JPS60108789A - Seal ring for driving mechanism of control rod for nuclear power plant - Google Patents

Seal ring for driving mechanism of control rod for nuclear power plant

Info

Publication number
JPS60108789A
JPS60108789A JP58217203A JP21720383A JPS60108789A JP S60108789 A JPS60108789 A JP S60108789A JP 58217203 A JP58217203 A JP 58217203A JP 21720383 A JP21720383 A JP 21720383A JP S60108789 A JPS60108789 A JP S60108789A
Authority
JP
Japan
Prior art keywords
control rod
seal ring
nuclear power
power plant
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58217203A
Other languages
Japanese (ja)
Inventor
光雄 河合
薫 多田
祐司 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58217203A priority Critical patent/JPS60108789A/en
Publication of JPS60108789A publication Critical patent/JPS60108789A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Sealing Devices (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明はコバルトを含まず耐摩耗性に優れたニッケル基
合金で形成された原子力発電ゾシント制御棒駆動機構用
シールリングに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a seal ring for a nuclear power generation Zosynt control rod drive mechanism, which is made of a nickel-based alloy that does not contain cobalt and has excellent wear resistance.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

一般に原子力発電プラント用制御棒駆動機構は第1図に
示すように原子炉容器1の外側に突設した筒体2の内側
に制御棒3を支持する支持筒4を挿着し、炉水と制御棒
駆動水とを遮断するシールリング5.6を設けて、制御
棒駆動水の供給によシ制御棒3を上下駆動させるように
なっている。
Generally, a control rod drive mechanism for a nuclear power plant has a support tube 4 that supports a control rod 3 inserted inside a tube body 2 that protrudes from the outside of a reactor vessel 1, as shown in FIG. A seal ring 5.6 is provided to isolate the water from the control rod drive water, and the control rod 3 is driven up and down by the supply of the control rod drive water.

原子炉の停止あるいは出力制御時において制御棒3を上
昇させるには、入ロアから圧力水を供給して、チェック
バルブ8を閉じると、圧力水が制御棒3を支持する支持
筒4の下面に作用してこれを押し上げ制御棒3が上昇す
る。このとき内側案内軸9に取付けたシールリング5は
支持筒4の内壁と摺動摩擦を生じ摩耗する。
To raise the control rods 3 during reactor shutdown or power control, pressurized water is supplied from the inlet lower and the check valve 8 is closed, causing the pressure water to reach the lower surface of the support cylinder 4 that supports the control rods 3. This causes the control rod 3 to rise. At this time, the seal ring 5 attached to the inner guide shaft 9 generates sliding friction with the inner wall of the support tube 4 and wears out.

一方、原子炉の起動、出力上昇時において、制御棒3を
下降させるには、入口10から圧力水を供給すると、圧
力水がコレットピストン11の下面に作用してこれを押
し上げる。コレットピストン11は、その上昇過程でバ
ネ12を圧縮し、これが#1は最大に圧縮されたとき、
コレットピストン11の上端面が笠13の下面の傾斜面
に衝合すると、コレットピストン11が支持筒4のくほ
み14からはなれ、ストッ・千−が外れて、自重で制御
棒3が下降する。このlコレットピストン11に取付け
たシールリング6は外側案内筒15の外壁と笠支え筒1
6の内壁とで摺動摩擦を生ずる。
On the other hand, in order to lower the control rod 3 when starting up the reactor and increasing the output, pressurized water is supplied from the inlet 10, and the pressure water acts on the lower surface of the collet piston 11 and pushes it up. The collet piston 11 compresses the spring 12 during its rising process, and when #1 is compressed to the maximum,
When the upper end surface of the collet piston 11 collides with the inclined surface of the lower surface of the cap 13, the collet piston 11 separates from the groove 14 of the support tube 4, the stopper comes off, and the control rod 3 descends under its own weight. . The seal ring 6 attached to this L collet piston 11 is connected to the outer wall of the outer guide tube 15 and the cap support tube 1.
Sliding friction occurs with the inner wall of 6.

このシールリング5.6のように耐摩耗性を必要とされ
る部品には、一般にコバルトを約50tIb含むステラ
イトと呼ばれるコバルト基合金が使用されている。
A cobalt-based alloy called Stellite containing approximately 50 tIb of cobalt is generally used for parts such as the seal ring 5.6 that require wear resistance.

しかしながらコバルト基合金で構成されたシールリング
を原子力発電プラントの制御棒駆動機構に使用すると、
摩擦による摩耗生成物や腐食生成物がコバルトを含むた
め、これが流水によシ原子炉中に持ち来たされると、中
性子の照射を受けてコバルト60となシ、原子力発電プ
ラントの放射線線量率を上昇させることになる。
However, when seal rings made of cobalt-based alloys are used in control rod drive mechanisms of nuclear power plants,
Wear products and corrosion products from friction contain cobalt, so when this is brought into the reactor by flowing water, it is irradiated with neutrons and becomes cobalt-60, which increases the radiation dose rate of nuclear power plants. will increase.

更にこのコバルト60が蓄積すると原子力発電プラント
の定期検査時における作業従事者の放射線被曝量を増加
させる虞れがあシ、ひいてはプラントの稼動率を低下さ
せることになる。
Furthermore, if this cobalt-60 accumulates, there is a risk of increasing the amount of radiation exposure of workers during periodic inspections of nuclear power plants, which in turn will reduce the operating rate of the plant.

〔発明の目的〕[Purpose of the invention]

本発明はかかる点に鑑みなされたもので、コバルトを合
金元素として含まない二、ケル基合金を用いて、耐摩耗
性に優れ、しかもコバルト60による放射線線量率の上
昇を抑制してプラントの稼動率の向上を図った原子力発
電プラント制御棒駆動機構用シールリングを提供するこ
とを目的とするものである。
The present invention has been developed in view of the above, and uses a bi-Kel-based alloy that does not contain cobalt as an alloying element, which has excellent wear resistance, and also suppresses the increase in radiation dose rate due to cobalt-60, allowing plant operation. The object of the present invention is to provide a seal ring for a control rod drive mechanism of a nuclear power plant, which improves efficiency.

〔発明の概要〕[Summary of the invention]

本発明は重量パーセントで炭素o、is以下、硅素1.
0%以下、マンガン1.0チ以下、クロム10〜25チ
、モリブデン2.0〜10%、アルミニウム0.1〜1
.0係、チタン0.1〜1.5係、鉄2〜25%、ニオ
ブ3.0〜6. o qb 、残部ニッケルおよび付随
的不純物より成る耐摩耗性合金で構成されたことを特徴
とするものである。
The present invention contains less than or equal to carbon o, is and silicon in weight percent.
0% or less, manganese 1.0% or less, chromium 10-25%, molybdenum 2.0-10%, aluminum 0.1-1
.. 0%, titanium 0.1-1.5%, iron 2-25%, niobium 3.0-6%. o qb , the remainder being nickel and incidental impurities.

次に本発明の原子力発電プラント制御棒駆動機構用シー
ルリングを構成する耐擦耗性合金の化学組成とその添加
理由について説明する。
Next, the chemical composition of the wear-resistant alloy constituting the seal ring for a nuclear power plant control rod drive mechanism of the present invention and the reason for its addition will be explained.

炭素は合金に固溶し強度を向上させるために必要な元素
で、通常は0,02〜0.06%程度添加するが、多量
の添加は炭化物が結晶粒界に析出し、耐粒界腐食性や靭
性な害するので0.1係以下とする。
Carbon is a necessary element to dissolve in the alloy and improve its strength, and is usually added in an amount of about 0.02 to 0.06%, but if it is added in large amounts, carbides will precipitate at grain boundaries, resulting in poor intergranular corrosion resistance. Since it damages the strength and toughness, the coefficient should be set to 0.1 or less.

硅素は溶解時に脱酸剤として添加するもので通常は0.
1〜0.6%程度含有するが、多量の添加は靭性や加工
性を害するので1.0%以下とする。
Silicon is added as a deoxidizing agent during melting and is usually 0.
It is contained in an amount of about 1 to 0.6%, but addition of a large amount impairs toughness and workability, so the content should be 1.0% or less.

マンガンは溶解時に脱酸、脱硫剤として添加するもので
、通常は0.1〜0,5チ程度含有する。
Manganese is added as a deoxidizing and desulfurizing agent during melting, and usually contains about 0.1 to 0.5 titanium.

しかし多量に添加しても、その効果が小さくなるので1
.0%以下とする。
However, even if a large amount is added, the effect will be small, so 1
.. 0% or less.

クロムは合金の強度や耐食性を向上させる作用をなす元
素で10〜25憾、特に15〜20チの範囲が望ましい
。10憾未満では添加効果が少なく、また25憾を越え
ると加工性を害するので上記範囲に規定した。
Chromium is an element that improves the strength and corrosion resistance of the alloy, and is preferably in the range of 10 to 25%, particularly 15 to 20%. If it is less than 10, the effect of addition will be small, and if it exceeds 25, the processability will be impaired, so the above range is specified.

モリブデンは合金の強度を向上させると共に耐食性を向
上させる作用があυ、少なくとも2チ以上の添加が必要
である。しかし10%を越える多量の添加線加工性を劣
化させるので、これ以下に抑える必要がある。
Molybdenum has the effect of improving the strength and corrosion resistance of the alloy, so it is necessary to add at least two or more molybdenum. However, since a large amount of addition exceeding 10% deteriorates the wire workability, it is necessary to keep it below this value.

アルミニウムは二、ケルと金属間化合物を生成して合金
中に析出し、合金の強度を向上させる作用をなす元素で
ある。この場合0.14未満では効果が少なく、またチ
タンやニオブの含有量との兼ね合いもあるが、1.0%
を越えて多量に添加すると加工性が悪くなるので0.1
〜1.0チの範囲が良く、特に望ましくは0.2〜0.
7係が良い。
Aluminum is an element that forms an intermetallic compound with Kel, precipitates in the alloy, and improves the strength of the alloy. In this case, if it is less than 0.14, there is little effect, and there is also a balance with the content of titanium and niobium, but 1.0%
If added in a large amount exceeding 0.1, the processability will deteriorate.
The range is preferably from 1.0 to 1.0, particularly preferably from 0.2 to 0.
Section 7 is good.

チタンもアルミニウムと同様に合金の強度を向上させる
元素で0.1%以上、望ましくは0.2チ以上添加する
。しかし多量の添加はアルミニウムとニオブとの兼ね合
いもあるが加工性が悪くなることから1.5係までとし
た。
Like aluminum, titanium is an element that improves the strength of the alloy and is added in an amount of 0.1% or more, preferably 0.2% or more. However, the addition of a large amount deteriorates workability, although there is a balance between aluminum and niobium, so the ratio was set to 1.5.

鉄は合金の熱間鍛造性を向上させる作用をなす元素であ
る。この場合2%未満の添加では効果が少なく、また2
5係を越える多量の添加は耐食性が悪くなるので、これ
以下に抑えた。
Iron is an element that improves the hot forgeability of the alloy. In this case, adding less than 2% will have little effect;
Addition of a large amount exceeding 5% deteriorates corrosion resistance, so it was kept below this range.

ニオブはアルミニウムやチタンと同様にニッケルと化合
物を生成して合金の耐摩耗性と強度を向上させるのに有
効な元素である。この場合3.0%未満では効果が十分
に得られず、また6、04を越えるとアルミニウムやチ
タンと同様に加工性を害するので、この範囲とし友。
Niobium, like aluminum and titanium, is an effective element that forms compounds with nickel to improve the wear resistance and strength of alloys. In this case, if it is less than 3.0%, the effect will not be sufficiently obtained, and if it exceeds 6.04%, workability will be impaired like aluminum or titanium, so this range is recommended.

〔発明の実施例〕[Embodiments of the invention]

実施例1,2 第1表に示す組成の合金を用意し、これを高周波誘導溶
解炉で溶製後、熱間鍛造を行ない、この後溶体化処理を
施した。次に約20%の冷間加工を行った後、第1表に
示す条件で時効処理を施してこれから試験片を採取した
Examples 1 and 2 Alloys having the compositions shown in Table 1 were prepared, melted in a high frequency induction melting furnace, hot forged, and then subjected to solution treatment. Next, after performing cold working of about 20%, aging treatment was performed under the conditions shown in Table 1, and test pieces were taken from this.

このようにして得られた試験片17を第2図に示すよう
に相手材18に接触させた状態で、試験片17に荷重W
をかけ、相手材18を摺動幅25mで10.000回(
総摺動距離500m)純水中で往復運動させた。なお試
験片17の摺動摩擦面の面積は15−!で、また相手材
18は5US304の板上にCr−B−8l−Ni 系
の=yケル基耐摩耗材を溶射して表面粗さ3Sのものを
用いた。
With the test piece 17 thus obtained in contact with the mating material 18 as shown in FIG.
10,000 times (with a sliding width of 25 m).
Total sliding distance: 500 m) Reciprocating motion was performed in pure water. The area of the sliding friction surface of test piece 17 is 15-! As the mating material 18, a 5US304 plate was sprayed with a Cr-B-8l-Ni based =yKel base wear-resistant material to have a surface roughness of 3S.

評価方法は試験片17に荷重Wを1 kgおよび5kg
加えたとき、相手材18が静止状態から動状態に移るの
に必要な力Pの大小を比較すると共に、試験前後におけ
る重量測定によシ摩擦損耗量を比較した。この測定結果
は第2表に示す通シでおる。
The evaluation method was to apply a load W of 1 kg and 5 kg to the test piece 17.
When applied, the magnitude of the force P required for the mating member 18 to shift from a static state to a moving state was compared, and the amount of friction wear was compared by weight measurement before and after the test. The results of this measurement are shown in Table 2.

比較例1〜6 第1表の比較例1〜6に示す組成の合金および金属を用
意し、比較例1,2.3は上記実施例と同様の熱処理と
冷間加工を行った。但し比較例3は冷間加工後、時効処
理を行わずに試験片を採取した。
Comparative Examples 1 to 6 Alloys and metals having the compositions shown in Comparative Examples 1 to 6 in Table 1 were prepared, and Comparative Examples 1, 2.3 were subjected to heat treatment and cold working in the same manner as in the above examples. However, in Comparative Example 3, a test piece was taken without aging treatment after cold working.

また比較例4は高周波真空誘導溶解炉を用いて溶解後、
金型に鋳造した。これから試験片を採取してバナジウム
を含む溶融硼砂中で1000℃、5時間の表面処理を行
い、表面にバナジウム炭化物を生成させたものを用いた
In addition, in Comparative Example 4, after melting using a high frequency vacuum induction melting furnace,
Cast into a mold. A test piece was taken from this and subjected to surface treatment in molten borax containing vanadium at 1000°C for 5 hours to form vanadium carbide on the surface.

比較例5は市販の純Moで、MO粉末を焼結後、熱間鍛
造したものから試験片を採取した。更に比較例6は市販
のT1合金をアーク溶解後、熱間鍛造した後、第1表に
示した条件で熱処理を施したものから試験片を採取した
In Comparative Example 5, test pieces were taken from commercially available pure Mo, which was hot-forged after sintering MO powder. Furthermore, in Comparative Example 6, a test piece was taken from a commercially available T1 alloy that was arc melted, hot forged, and then heat treated under the conditions shown in Table 1.

このように得られた試験片を上記実施例と同様に、摺動
試験を行い、静止状態から動状態へ移る力と摩擦損耗量
を夫々測定し、この結果を第2表に併記した。
The thus obtained test pieces were subjected to a sliding test in the same manner as in the above examples, and the force of transition from a static state to a dynamic state and the amount of frictional wear were measured, respectively, and the results are also listed in Table 2.

第2表より明らかなように、本発明の実施例1および2
は摺動摩擦時の摩擦抵抗が、従来シールリングなどの耐
摩耗部品として使用されている比較例2のコバルト基合
金に比べて同等以下であす、シかも摩擦損耗量も少なく
、耐摩耗性に優れていることが確認された。またモリブ
デンやチタンの添加量が本発明の規定よル少ない比較例
1では摩擦損耗量が従来のコバルト基台金よシ多くなっ
ている。
As is clear from Table 2, Examples 1 and 2 of the present invention
The frictional resistance during sliding friction is the same or lower than that of the cobalt-based alloy of Comparative Example 2, which is conventionally used as wear-resistant parts such as seal rings.It also has less frictional wear and excellent wear resistance. It was confirmed that Furthermore, in Comparative Example 1, in which the amounts of molybdenum and titanium added are smaller than the specifications of the present invention, the amount of frictional wear is greater than that of the conventional cobalt-based metal.

また従来より耐摩耗性に優れていると言われているマン
ガンを約8チ含んだ鉄合金の比較例3や、バナジウム炭
化物を表面に生成させた比較例4、あるいは各種機械部
品の耐摩耗性向上にオーバレイして使用される比較例5
およびチタン合金の比較例6に比べて、実施例1および
2は摺動摩擦時の摩擦抵抗が小さく、且つ摩擦損耗量も
少なく、耐摩耗性に優れている。
In addition, Comparative Example 3 is an iron alloy containing approximately 80% manganese, which is said to have excellent wear resistance, Comparative Example 4 is a material with vanadium carbide formed on the surface, and wear resistance of various mechanical parts. Comparative example 5 used as an overlay on improvement
Compared to Comparative Example 6 of titanium alloy, Examples 1 and 2 have lower frictional resistance during sliding friction, less frictional wear, and excellent wear resistance.

また実施例1のニッケル基合金、および従来から耐摩耗
性部品として使用されている比較例2のコバルト基合金
を用いて、外径83.37m。
Further, using the nickel-based alloy of Example 1 and the cobalt-based alloy of Comparative Example 2, which has been conventionally used as wear-resistant parts, the outer diameter was 83.37 m.

内径79.39 tm 、幅2.36鰭のシールリング
を作成した。これを第1図に示すような実規模制御棒駆
動試験装置に組込んで、アキュムレータスクラム、ベッ
セルスクラム、ドライツイン、ドライブアウト、ジ冒ゲ
イン、ジ冒グアウドなど5年稼動相当の加速試験を行′
つた。
A seal ring with an inner diameter of 79.39 tm and a width of 2.36 fins was prepared. This was incorporated into a full-scale control rod drive test equipment as shown in Figure 1, and accelerated tests equivalent to 5 years of operation were conducted, including accumulator scram, vessel scram, dry twin, drive out, diversion gain, and diversion guard. ′
Ivy.

コノ結果、本発明のシールリングでは摩擦損耗量が0.
0111以下と、コバルト基合金製シールリングの摩擦
損耗量0.04,9よシ大幅に少なく、優れ九献摩耗性
を有することが確認された。
As a result, the friction wear of the seal ring of the present invention is 0.
0111 or less, which was significantly lower than the friction loss of the cobalt-based alloy seal ring, which was 0.04.9, and was confirmed to have excellent wear resistance.

〔発明の効果〕〔Effect of the invention〕

以下説明した如く、本発明に係る原子力発電プラント制
御棒駆動機構用シールリングによれば、シールリングを
構成するニッケル基合金の組成範囲を規定することによ
り、原子力の起動。
As explained below, according to the seal ring for a nuclear power plant control rod drive mechanism according to the present invention, by defining the composition range of the nickel-based alloy constituting the seal ring, it is possible to start up a nuclear power plant.

停止や出力の上昇、下降に伴うシールリングの摩擦抵抗
や摩擦損耗が小さく、長期間安定して制御棒の駆動を行
うことができ、しかもコバルトを含まないことからコバ
ルト60による放射線線量率の上昇が抑えられ、ひい−
〔は7″ラントの稼動率の向上が図れるなど顕著な効果
を有するものである。
Frictional resistance and frictional wear of the seal ring due to stoppage, increase and decrease of output are small, and the control rod can be driven stably for a long period of time.Furthermore, since it does not contain cobalt, the radiation dose rate increases due to cobalt-60. is suppressed, and
This has remarkable effects such as improving the operating rate of the 7″ runt.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は原子力発電プラントの制御棒駆動機構を示す縦
断面図、第2図は摺動摩擦試験方法を示す説明図である
。 1・・・原子炉容器、2・・・筒体、3・・・制御棒、
4・・・支持筒、5,6・・・シールリング、7.10
・・・入口、9・・・内側案内軸、11・・・コレット
ピストン、12・・・バネ、I7・・・試験片、18・
・・相手材。
FIG. 1 is a longitudinal sectional view showing a control rod drive mechanism of a nuclear power plant, and FIG. 2 is an explanatory diagram showing a sliding friction test method. 1... Reactor vessel, 2... Cylindrical body, 3... Control rod,
4... Support tube, 5, 6... Seal ring, 7.10
...Inlet, 9...Inner guide shaft, 11...Collet piston, 12...Spring, I7...Test piece, 18...
・Counter material.

Claims (1)

【特許請求の範囲】[Claims] 重量・平−セントで炭素0.1%以下、硅素1.0係以
下、マンがン1.04以下、クロム10〜25係、モリ
ブデン2.0〜10係、アルミニウム0.1〜1.0係
、チタン0.1〜1.5係、鉄2〜25係、ニオブ3.
0〜6.0’l、残部ニッケルおよび付随的不純物よシ
成る耐摩耗性合金で構成されたことを特徴とする原子力
発電プラント制御棒駆動機構用シールリング。
Weight/average cents: carbon 0.1% or less, silicon 1.0% or less, manganese 1.04% or less, chromium 10-25%, molybdenum 2.0-10%, aluminum 0.1-1.0% 0.1 to 1.5 parts of titanium, 2 to 25 parts of iron, 3 parts of niobium.
A seal ring for a control rod drive mechanism of a nuclear power plant, characterized in that it is made of a wear-resistant alloy consisting of 0 to 6.0'l, the balance being nickel and incidental impurities.
JP58217203A 1983-11-18 1983-11-18 Seal ring for driving mechanism of control rod for nuclear power plant Pending JPS60108789A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58217203A JPS60108789A (en) 1983-11-18 1983-11-18 Seal ring for driving mechanism of control rod for nuclear power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58217203A JPS60108789A (en) 1983-11-18 1983-11-18 Seal ring for driving mechanism of control rod for nuclear power plant

Publications (1)

Publication Number Publication Date
JPS60108789A true JPS60108789A (en) 1985-06-14

Family

ID=16700478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58217203A Pending JPS60108789A (en) 1983-11-18 1983-11-18 Seal ring for driving mechanism of control rod for nuclear power plant

Country Status (1)

Country Link
JP (1) JPS60108789A (en)

Similar Documents

Publication Publication Date Title
EP0545753A1 (en) Duplex stainless steel having improved strength and corrosion resistance
JPS6358213B2 (en)
US4512820A (en) In-pile parts for nuclear reactor and method of heat treatment therefor
US2398702A (en) Articles for use at high temperatures
US4888153A (en) Fe-base build-up alloy excellent in resistance to corrosion and wear
US2621122A (en) Alloy for heat and corrosion resisting coating
JPS60108789A (en) Seal ring for driving mechanism of control rod for nuclear power plant
JPH0532463B2 (en)
KR940010230B1 (en) Improvement in structural parts of austenitic nichel-chromium-iron alloy
RU2640118C1 (en) Cobalt-based wear-resistant alloy
JPS6196061A (en) Control rod drive mechanism for nuclear powder plant
RU2637844C1 (en) Heat resistant nickel-based alloy for producing boiler parts and steam turbines operating under ultra-supercritical steam parameters
US4246048A (en) Forged atomic power plant parts
CN108330336A (en) A kind of high antioxygenic property group of the lanthanides nickel base superalloy and its preparation method and application
JPS60204849A (en) Sealing ring for control rod driving mechanism of nuclear power plant
JP5550298B2 (en) Ni-based alloy for forged parts of steam turbine, turbine rotor of steam turbine, moving blade of steam turbine, stationary blade of steam turbine, screwed member for steam turbine, and piping for steam turbine
JPS6167758A (en) Control rod driving mechanism for nuclear power generating plant
JPS61210159A (en) Control rod driving mechanism for nuclear power plant
US4849169A (en) High temperature creep resistant austenitic alloy
JP3427634B2 (en) Guide roller for control rod drive of nuclear power plant
JPH0572454B2 (en)
JP2832341B2 (en) Ni-base overlay alloy
US9683280B2 (en) Intermediate strength alloys for high temperature service in liquid-salt cooled energy systems
JPS6146793B2 (en)
JP3489633B2 (en) Sliding parts for nuclear power plants