JPS60109717A - Protecting relay system - Google Patents

Protecting relay system

Info

Publication number
JPS60109717A
JPS60109717A JP58213926A JP21392683A JPS60109717A JP S60109717 A JPS60109717 A JP S60109717A JP 58213926 A JP58213926 A JP 58213926A JP 21392683 A JP21392683 A JP 21392683A JP S60109717 A JPS60109717 A JP S60109717A
Authority
JP
Japan
Prior art keywords
current
time
circuit
effective
intermittent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58213926A
Other languages
Japanese (ja)
Inventor
岩谷 二三夫
久保 隆生
滝口 裕
義明 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58213926A priority Critical patent/JPS60109717A/en
Publication of JPS60109717A publication Critical patent/JPS60109717A/en
Pending legal-status Critical Current

Links

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は抵抗接地系送電線の地絡保曖用の電力線搬送保
咳継電方式に係シ、特に、併架あるいは多端子系統の地
絡保護に好適な保護性能を有する保護継電方式に関する
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a power line conveyance protection relay system for protecting against ground faults in resistance-grounded power transmission lines, and particularly relates to ground fault protection in parallel or multi-terminal systems. The present invention relates to a protective relay system having protective performance suitable for protection.

〔発明の背景〕[Background of the invention]

併架あるいは多端子の抵抗接地系送電線地絡保護方式と
して、電力線搬送を伝送手段とする地絡有効分電流比率
差動方式がある。この−例として、保護区間各端の有効
分零相電流を搬送波の送信あるいは送信停止の時間幅に
変換して相互に伝送し合い、受信時にはその時間に比例
して積分し、所要の比率差動特性を得るところのいわゆ
るパルス幅変調伝送地絡有効分電流比率差動方式がある
As a ground fault protection system for parallel or multi-terminal resistive grounding transmission lines, there is a ground fault active current ratio differential system that uses power line carriers as a transmission means. As an example of this, the effective zero-sequence current at each end of the protection zone is converted into the time width of carrier wave transmission or transmission stop and mutually transmitted, and upon reception, it is integrated in proportion to that time and the required ratio difference is calculated. There is a so-called pulse width modulation transmission ground fault effective current ratio differential method that obtains dynamic characteristics.

・第1図に3端子送電線に適用した場合の原理図を示す
。送電線の保護区間内F点で1線地絡牛故が発生し、各
端局A、B、CK零相事故電流IAIIB、ICが流れ
、かつ、零相電圧V OA、 Vo n 。
・Figure 1 shows a diagram of the principle when applied to a three-terminal power transmission line. A one-line ground fault occurs at point F within the protection zone of the transmission line, and zero-sequence fault currents IAIIB, IC flow at each terminal station A, B, and CK, and zero-sequence voltages V OA, Von .

Vocが発生したとする。各端の動作をA端で代表して
説明すると、電圧変成器PDより前記の零相電圧VoA
を導入し、事故検出回路(地絡過′喝圧検出回路)1に
よシ事故を検出する。更に、との零相電圧voA及び電
流変成器CTよシ導入した零相電流エムから、有効分電
流検出回路2により、第2図(a)の例に示す地絡有効
分電流(Voムと同相あるいは逆位相成分)IAcoS
θ^を導出する。次に、との地絡有効分電流Iムsin
θムを電流・時間変換回路4で必要なパルス幅(時間幅
)に変換し、自端信号として搬送端局装置3を通して、
相手端局B端およびC端へ伝送すると共に、自端の時間
積分回路7Aに導入する。相手端の有効分電流IBcO
s(L、 I c cosθC(第2図(b)、 (C
)参照)のパルス幅に変換した情報は搬送端局装置3を
辿して受信し、受信回路5及び6に導入し、搬送端局装
置3との必要なインターフェースをとる。更に、この受
信回路5及び6で得られた相手端のパルス幅に変換した
有効分′電流情報は、自端信号(1迎Sθ^)の場合と
同様に時間積分回路7B、7Cに導入する。ここで、時
間積分は事故検出回路lの事故検出回路を条件に起動し
、各端のパルス幅情報を積分し、各端の有効分電流■A
coSθA+I+cosθB。
Assume that Voc occurs. To explain the operation of each end using the A end as a representative, the above zero-sequence voltage VoA is generated from the voltage transformer PD.
An accident detection circuit (earth fault overpressure detection circuit) 1 is used to detect an accident. Furthermore, from the zero-sequence voltage voA of In-phase or anti-phase component) IAcoS
Derive θ^. Then, the ground fault active current I m sin
The current/time conversion circuit 4 converts θ to the required pulse width (time width), and passes it through the carrier terminal station device 3 as an own-end signal.
It is transmitted to the other end stations B and C, and is also introduced into the time integration circuit 7A of the own end. Effective current IBcO at the other end
s(L, I c cosθC(Fig. 2(b), (C
The information converted into the pulse width (see ) is received by following the carrier terminal device 3, and is introduced into the receiving circuits 5 and 6 to establish the necessary interface with the carrier terminal device 3. Furthermore, the effective current information converted into the pulse width of the other end obtained by the receiving circuits 5 and 6 is introduced into the time integration circuits 7B and 7C in the same way as in the case of the own end signal (1 reception Sθ^). . Here, the time integration is started under the condition of the fault detection circuit of fault detection circuit l, and the pulse width information at each end is integrated, and the effective current at each end is
coSθA+I+cosθB.

I CCO3θCを積分値として得る。更に、これらの
積分値を、積分判定回路8に導入し、必袂な比率差動演
算を行ない、その結果内部事故と判定すれば、出力端子
9より出力を出す。
Obtain I CCO3θC as an integral value. Further, these integral values are introduced into an integral determination circuit 8, which performs the necessary ratio differential calculation, and if it is determined that an internal fault has occurred, an output is output from the output terminal 9.

以上の動作を波形図で更に説明すると第3図の通シであ
る。尚、第3図では伝送遅延時間は無祝しである。まず
、系統に1線地絡事故が発生し、零相電圧が発生しこれ
を事故検出回路1で検出し出力を出す。また、これと共
に、自端の電流・肋間変換回路4では、その前段の有効
分1[i流検出回路2で検出した有効分電流■ムfly
sθAに比例した時間Tムに相当するパルス幅に叢換す
る。伺、第3図の例では、 有効分i 、 cosθ。〉0・・・・・・信号なし有
効分I * cosθ、〈0・・・・・・信号有としで
あるが、この他に有効分■ゎ+X+Sθ、=00場合及
び、有効分電流に比例しだパルス幅に久換した後はいず
れも、継続波となるよう制御する。
The above operation will be further explained using waveform diagrams as shown in FIG. Incidentally, in FIG. 3, the transmission delay time is arbitrary. First, a one-line ground fault occurs in the system, and a zero-sequence voltage is generated, which is detected by the fault detection circuit 1 and outputted. At the same time, in the current/intercostal conversion circuit 4 at its own end, the effective component 1 of the preceding stage [the effective component current detected by the i current detection circuit 2]
The pulse width is converted to a pulse width corresponding to a time Tm proportional to sθA. In the example of Figure 3, the effective component i and cos θ. 〉0... Effective component without signal I * cos θ, <0...... With signal, but in addition to this, effective component ゎ + X + S θ, = 00 and proportional to effective component current After the pulse width has been changed for a while, control is performed so that the wave becomes a continuous wave.

第3図に示す自端の電流・時間変換回路4の出力波形は
工ACOSθ^〉0となる第2図の例を示す。
The output waveform of the current/time conversion circuit 4 at its own end shown in FIG. 3 shows the example shown in FIG. 2 where ACOSθ^>0.

更に、相手端B端、C端の情報は、搬送端局装置3及び
受信回路5.6を通して得ることができ、その波形は第
3図に示す受信回路5.6の出力波形のように示すこと
ができる。冑、この時の13 店A +C端の有効分電
流In僚θBIICCOSθCは第2図に示す通りいず
れも〈0の場合を示す。以上のように導入したパルス幅
をもとに、時間積分回路7A、7B、7Cにょシ積分し
、その積分値として、各端の有効分電流を得ることがで
きる。この積分値の積分判定回路8に導入し、余端の有
効分電流の合計を ΣI = I A CO3θA k(IBCOSθn−
1−Iccosθc ) =(1)としてめ、Σ工の値
が必要な設定レベル以上の時内部事故として出方を出す
。尚武(1)中には比率係数(〉1)であり、内部事故
時の、併架零相電流の流出、あるいは多端子の発端がら
の分流流出電流の量に応じて設定すれば良い。
Further, information on the opposite ends B and C can be obtained through the carrier terminal equipment 3 and the receiving circuit 5.6, and the waveform thereof is shown as the output waveform of the receiving circuit 5.6 shown in FIG. be able to. At this time, the effective current In θBIICCOSθC at the 13 A+C end is 0 as shown in FIG. Based on the pulse width introduced as described above, the time integration circuits 7A, 7B, and 7C perform integration, and the effective current at each end can be obtained as the integral value. This integral value is introduced into the integral judgment circuit 8, and the sum of the residual effective currents is calculated as ΣI = I A CO3θA k (IBCOSθn-
1-Iccosθc) = (1), and when the value of Σ is higher than the required set level, it is reported as an internal accident. In Shobu (1), there is a ratio coefficient (>1), which may be set according to the amount of outflow of parallel zero-sequence current in the event of an internal accident or the amount of shunt outflow current from the beginning of a multi-terminal.

以上、従来の地絡有効分比率差動方式について説明した
が、この従来方式では電流・時間賀換終了後あるいは、
有効分電流−00場合、断続波としているため実際には
次のような問題がある。すなわち、第4図に示す通シ、
自端(A端)の例では有効分電流工^(ト)θムに比例
しだ時間TA後は断続波となるが、この状態が継続した
場合、ハード誤差または、伝送系の誤差にょ少時間積分
回路7A(7B、7Cと同様となる)の出方は、鋸歯状
波となシ、かつその平均値も第4図のaのように一定値
ではなくbあるいはCのように誤差の積算によシ積分値
が増加らるいは減少し、正確な比率差動判定が困難で不
要な応動を招くことどなる。
The conventional ground fault effective ratio differential method has been explained above, but in this conventional method, after the current/time exchange is completed or
When the effective current is -00, the waveform is an intermittent wave, so the following problem actually occurs. That is, the passage shown in Figure 4,
In the example of the own end (A end), the wave becomes intermittent after the time TA which is proportional to the effective current (T) θm, but if this state continues, it may be due to hardware errors or errors in the transmission system. The output of the time integration circuit 7A (same as 7B and 7C) is a sawtooth wave, and its average value is not a constant value as in a of Figure 4, but has an error as in b or c. The integral value increases or decreases due to integration, making it difficult to accurately determine the ratio difference and causing unnecessary response.

特に他端子系統に於ける適用では、採掘区間各端の誤差
が重畳されることになり、条件は一層厳しくなる。
In particular, when applied to other terminal systems, the errors at each end of the mining section will be superimposed, making the conditions even more severe.

〔発明の目的〕[Purpose of the invention]

以上のことから本発明の目的とするところは各種誤差に
大きな影響を受けず正確な比率差i!tII7pI算を
することのできる差動保護継%方式を提供することを目
的とする。
From the above, it is an object of the present invention to obtain an accurate ratio difference i! without being greatly affected by various errors! It is an object of the present invention to provide a differential protection pass percentage method capable of calculating tII7pI.

〔発明の概要〕[Summary of the invention]

本発明は以上の従来方式の欠点を解決するため、断続波
検出回路を設は正確な積分値を導出することを特徴とす
るものである。
In order to solve the above-mentioned drawbacks of the conventional method, the present invention is characterized in that an intermittent wave detection circuit is provided to derive an accurate integral value.

〔発明の実施例〕[Embodiments of the invention]

第5図に本発明の内容を示すが、自端(、−i号の電流
・時間変換回路4の出力を時間積分回路7Aに導入する
と共に、新たに設けた断続波検出回路10に導入する。
The content of the present invention is shown in FIG. .

更に時間積分回路7Aの出力ば積分値記憶回路11に導
入し後述する必要な時間記憶する。ここで、断続波検出
回路10によシ、電流・時間変換回路4の出力が断続波
なったことを検出すれば、断続波になる直前の記憶デー
タを積分値記憶回路11よシ抽出し、積分値凍結回路1
2によりデータ凍結を行ない、断続波信号に左右されな
い正確な有効分電流の積分値を得て、積分判定回路8に
より比率差動判定を行なうものである。以上の動作を、
第6図の波形図によシ更に詳細説明すると次の通りであ
る。すなわち、電流・時間変換回路4の出力が断続波と
なれば、断続波検出回路10によシこれを検出(第6図
の例では断続波2サイクル確認)シ、断続波になる直前
の地絡有効分i 、 cosθAのデータ(第6図中d
で示す)を積分値記憶回路11よυ抽出し、積分値凍結
回路12でデータ(第6図中eで示す)を行ない、この
凍結データをもとに、積分判定を行なうものである。こ
こで、積分値記憶回路11でのデータ記憶時間は、断続
波検出回路10の検出時間(第6図の例では断続波2サ
イクル相当)と等しくとれば良い。
Furthermore, the output of the time integration circuit 7A is introduced into an integral value storage circuit 11 to be stored for a necessary time period which will be described later. Here, if the intermittent wave detection circuit 10 detects that the output of the current/time conversion circuit 4 becomes an intermittent wave, the integral value storage circuit 11 extracts the stored data immediately before the output becomes an intermittent wave, Integral value freezing circuit 1
2, the data is frozen to obtain an accurate integral value of the effective current that is not influenced by the intermittent wave signal, and the integral determination circuit 8 performs ratio differential determination. The above operation,
A more detailed explanation using the waveform diagram of FIG. 6 is as follows. In other words, if the output of the current/time conversion circuit 4 becomes an intermittent wave, the intermittent wave detection circuit 10 detects this (in the example shown in Fig. 6, two cycles of intermittent waves are confirmed), and the output immediately before the intermittent wave becomes an intermittent wave. Data of the coupling effective component i and cos θA (d in Fig. 6)
6) is extracted from the integral value storage circuit 11, the data (indicated by e in FIG. 6) is processed in the integral value freezing circuit 12, and the integral is determined based on this frozen data. Here, the data storage time in the integral value storage circuit 11 may be set equal to the detection time of the intermittent wave detection circuit 10 (equivalent to two cycles of the intermittent wave in the example of FIG. 6).

以上、第5図、第6図は自端信号を中心に説明したが、
相手端から搬送端局装置を通して伝送される相手端の有
効分電流信号(すなわち、第1図の受信回路5.6の出
力)についても、第5図の本発明による回路をそれぞれ
適用することで、同様に断続波信号の影響を受けない、
正確な有効分電流に相当する積分値を導出できる。
In the above, Fig. 5 and Fig. 6 were explained focusing on the self-end signal.
By applying the circuit according to the present invention shown in FIG. 5 to the effective current signal at the other end (that is, the output of the receiving circuit 5.6 in FIG. 1) transmitted from the other end through the carrier terminal equipment, , similarly unaffected by intermittent wave signals,
An integral value corresponding to an accurate effective current can be derived.

〔発明の効果〕〔Effect of the invention〕

以上、説明した通り、本発明によれは、断続波信号の影
響を受けない、正確な有効分電流の積分値による比率差
動判定が可能であり、従来方式のように各端局の誤差の
重畳・積算による不要応動の惧れない高精度の判定を実
現できる。
As explained above, according to the present invention, it is possible to perform ratio differential judgment based on the accurate integral value of the active component current, which is not affected by the intermittent wave signal, and it is possible to perform ratio differential judgment based on the integral value of the accurate active component current, which is not affected by the discontinuous wave signal. It is possible to achieve highly accurate judgment without worrying about unnecessary responses due to superimposition and integration.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の地絡有効分比率差動方式の回路説明図、
第2図は保護区間各端の電圧、電流の例を示すベクトル
図、第3図は従来の地絡有効分比率差動方式の動作を説
明するだめの波形図、第4図は従来方式の問題点を説明
するための波形図、第5図は本発明の回路説明図、第6
図は本発明の詳細な説明するための波形図。 1゛・・・事故検出回路、2・・・有効分電流検出回路
、3・・・搬送端局装置、4・・・電流・時間変換回路
、5・・・受信回路、6・・・受信回路、7A、7B、
7C・・・時間積分回路、8・・・積分判定回路、9・
・・出力端子、第 l 凹 茅 2 目 <l Cら) (C) IcC6すσC 茅 3 層 ΣI 、lAθ七の一屓I、θ恥θ8すItQりり茅 
4 口 茅 5 口
Figure 1 is a circuit explanatory diagram of the conventional ground fault effective ratio differential method.
Figure 2 is a vector diagram showing examples of voltage and current at each end of the protection zone, Figure 3 is a waveform diagram to explain the operation of the conventional ground fault effective ratio differential method, and Figure 4 is a waveform diagram of the conventional method. A waveform diagram for explaining the problem, FIG. 5 is a circuit explanatory diagram of the present invention, and FIG.
The figure is a waveform diagram for explaining the present invention in detail. 1... Accident detection circuit, 2... Effective current detection circuit, 3... Carrier terminal station device, 4... Current/time conversion circuit, 5... Receiving circuit, 6... Receiving circuit, 7A, 7B,
7C... Time integration circuit, 8... Integral judgment circuit, 9.
・・Output terminal, 1st concave 2nd <l C et al.) (C) IcC6suσC 3rd layer ΣI, lAθ7's I, θshame θ8su ItQ Ririkaya
4 mouths 5 mouths

Claims (1)

【特許請求の範囲】[Claims] 1、 保護区間各端の有効分零相電流の大きさに応じた
時間変換信号を相互に伝送し、その信号を時間積分する
ことで差動特性を得る保護継電方式において、有効分零
相電流の時間幅変換終了後あるいは有効分零相電流が零
の場合、所定の断続波を送信し、断続波検出時、断続に
なる直前の時間積分値にもとづいて差動部定を行なうこ
とを特徴とする保護継電方式。
1. In the protective relay method, which obtains differential characteristics by mutually transmitting time-converted signals according to the magnitude of the effective zero-sequence current at each end of the protection interval and time-integrating the signals, the effective zero-sequence After the time width conversion of the current is completed or when the effective zero-sequence current is zero, a predetermined intermittent wave is transmitted, and when an intermittent wave is detected, differential part determination is performed based on the time integral value immediately before the intermittent wave becomes intermittent. Features a protective relay system.
JP58213926A 1983-11-16 1983-11-16 Protecting relay system Pending JPS60109717A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58213926A JPS60109717A (en) 1983-11-16 1983-11-16 Protecting relay system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58213926A JPS60109717A (en) 1983-11-16 1983-11-16 Protecting relay system

Publications (1)

Publication Number Publication Date
JPS60109717A true JPS60109717A (en) 1985-06-15

Family

ID=16647330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58213926A Pending JPS60109717A (en) 1983-11-16 1983-11-16 Protecting relay system

Country Status (1)

Country Link
JP (1) JPS60109717A (en)

Similar Documents

Publication Publication Date Title
JPH0210651B2 (en)
JPS60109717A (en) Protecting relay system
JPS5826249B2 (en) Hogokeiden Sochi
JPS6198119A (en) Device for standardizing trouble point
JPS628068A (en) System for locating troubled point direction
JPS5917602B2 (en) How do I get started?
JPS6124899B2 (en)
JPH05218912A (en) Transmission/reception method for carrier signal applied to electric line
JPS5845260B2 (en) Abnormality detection device for differential protection relay device
JPS6116756Y2 (en)
JPS602016A (en) Protecting system of dc transmission line
JPH0139300B2 (en)
JPS59162713A (en) Protective relaying device
JPS6074922A (en) One-line ground-fault voltage detecting relay
JPS61157219A (en) Relay in direction of grounding
JPH01227972A (en) Method and apparatus for detecting accident zone of overhead power transmission line
JPS59169320A (en) Protecting relaying device
JPS5970136A (en) Protecting relay
JPS60235072A (en) Trouble point locating apparatus
JPS6315812B2 (en)
JPS61132034A (en) Carrier protective relay
JPS605729A (en) Carriage protecting relaying device
JPS5989532A (en) Current variation phase comparison relay unit
JPS5963920A (en) Ground-fault defect detector for dc transmitting neutral li-ne
JPH04324376A (en) Location method of short-circuiting fault point