JPS60108920A - Constant voltage circuit - Google Patents

Constant voltage circuit

Info

Publication number
JPS60108920A
JPS60108920A JP58216880A JP21688083A JPS60108920A JP S60108920 A JPS60108920 A JP S60108920A JP 58216880 A JP58216880 A JP 58216880A JP 21688083 A JP21688083 A JP 21688083A JP S60108920 A JPS60108920 A JP S60108920A
Authority
JP
Japan
Prior art keywords
voltage
vout
circuit
threshold voltage
constant voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58216880A
Other languages
Japanese (ja)
Inventor
Masayuki Namiki
並木 優幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP58216880A priority Critical patent/JPS60108920A/en
Publication of JPS60108920A publication Critical patent/JPS60108920A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F3/00Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
    • G05F3/02Regulating voltage or current
    • G05F3/08Regulating voltage or current wherein the variable is dc
    • G05F3/10Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics
    • G05F3/16Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices
    • G05F3/20Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations
    • G05F3/24Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations wherein the transistors are of the field-effect type only

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Control Of Electrical Variables (AREA)
  • Amplifiers (AREA)

Abstract

PURPOSE:To obtain output voltage reduced at its dispersion by making the threshold voltage of the 1st FET coincide with that of the 2nd FET and forming depression type FETs. CONSTITUTION:For instance, IGFETs 6, 7 are formed as depression type FETs having equal threshold voltage in adjacent channel dope. The voltage between a terminal VDD8 and an output voltage terminal 10 is set up to Vout and the voltage between the terminals VDD8 and VSS9 is set up to power supply voltage. When the FET6 shorts its gates and drain and the threshold voltage of the FET6 is set up to VTD1, VDD-Vout-VTD1>VDD-Vout is always valid because the VTD1 is negative voltage, so that the FET6 operates always at unsaturated status. When the FET7 shorts its gate and source and the threshold voltage of the FET7 is set up to VTD2, the output voltage Vout is made constant independently of the voltage variation between VDD and VSS at the time of -VTD2< VSS-Vout, i.e. at the time of saturated operation.

Description

【発明の詳細な説明】 本発明は、2つの電界効果型トランジスタC以下工GF
ETと略す。)によって構成される定電圧回路において
、工程が容易で定電圧出力ばらつきが最小となる、定電
圧回路に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides two field effect transistors C and GF.
Abbreviated as ET. ), the process is easy and constant voltage output variation is minimized.

従来、IG”FBT集積回路のなかで使用される定電圧
回路は、電源電圧が変動しても、出力電圧が変化しない
ように、出力電圧がテGFETの閾値電圧や、コンダク
タンス定数(以下に値と略す)であられされるような回
路構成をとっている。第1図(a)と第1図(b)とに
従来の定電圧回路の一例を示す。工GFBT1はデプレ
ッション形で、閾値電圧を■τD、 K値をKDとする
。工GFET2は工/ハンスメント形で、閾値はyne
、に値をKxとする。出力端子5とVss 端子4間に
電源電圧に依らない定電圧出力yoが出力される。VC
はV TD 、 V Tl!l 、 K D 、 K 
F+ によって、vo=VTI!!−、li下乙< z
 X V、TD ・−= −(11と表わすことができ
る。(1)式であられされる定電圧出力は、第1図(a
)と第1図(b)のいずれの回路からもめることができ
る。
Conventionally, constant voltage circuits used in IG"FBT integrated circuits have been designed so that the output voltage does not change even if the power supply voltage fluctuates. Figure 1(a) and Figure 1(b) show an example of a conventional constant voltage circuit.The GFBT1 is a depression type, with a threshold voltage of Assume that
, let the value be Kx. A constant voltage output yo independent of the power supply voltage is output between the output terminal 5 and the Vss terminal 4. VC
are V TD , V Tl! l, KD, K
By F+, vo=VTI! ! -, li lower < z
X V, TD ・−= −(11)
) or the circuit shown in FIG. 1(b).

このような定電圧値をつくるには、同時に2つのNチャ
ネルトランジスタを作っておき、更に一方のトランジス
タを、例えばリンのチャネルドープによってデプレッシ
ョン形にし、閾値の差を9くることが一般に行なわれる
。しかしながら、チャネルドープによる閾値電圧のばら
つき、及び、K値のばらつきによる出力電圧のばらつき
は通常上100mVといわれている。更に(1)式にお
いて、出力電圧をあわせこむには、ρrZ5 を厳密に
計算し、設計する必要がある。また、−第1図に示す回
路の温特は4 の温特の項を含む。複雑な特性を示すこ
とになる。本発明は、上記のような従来の欠点、すなわ
ち、出力電圧のばらつき、設計の複雑さ、温特の複雑さ
を除去するためなされたものであシ、設計が容易で、ば
らつきの少ない定電圧回路を提供するものである。
In order to create such a constant voltage value, two N-channel transistors are manufactured at the same time, and one transistor is made into a depletion type by doping the channel with, for example, phosphorus, so that the difference in threshold voltage is 9. However, variations in threshold voltage due to channel doping and variations in output voltage due to variations in K value are generally said to be 100 mV. Furthermore, in equation (1), in order to match the output voltage, it is necessary to precisely calculate and design ρrZ5. The temperature characteristics of the circuit shown in FIG. 1 include four temperature characteristics terms. This results in complex characteristics. The present invention was made in order to eliminate the above-mentioned conventional drawbacks, namely, variations in output voltage, complexity in design, and complexity in temperature characteristics. It provides a circuit.

以下、実施例にもとづき、本発明を詳述する。Hereinafter, the present invention will be explained in detail based on Examples.

第2図(a)と第2図(b)とに本発明の定電圧回路の
第一と第二の実施例の回路図を示す。
FIGS. 2(a) and 2(b) show circuit diagrams of first and second embodiments of the constant voltage circuit of the present invention.

X GFKT 6と工GFET7は、閾値電圧の等しい
デプレッション形のトランジスタである。回路接続は、
従来の第1図<1.)と第1図(b)とに示した回路と
同様で為る。デプレッション彫工GFET6と7を等し
い閾値電圧につくりこんであることが、本発明の特徴で
ある。
The X GFKT 6 and the GFET 7 are depletion type transistors with equal threshold voltages. The circuit connection is
Conventional Fig. 1<1. ) and the circuit shown in FIG. 1(b). A feature of the present invention is that the depression carved GFETs 6 and 7 are made to have equal threshold voltages.

製造上では、2つの工GFFiT 6と7を同時K例え
ば、リンのチャンネルドープで等しい閾値電圧のデプレ
ッション彫工GFETを作製する。本発明の定電圧回路
によシ得られる出力定電圧値は次のように定まる。−例
として、第2図(b)の回路について解く。第2図(b
)において、VDD8と出力電圧端子10間の電圧をV
out、VDD8と■ss9間の電圧を電源電圧とする
。工GF’KT6はゲートとドレインを短絡しておシ、
工GFKT 6の閾値電圧をvTDI とすると、VT
DI はマイナス電圧ガので、常にV flD −V 
out −VTDI >VDD−Vout が成シ立ち
、常に非飽和・で動作している。=方、工GFET7は
ゲートとソースを短絡している。工GFEAT 7の閾
値電圧をVTD2 とすると、−V TD2 〈V B
e −V out となったとき、すなわち、飽和動作
のとき、出力電圧V out は7DD−7ss間の電
圧変動によらず、一定電圧となる。
In manufacturing, the two GFFiTs 6 and 7 are simultaneously doped with, for example, phosphorus, to create a depression carved GFET with equal threshold voltage. The output constant voltage value obtained by the constant voltage circuit of the present invention is determined as follows. - As an example, solve the circuit of FIG. 2(b). Figure 2 (b
), the voltage between VDD8 and output voltage terminal 10 is set to V
The voltage between out, VDD8 and ss9 is the power supply voltage. For engineering GF'KT6, short-circuit the gate and drain.
If the threshold voltage of GFKT 6 is vTDI, then VT
Since DI is a negative voltage, it is always V flD −V
out - VTDI > VDD - Vout holds true and always operates in non-saturation. = On the other hand, the gate and source of the GFET7 are shorted. If the threshold voltage of the engineering GFEAT 7 is VTD2, then -V TD2 〈V B
When the output voltage V out becomes e −V out , that is, in the saturated operation, the output voltage V out becomes a constant voltage regardless of the voltage fluctuation between 7DD and 7ss.

画工GFETに一定電流が流れるから、K、(VTDI
)”= (2(Vout −V TD2)(Vout)
−Vout” )が成シ立ち、これを解き、V TDI
 : V TD2 = V TD であるから、 V out = (1−y’2)VTD =0.414
X(VTD)が得られる。すなわち、ある出力電圧を得
るための閾値電圧の決定条件は、VTn=Vout10
.414という簡単な関係から得られる。なお、第2図
(a)の回路についても同様力ことがいえる。更に本発
明の定電圧回路の出力電圧ばらつきは、2つの工GFE
Tを同時に同じ打ち込みイオン量でイオンインプラを行
なって閾値を決定しているので、従来の閾値電圧の差よ
り得られる定電圧回路と比較して半分に減少することが
可能となった。またIGFET 6と7の形状は、全く
同様に設計すればに値は等しくなるの、で、複雑人設計
計算を要しない。また、定電圧出力値にに値が関与しな
いので温特のばらつきをなくシ、均一の特性を得ること
ができる。
Since a constant current flows through the painter GFET, K, (VTDI
)”= (2(Vout −V TD2)(Vout)
-Vout”) holds true, solve this, and V TDI
: Since V TD2 = V TD, V out = (1-y'2) VTD = 0.414
X(VTD) is obtained. In other words, the condition for determining the threshold voltage to obtain a certain output voltage is VTn=Vout10
.. It can be obtained from the simple relationship 414. Incidentally, the same holds true for the circuit shown in FIG. 2(a). Furthermore, the output voltage variation of the constant voltage circuit of the present invention is caused by two engineering GFEs.
Since the threshold value is determined by performing ion implantation with the same amount of implanted ions at the same time, T can be reduced by half compared to a conventional constant voltage circuit obtained from the difference in threshold voltage. Moreover, if the shapes of IGFETs 6 and 7 are designed in exactly the same way, the values will be the same, so complex human design calculations are not required. Further, since the value does not affect the constant voltage output value, variations in temperature characteristics can be eliminated and uniform characteristics can be obtained.

以上詳述したように、本発明の定電圧回路によれば、■
C上で狙いの定電圧回路を得るために、論r←エフnA
^〒^■浦m^Hpl大股グτTMへ也V TD : 
V out / 0.414という式より容易に決定す
ることができ、出力電圧のばらつきが、従来の閾値電圧
の差を用いた回路と比較して半分に減少することができ
、更に、温特のばらつきの小さい回路を得ることができ
、工a内で極めて安定した定電圧回路を提供するもので
ある。
As detailed above, according to the constant voltage circuit of the present invention,
In order to obtain the desired constant voltage circuit on C, logic r←FnA
^〒^■Uram^Hpl Omatagu τTM Heya V TD:
It can be easily determined from the formula V out / 0.414, and the variation in output voltage can be reduced by half compared to the conventional circuit using the difference in threshold voltage. A circuit with small variations can be obtained, and an extremely stable constant voltage circuit can be provided within the factory.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)、第1図(b)とは、それぞれ従来の定電
圧回路の回路図、第2図(a)と第2図(b)とは、そ
れぞれ本発明の定電圧回路の第1と第2の実施例の回路
図である。 6.7・・−・・・デプレッション彫工GFET8 ・
・・・・・VDD 9・・・・・・vs[+10・・・
・・・出力電圧端子 以上 出願人 セイコー電子工業株式会社 徨他人 弁理+ 最 上 務 第2図とa) 第2図(b)
Figures 1(a) and 1(b) are circuit diagrams of conventional constant voltage circuits, and Figures 2(a) and 2(b) are circuit diagrams of constant voltage circuits of the present invention, respectively. FIG. 3 is a circuit diagram of a first and second embodiment. 6.7...Depression carver GFET8 ・
...VDD 9...vs [+10...
...output voltage terminal or higher Applicant: Seiko Electronic Industries Co., Ltd. Attorney + Mogami Figure 2 and a) Figure 2 (b)

Claims (1)

【特許請求の範囲】[Claims] ゲートとドレインを接続した第1の電界効果型トランジ
スタのソースと、ゲートとソースを接続した前記第1の
電界効果型トランジスタと同じ導電型の第2の電界効果
型トランジスタのドレインとを電源に対して直列に接続
した回路において、前記第1と第2の電界効果型トラン
ジスタの閾値電圧を等しくすると共に、デプレノション
形七したことを特徴とする定電圧回路。
A source of a first field effect transistor whose gate and drain are connected and a drain of a second field effect transistor of the same conductivity type as the first field effect transistor whose gate and source are connected to a power source. 1. A constant voltage circuit, characterized in that the threshold voltages of the first and second field effect transistors are made equal in the circuit connected in series, and the circuit is of a depletion type.
JP58216880A 1983-11-17 1983-11-17 Constant voltage circuit Pending JPS60108920A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58216880A JPS60108920A (en) 1983-11-17 1983-11-17 Constant voltage circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58216880A JPS60108920A (en) 1983-11-17 1983-11-17 Constant voltage circuit

Publications (1)

Publication Number Publication Date
JPS60108920A true JPS60108920A (en) 1985-06-14

Family

ID=16695354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58216880A Pending JPS60108920A (en) 1983-11-17 1983-11-17 Constant voltage circuit

Country Status (1)

Country Link
JP (1) JPS60108920A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990001691A1 (en) * 1988-08-08 1990-02-22 Bellhouse Technology Limited Particle assay
JP2012022559A (en) * 2010-07-15 2012-02-02 Ricoh Co Ltd Semiconductor circuit and constant-voltage circuit using the same
CN104035472A (en) * 2014-06-24 2014-09-10 吴江圣博瑞信息科技有限公司 Full-CMOS (complementary metal oxide semiconductor) reference voltage source generator circuit

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990001691A1 (en) * 1988-08-08 1990-02-22 Bellhouse Technology Limited Particle assay
JP2012022559A (en) * 2010-07-15 2012-02-02 Ricoh Co Ltd Semiconductor circuit and constant-voltage circuit using the same
CN104035472A (en) * 2014-06-24 2014-09-10 吴江圣博瑞信息科技有限公司 Full-CMOS (complementary metal oxide semiconductor) reference voltage source generator circuit

Similar Documents

Publication Publication Date Title
US4417263A (en) Semiconductor device
US5825695A (en) Semiconductor device for reference voltage
US4309627A (en) Detecting circuit for a power source voltage
US4361797A (en) Constant current circuit
TW401655B (en) Internal power circuit
US4442398A (en) Integrated circuit generator in CMOS technology
US4096430A (en) Metal-oxide-semiconductor voltage reference
US4830976A (en) Integrated circuit resistor
US20020113642A1 (en) Reference voltage circuit
SE8204247D0 (en) REFERENCE VOLTAGE GENERATOR
KR0126911B1 (en) Circuit and method for voltage reference generating
US4160176A (en) Electronic watch
EP0085991A2 (en) Logic circuit
US8779853B2 (en) Amplifier with multiple zero-pole pairs
US5495166A (en) MOS transistor threshold voltage generator
JPS60108920A (en) Constant voltage circuit
US4740714A (en) Enhancement-depletion CMOS circuit with fixed output
GB2090442A (en) A low voltage regulation circuit
WO1992013390A1 (en) Low standby current intermediate dc voltage generator
EP0337747B1 (en) Circuit for producing a constant voltage
GB2081940A (en) MOS transistor circuit
JPH064160A (en) Mosfet constant current source generation circuit
JPS5671313A (en) Monolithic reference current source
GB1512388A (en) Differential amplifiers
GB2081458A (en) Voltage comparitors