containing immobilized biocatalyst and its production
JPS6156076A (en) * 1984-08-25 1986-03-20 Agency Of Ind Science & Technol Immobilized enzyme and its preparation

Also Published As

Publication number Publication date
JPS61173779A (en) 1986-08-05

Similar Documents

Publication Publication Date Title
Arica et al. Immobilization of glucoamylase onto activated pHEMA/EGDMA microspheres: properties and application to a packed-bed reactor
Akgöl et al. Hydrolysis of sucrose by invertase immobilized onto novel magnetic polyvinylalcohol microspheres
US4478976A (en) Water-insoluble protein material, its preparation and its use
US4978619A (en) Enzyme immobilization by entrapment in a polymer gel matrix
US4226938A (en) Method for immobilizing enzymes
US5472861A (en) Method for preparing immobilized enzyme conjugates and immobilized enzyme conjugates prepared thereby
US4713333A (en) Immobilization of biocatalysts on granular diatomaceous earth
US4797358A (en) Microorganism or enzyme immobilization with a mixture of alginate and silica sol
US4438196A (en) Immobilization of biocatalysts on granular carbon
KR880700854A (en) New Fixed Biocatalysts and Their Preparation and Uses
EP0043169B1 (en) Inulinase
CA1107669A (en) Enzyme-immobilization carrier and preparation thereof
Vojtíšek et al. Immobilized cells
Spasojević et al. The enzyme immobilization: carriers and immobilization methods
Chibata et al. Immobilized living microbial cells
Bihari et al. Studies on immobilized fungal spores for microbial transformation of steroids: 11 α‐Hydroxylation of progesterone with immobilized spores of Aspergillus ochraceus G8 on polyacrylamide gel and other matrices
US4764467A (en) Preparation of an insoluble biocatalyst
JPH0154038B2 (en)
US4411999A (en) Immobilization of enzymes on granular gelatin
JPS6239998B2 (en)
Dias et al. Immobilization of yeasts on titanium activated inorganic supports
Intisar et al. Enzyme immobilization on alginate biopolymer for biotechnological applications
JP3042691B2 (en) Biocatalyst and production method thereof
CA1203187A (en) Immobilization of invertase on polyethylenimine- coated cotton cloth
EP0446948B1 (en) Biocatalysts immobilized by entrapment and process for their preparation

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term