JPS5917602B2 - How do I get started? - Google Patents

How do I get started?

Info

Publication number
JPS5917602B2
JPS5917602B2 JP50149527A JP14952775A JPS5917602B2 JP S5917602 B2 JPS5917602 B2 JP S5917602B2 JP 50149527 A JP50149527 A JP 50149527A JP 14952775 A JP14952775 A JP 14952775A JP S5917602 B2 JPS5917602 B2 JP S5917602B2
Authority
JP
Japan
Prior art keywords
frequency
signal
output
modulated signal
relay device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP50149527A
Other languages
Japanese (ja)
Other versions
JPS5273350A (en
Inventor
栄三郎 酒匂
精志 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP50149527A priority Critical patent/JPS5917602B2/en
Publication of JPS5273350A publication Critical patent/JPS5273350A/en
Publication of JPS5917602B2 publication Critical patent/JPS5917602B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Description

【発明の詳細な説明】 本発明は、差電流搬送保護継電装置の自動点検方式にか
かわるものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an automatic inspection system for a differential current carrying protection relay device.

超々高圧系の多端子保護のために、周波数変調差電流搬
送保護継電方式がある。
For multi-terminal protection of ultra-super high voltage systems, there is a frequency modulation differential current carrier protection relay system.

これは、保護区間内の各端子における電流値を周波数変
調信号に変換し、これをマイクロ波回線を用いて互いに
送受信して各端電流を再現しキルヒホッフの第一法則に
基づき電流ベクトルの総和Σi=oの場合内部事故なし
、Σi\0の場合内部事故と判定するもので、流出を伴
なう内部事故時でも内外事故の選択性がすぐれているこ
とが大きな特徴となっている。
This converts the current value at each terminal within the protection zone into a frequency modulated signal, transmits and receives this signal to each other using a microwave line, reproduces the current at each end, and based on Kirchhoff's first law, the sum of the current vectors Σi If =o, it is determined that there is no internal accident, and if Σi\0, it is determined that it is an internal accident.The major feature is that even in the case of an internal accident that involves a spill, it has excellent selectivity between internal and external accidents.

この方式は超々高圧用であるため高速動作が要求される
のは勿論であるが、変調、復調をはじめ、波形変換、信
号遅延等に高精度を要するため大部分が半導体で構成さ
れているので、高信頼度化を計る必要から自動点検の実
施が不可決となる。
Of course, this method requires high-speed operation because it is used for ultra-high voltage, but it also requires high precision for modulation, demodulation, waveform conversion, signal delay, etc., so it is mostly made of semiconductors. , implementation of automatic inspection was rejected due to the need to improve reliability.

本継電方式における自動点検実施上注意すべきことは、
変調復調特性がリレー特性を左右する程に重要な役割を
果しているため、この部分を含めた広範囲点検が実施出
来るよう考慮されなげればならないことである。
Things to be aware of when performing automatic inspection using this relay method are as follows:
Since the modulation and demodulation characteristics play such an important role that they influence the relay characteristics, consideration must be given so that a wide range of inspections including this part can be carried out.

一般に差動力式の自動点検では、自端あるいは相手端い
ずれかの電流ベクトルを反転又はOにしてやれば良い。
Generally, in differential power type automatic inspection, it is sufficient to reverse or set the current vector at either the own end or the opposite end.

しかるに、相手端信号を反転するにしても相手端信号が
周波数変調信号であるので、復調器も含めて点検するに
はベクトル反転のために点検専用の変調器を用意して自
端電流と180°位相をずらした所定の点検電流で周波
数変調を行ない、この変調器出力を点検時に相手端信号
と切換えて復調器に印カ目する必要がある。
However, even if the signal at the other end is inverted, the signal at the other end is a frequency modulation signal, so in order to inspect the demodulator as well, a modulator exclusively for inspection is prepared for vector inversion, and the current at the other end is 180%. It is necessary to perform frequency modulation with a predetermined inspection current whose phase is shifted, and to switch the output of this modulator with the signal at the other end during inspection to mark the demodulator.

そして自端信号を反転するときには自端CT2次電流電
流転するのが広範囲点検とするのに最良である。
When inverting the self-end signal, it is best to invert the self-end CT secondary current current for wide range inspection.

これに対し前者では点検のために切換回路、変調器の付
加が必要となり信頼度並びに経済上問題がある。
On the other hand, the former requires the addition of a switching circuit and a modulator for inspection, which poses problems in terms of reliability and economy.

後者では、相手端にもその反転信号が周波数変調信号と
して送信されてしまうので、相手端は内部事故と等価と
なり、トリップ指令が出てしまう。
In the latter case, the inverted signal is also transmitted to the other end as a frequency modulated signal, which is equivalent to an internal fault at the other end, and a trip command is issued.

従ってこの方法では事前に相手端に対し、専用の情報伝
送ルートを用いてロック信号を出すと共に、点検後はそ
のロックを解除しながら点検を進めなければならない欠
点を有する。
Therefore, this method has the disadvantage that it is necessary to issue a lock signal to the other end in advance using a dedicated information transmission route, and to proceed with the inspection while releasing the lock after the inspection.

自端電流反転を差動判定部の直前で行なうことも考えら
れるか、広範囲点検とならず採用できない。
It may be possible to perform self-end current reversal just before the differential determination section, but this cannot be adopted as it would not require extensive inspection.

本発明の目的は、上記に示した従来技術の欠点をな(シ
、簡単かつ確実に差電流搬送保護継電装置の自動点検を
復調部を含めて行ない、かつ各端で独立して行ない得る
方式を提供するものである。
An object of the present invention is to overcome the drawbacks of the prior art shown above (i.e., to easily and reliably perform automatic inspection of a differential current carrying protective relay device including the demodulator, and to be able to perform the automatic inspection at each end independently). It provides a method.

本発明では、周波数変調信号の復調過程で生ずる面積変
換パルス列を反転させれば、復調後の波形も位相が18
0°変わることに着目し、自端又は相手端の復調回路部
に簡単な反転指令部を付加し、自動点検の外部指令で、
反転を行なうことにより、相手端に迷惑をかげずに、内
部事故模擬を行なうようにしたことが大きな特徴である
In the present invention, if the area conversion pulse train generated in the demodulation process of the frequency modulation signal is inverted, the phase of the demodulated waveform will also be 18
Focusing on the 0° change, we added a simple reversal command section to the demodulation circuit section of the own end or the other end, and with an external command for automatic inspection,
A major feature is that by performing a reversal, it is possible to simulate an internal accident without causing trouble to the other party.

以下本発明の一実施例をもとに具体的に説明する。The present invention will be explained in detail below based on one embodiment of the present invention.

第1図は本発明による自動点検方式を実施した周波数変
調リレーの片端におけるブロック図であって、説明を簡
単にするためリレ−1相分のみにつき示しである。
FIG. 1 is a block diagram of one end of a frequency modulation relay implementing an automatic inspection system according to the present invention, and for simplicity of explanation, only one phase of the relay is shown.

変流器CTよりの系統電流瞬時値は公知の電流−電圧変
換器1、電圧を周波数に変換する公知の電圧周波数変換
器2、この出力を所定の大きさにし、かつ、負荷変動が
他の部分へ及ぶのを防ぐための公知のバッファ増幅器3
、送受信レベルを調整するための公知の抵抗減衰器群4
、通信装置とのインピーダンスマツチングおよび絶縁を
とるための通信用変成器群5を介してマイクロ波搬送端
局装置(第1図上では搬端と略記)6と接続され、入力
電流の振幅に比例した周波数変調信号が、3端子系の他
の2端子へ出カケープル7.8を介して送信される。
The instantaneous value of the system current from the current transformer CT is obtained by using a known current-voltage converter 1, a known voltage-frequency converter 2 that converts voltage into frequency, and the output is set to a predetermined magnitude and the load fluctuation is Known buffer amplifier 3 for preventing
, known resistance attenuator group 4 for adjusting transmission and reception levels
, is connected to a microwave carrier terminal equipment (abbreviated as carrier end in FIG. 1) 6 via a communication transformer group 5 for impedance matching and insulation with the communication equipment, and is connected to the microwave carrier terminal equipment (abbreviated as carrier end in FIG. 1), A proportional frequency modulated signal is transmitted to the other two terminals of the three-terminal system via output cable 7.8.

相手端からの周波数変調信号はそれぞれケーブル9,1
0より該当する絶縁トランス5、抵抗減衰器4を介し、
公知の遅延回路11、周波数変調信号を再び元の電圧信
号に復調する周波数電圧変換器12.13を介してリレ
ー判定部14に入る。
Frequency modulated signals from the other end are connected to cables 9 and 1, respectively.
0 through the corresponding isolation transformer 5 and resistance attenuator 4,
It enters the relay determination unit 14 via a known delay circuit 11 and a frequency-voltage converter 12, 13 which demodulates the frequency modulated signal back to the original voltage signal.

一方向端の周波数変調信号は、他の2端子からの伝送遅
延を補償する公知の遅延回路15、遅延後の自端周波数
変調信号を復調する12.13と同一特性の周波数電圧
変換器16を介してリレー判定部14に入る。
The frequency modulated signal at one end is processed by a known delay circuit 15 that compensates for the transmission delay from the other two terminals, and a frequency-voltage converter 16 with the same characteristics as 12 and 13 that demodulates the delayed frequency modulated signal at the end. The relay determination unit 14 is entered through the relay determination unit 14.

14では、各端子の復調信号をもとにリレー動作に必要
な動作力を得るベクトル演算および、抑制力を得るスカ
ラー和演算を行なって、動作力が抑制力にうち勝った場
合、内部事故と判定しトリップ指令を出すようになって
いる。
In step 14, based on the demodulated signal of each terminal, a vector operation to obtain the operating force necessary for relay operation and a scalar sum operation to obtain the suppressing force are performed, and if the operating force exceeds the suppressing force, it is determined that it is an internal accident. It is designed to make a judgment and issue a trip command.

遅延補償部11および15は、最も伝送遅延が大きい端
子にM7合せて補償値をセツトシている。
The delay compensators 11 and 15 set a compensation value in accordance with M7 for the terminal with the largest transmission delay.

17は、自動点検時局波数電圧変換器16の波形を反転
させるための制御指令端子を示すものである。
Reference numeral 17 indicates a control command terminal for inverting the waveform of the local wave number voltage converter 16 during automatic inspection.

各端子用の周波数電圧変換器12,13.16の詳細を
第2図に示す。
Details of the frequency voltage converters 12, 13, 16 for each terminal are shown in FIG.

18は公知のシュミット回路、19は公知の単安定マル
チバイブレーク、20は公知の低域フィルターである。
18 is a known Schmitt circuit, 19 is a known monostable multivib break, and 20 is a known low-pass filter.

第2図−1に示す周波数変調信号はシュミット回路18
により、ト■Lレベル以上でON、LLL/ベル以下で
OFFとなり11に示す矩形波となる。
The frequency modulation signal shown in Figure 2-1 is generated by the Schmitt circuit 18.
As a result, the signal is turned on when the signal is above the L level, and turned off when it is below the LLL/bell level, resulting in a rectangular wave shown in 11.

単安定マルチバイブレータ19ではこの矩形波の立上り
および立下りで、l−リガされ、一定幅のパルス列が第
2図111のごとく作成される。
In the monostable multivibrator 19, the rising and falling edges of this rectangular wave are l-triggered, and a pulse train of a constant width is created as shown in FIG. 2 111.

20はゲート回路であって外部指令17により反転又は
非反転出力か低域フィルタ21に入るようにされている
Reference numeral 20 denotes a gate circuit, and the inverting or non-inverting output is made to enter the low-pass filter 21 according to an external command 17.

このフィルタについて簡単に説明するなら、これは例え
ばパルス入力のマーク部で放電し、スペース部で充電す
るような一種の積分回路と考えてよい。
To briefly explain this filter, it can be thought of as a type of integration circuit that discharges at the mark portion of a pulse input and charges at the space portion.

従って第2図111の如きマーク部とスペース部との比
率が変化する時系列パルス信号を印加するとき、その出
力は短期的に充放電を繰り返しながら、長期的には増加
もしくは減少をするこさになる。
Therefore, when applying a time-series pulse signal in which the ratio of the mark part to the space part changes as shown in FIG. Become.

第2図1■はこの長期成分のみを取出したものであり、
短期成分を除去する作用も果すフィルタとすることで、
元の電流信号が再生できることは明白である。
Figure 2 1■ shows only this long-term component extracted.
By using a filter that also removes short-term components,
It is clear that the original current signal can be reproduced.

電圧周波数変換器が以上のように働らくことは既に周知
のことである。
It is already well known that voltage frequency converters work in this manner.

ここで、低域フィルタ21の充電時定数と放電時定数と
が等しいことを前提として考えてみると、スペースの占
める時間の割合の方が大きければフィルタ21の出力は
増大し、マークの占める時間の割合の方が大きければフ
ィルタ21の出力は減少する関係にある。
Here, assuming that the charging time constant and the discharging time constant of the low-pass filter 21 are equal, if the proportion of time occupied by the space is larger, the output of the filter 21 increases, and the time occupied by the mark increases. If the ratio is larger, the output of the filter 21 decreases.

従って点検の為の外部指令17が与えられ、単安定マル
チバイブレーク19の出力が反転すると、マーク部とス
ペース部の比率が反転し、このとき得られるフィルタ出
力は元のフィルタ出力を反転したものとなる。
Therefore, when the external command 17 for inspection is given and the output of the monostable multi-bi break 19 is reversed, the ratio of the mark part to the space part is reversed, and the filter output obtained at this time is the inverted version of the original filter output. Become.

このことは非反転パルス列のときのフィルタ出力が増加
傾向にあるとき、反転パルス列のときのフィルタ出力は
減少傾向になることからも理解できる。
This can be understood from the fact that while the filter output for a non-inverted pulse train tends to increase, the filter output for an inverted pulse train tends to decrease.

このようにして内部事故の模擬信号が得られる。In this way, a simulated signal of an internal accident is obtained.

第3図にゲート制御部20の詳細を示す。FIG. 3 shows details of the gate control section 20.

図において、46,47はアンドゲート、48.52は
インパーク、49はオアゲートであり、端子50に単安
定マルチバイブレーク19の出力(以下これをAとする
In the figure, 46 and 47 are AND gates, 48 and 52 are imparks, and 49 is an or gate, and the output of the monostable multi-by-break 19 is connected to the terminal 50 (hereinafter referred to as A).

)、端子17に点検指令信号(以下これをBとする。), an inspection command signal to terminal 17 (hereinafter referred to as B).

)が加えられる。ここで入力信号A、Bを用いて各部の
出力を論理的にプール代数で表現すると、48の出力は
百、52の出力はX、41の出力はA−B、46の出力
はA・B151の出力はA−B+A−Bである。
) is added. Here, if we logically express the output of each part in pool algebra using input signals A and B, the output of 48 is 100, the output of 52 is X, the output of 41 is A-B, and the output of 46 is A・B151 The output of is A-B+A-B.

通常時点検指令信号Bは0″とされており、従って最終
出力はAとなり、端子50の入力はそのまま端子51の
出力となる。
Normally, the inspection command signal B is set to 0'', so the final output is A, and the input to the terminal 50 becomes the output to the terminal 51 as it is.

点検時、信号Bは“1″となり、端子51には入力Aの
反転出力Aが得られる。
During inspection, the signal B becomes "1" and the inverted output A of the input A is obtained at the terminal 51.

本実施例は以上述べたようになっているので、点検用電
源など特別の付加回路を必要としない。
Since this embodiment is configured as described above, no special additional circuit such as a power source for inspection is required.

簡単なゲート回路を自端周波数電圧変換器に付加するの
みで、相手端に影響を与えることなく、変復調部を含め
た広い範囲の自動点検を行なうことが可能である。
By simply adding a simple gate circuit to the self-end frequency voltage converter, it is possible to automatically inspect a wide range of areas including the modulation/demodulation section without affecting the other end.

本実施例は自端の周波数電圧変換器で反転する場合につ
き述べたが、相手端周波数電圧変換器12.13を反転
しても同じ結果が得られることは勿論である。
Although this embodiment has been described with reference to the case where the frequency voltage converter at the own end performs inversion, it goes without saying that the same result can be obtained even if the frequency voltage converter 12, 13 at the opposite end is inverted.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例の概念を示すブロック図、第2
図は本発明の周波数電圧変換器の一例及び動作を示すブ
ロック及び波形図、第3図は本発明に採用しうるゲート
回路の一例である。 18・・・・・・シュミット回路、19・・・・・・単
安定マルチバイブレーク、20・・・・・・ゲート回路
、21・・・・・・低域フィルター、10・・・・・・
単安定マルチ出力端子、11・・・・・・低域フィルタ
ー入力端子。
FIG. 1 is a block diagram showing the concept of an embodiment of the present invention;
The figure is a block and waveform diagram showing an example of the frequency-voltage converter of the present invention and its operation, and FIG. 3 is an example of a gate circuit that can be employed in the present invention. 18... Schmitt circuit, 19... Monostable multivibrake, 20... Gate circuit, 21... Low pass filter, 10...
Monostable multi-output terminal, 11...Low-pass filter input terminal.

Claims (1)

【特許請求の範囲】[Claims] 1 各端電流信号を周波数変調して伝送回線を介して相
互に伝送し合って保護の要否を判定する差電流搬送保護
継電装置であって、各端からの周波数変調信号を復調す
るために、周波数変調信号を矩形波に変換する第1の手
段と該手段の矩形波の立上りもしくは立下り時点で幅一
定のパルスを与える第2の手段と該手段のパルス列のマ
ーク部とスペース部の比率に応じた信号を抽出する低域
フィルターを備え、差電流搬送保護継電装置の自動点検
の際に第2の手段の出力のパルス列の位相を反転するこ
とにより低域フィルター出力の復調波形の位相を反転さ
せて内部事故模擬を行なわしめることを特徴とする搬送
保護継電装置の自動点検方式。
1 A differential current carrying protection relay device that frequency-modulates the current signal from each end and transmits the frequency-modulated signal to each other via a transmission line to determine whether protection is necessary, and for demodulating the frequency-modulated signal from each end. a first means for converting a frequency modulated signal into a rectangular wave, a second means for applying a pulse with a constant width at the rising or falling point of the rectangular wave of the means, and a mark part and a space part of the pulse train of the means. Equipped with a low-pass filter that extracts a signal according to the ratio, the demodulated waveform of the low-pass filter output is inverted by inverting the phase of the pulse train output from the second means during automatic inspection of the differential current carrying protective relay device. An automatic inspection method for a transportation protection relay device that simulates an internal accident by reversing the phase.
JP50149527A 1975-12-17 1975-12-17 How do I get started? Expired JPS5917602B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP50149527A JPS5917602B2 (en) 1975-12-17 1975-12-17 How do I get started?

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP50149527A JPS5917602B2 (en) 1975-12-17 1975-12-17 How do I get started?

Publications (2)

Publication Number Publication Date
JPS5273350A JPS5273350A (en) 1977-06-20
JPS5917602B2 true JPS5917602B2 (en) 1984-04-23

Family

ID=15477074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50149527A Expired JPS5917602B2 (en) 1975-12-17 1975-12-17 How do I get started?

Country Status (1)

Country Link
JP (1) JPS5917602B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2989923B1 (en) * 2012-04-26 2014-05-16 Commissariat Energie Atomique MULTILAYER MATERIAL RESISTANT TO OXIDATION IN NUCLEAR MEDIA.

Also Published As

Publication number Publication date
JPS5273350A (en) 1977-06-20

Similar Documents

Publication Publication Date Title
Chamia et al. Ultra high speed relay for EHV/UHV transmission lines--Development, design and application
CA1056909A (en) Apparatus for localization of a line fault
US4329727A (en) Directional power distance relay
JPH0210651B2 (en)
JPS6039312A (en) Protective relaying device
US4156194A (en) Frequency-shift-keyed receiver
US4538195A (en) Three terminal current differential protective relay
JPS5917602B2 (en) How do I get started?
Phadke et al. A Microcomputer Based Ultra-High-Speed Dostance Relay: Field Tests
GB1338896A (en) Hybrid networks
Chen et al. Field experience with a digital system for transmission line protection
US3652933A (en) Apparatus for producing a signal when a selected phase relationship exists between two alternating current voltages of different frequencies
US3731011A (en) System for measuring the regeneration threshold of repeaters for multiplex pulse code modulation and data transmission systems
GB1535124A (en) Control apparatus for responding to a fault current in a power transmission line
US4780908A (en) Method and apparatus for signal transmission regulation in differential protection
JPS628070A (en) Failure orientation system
SU1116489A1 (en) Detection member for protecting three-phase electric installation against asymmetric short circuit
SU815835A1 (en) Device for protecting from grounding in network with insulated neutral wire
JPS60109717A (en) Protecting relay system
SU750707A1 (en) Signal shaping device
SU1663682A1 (en) Device for determining faulty phase
JPS5846824A (en) Protective relay unit
JPS61132034A (en) Carrier protective relay
Miller et al. Field tests on power-line carrier-current equipment
Agrawal Digitally simulated test performance of the Pramod scheme for UHS protection of EHV transmission lines