JPH0572454B2 - - Google Patents

Info

Publication number
JPH0572454B2
JPH0572454B2 JP27023489A JP27023489A JPH0572454B2 JP H0572454 B2 JPH0572454 B2 JP H0572454B2 JP 27023489 A JP27023489 A JP 27023489A JP 27023489 A JP27023489 A JP 27023489A JP H0572454 B2 JPH0572454 B2 JP H0572454B2
Authority
JP
Japan
Prior art keywords
weight
erosion
erosion resistance
titanium
titanium alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP27023489A
Other languages
Japanese (ja)
Other versions
JPH03134126A (en
Inventor
Kazuhiro Koyoku
Hideo Sakuyama
Tsugio Ogura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP27023489A priority Critical patent/JPH03134126A/en
Publication of JPH03134126A publication Critical patent/JPH03134126A/en
Publication of JPH0572454B2 publication Critical patent/JPH0572454B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Arc Welding In General (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、スチームタービンブレード、ポン
プ、インペラー、航空機、粉粒体の空気輸送配
管、化学工業および石炭転換プロセス等エロージ
ヨンが工業上の問題として注目される部位に適用
される耐エロージヨン性に優れた合金に関するも
のである。 〔従来の技術〕 一般に液滴、雨滴、蒸気を含む気体または気泡
を含む液体等の流体、および固体粒子を含む液体
等の作用により材料が侵食される部位に用いられ
る材料には、第一に耐エロージヨン性が優れてい
ることが要求される。そこで、従来この種の材料
としては各種特殊鋼やステライト等の高力合金が
用いられているが、高速回転部材では耐エロージ
ヨン性と共に比強度の高い材料が、また腐食環境
においては耐エロージヨン性と共に耐食性の高い
材料が要求されるため今までのところ広範囲の使
用条件にわたつて良好な耐エロージヨン性を示す
金属材料は知られていない。 〔発明が解決しようとする課題〕 機械的、化学的な作用により材料が損耗してい
く現象であるエロージヨンは、スチームタービン
ブレード、ポンプ、インペラー、航空機、粉粒体
の空気輸送配管、化学工業および石炭転換プロセ
ス等で問題となつており、それらの技術の成否を
握る材料問題としてクローズアツプされてきてい
る。 一例として、火力発電および原子力発電等の低
圧タービンブレードの例で説明すると、現在ブレ
ードには12%Cr鋼や17−4PH鋼が使用され、10
〜15%程度の水滴が含まれる湿り蒸気中で高速回
転するためその最終段ブレードは激しくエロージ
ヨンを受ける。 そこで、ブレード先端にはエロージヨン防止を
目的として、耐エロージヨン性に優れたコバルト
基合金のステライトがエロージヨンシールド材と
してろう付け、または溶接によつて取り付けられ
ている。 しかし、近年発電の効率化を目的として、低圧
タービン最終段ブレードの長尺化が検討され、高
比強度のチタン合金がブレード材として検討され
始めている。この場合ステライトはコバルト基合
金であるためチタン合金製ブレードとの間に信頼
性の高い溶接接合部を得ることが困難である。 また、原子力発電においては、被曝量低減の意
味からもステライトに代るコバルトを含まないエ
ロージヨンシールド材が望まれている。 従つて、タービンの最終段ブレードにチタン合
金が使用される場合ブレードと同じチタン系で高
比強度があり、かつコバルトを含まないチタン合
金は蒸気タービンブレードのエロージヨンシール
ド材として有効と考えられ、Ti−15Mo−5Zr合
金等がシールド材として試用されているが耐エロ
ージヨン性の面でいまだ不十分であり、より耐エ
ロージヨン性の高いチタン合金が求められてい
る。 以上、低圧タービンブレードの例を示したが他
のエロージヨンを受ける部位に用いられる材料に
おいても、その耐エロージヨン性の向上は必要不
可欠なものとなつている。 本発明は、上述の問題点に鑑みて耐エロージヨ
ン性の高いチタン合金をスチームタービンブレー
ド、ポンプ、インペラー、航空機、粉粒体の空気
輸送配管、化学工業および石炭転換プロセス等エ
ロージヨンが工業上の問題として注目される部位
に利用できる耐エロージヨン材として提供するこ
とを目的とする。 〔課題を解決するための手段〕 エロージヨン現象は、流速のある液体、気体又
は固体粒子によつて固体材料が侵食を受ける現象
である。そして、一般に金属材料において耐エロ
ージヨン性は硬さと関係があり、同一合金系では
硬さが高いほど耐エロージヨン性は優れているこ
とが報告されている。 本発明者等は、チタン合金においてこの傾向が
あてはまるかどうかを調査するため熱処理によつ
て高い硬さの得られる既存のβ型チタン合金を中
心として硬さとエロージヨン減量の関係を磁歪振
動型エロージヨン試験機を用いて調査した。 その結果、第1図に示すようにチタン合金にお
いても供試材のビツカース硬さとエロージヨン減
量の間によい相関が見られた。 そこで、本発明者等は従来のチタン合金材に比
べ耐エロージヨン性の優れたチタン合金を開発す
ることを目的として、熱処理によつて高い硬さの
得られるチタン合金について研究を行つた。 その結果、チタンとの共析反応を生じる添加元
素、特にクロムを適度に添加し、さらにアルミニ
ウムと鉄を適量添加することにより得られたチタ
ン合金は時効処理を行う熱処理によつて著しい硬
さ上昇が見られ耐エロージヨン性も飛躍的に向上
することを見い出した。 本発明は上記の知見に基づいて、クロム6.0重
量%以上16.0重量%以下、アルミニウム2.0重量
%以上7.0重量%以下、鉄1.0重量%以上5.0重量%
以下、および酸素0.1重量%以上0.3重量%以下を
含み残部チタンおよび不可避的な不純物よりなる
ことを特徴とする耐エロージヨン性に優れたチタ
ン合金と、この合金を用いて肉盛溶接を行つた溶
接部およびこの合金を熱間もしくは冷間加工して
得た板材を溶体化処理の有無にかかわらず350℃
以上550℃以下の温度領域で時効処理することを
特徴とする耐エロージヨン性に優れたチタン合金
の熱処理方法およびその製造方法に係るものであ
る。 本発明において組成比の限定理由は以下のとお
りである。 まず、クロムはその含有量が6.0重量%未満で
は熱処理によつてもTiCr2の析出が不足し十分な
硬さが得られず優れた耐エロージヨン性を示さな
い。またその含有量が16.0重量%を越えると熱間
加工時にTiCr2の析出により加工性が低下し、健
全な板材等が得られなくなる。 また、アルミニウムはその含有量が2.0重量%
未満では熱処理によつてもα相の析出が不足する
ため十分な硬さが得られず優れた耐エロージヨン
性を示さない。また、その含有量が7.0重量%を
越えるとTi3Alの形成により脆化が進み加工が困
難となる。 鉄の含有量が1.0重量%未満では熱処理によつ
ても十分な硬さが得られず優れた耐エロージヨン
性を示さない。また、その含有量が5.0重量%を
越えると硬さ上昇とともに脆化が進み、加工性が
悪くなる。 酸素はその含有量が0.1重量%未満では十分な
硬さが得られず優れた耐エロージヨン性を示さな
い。一方、酸素量が0.3重量%を越えると加工性
が低下し、板材の製造や肉盛溶接用の溶接棒の製
造が困難となる。 そして、上記組成の合金を用いて肉盛溶接を行
つた溶接部、およびこの合金を熱間もしくは冷間
加工して得た板材を溶体化処理の有無にかかわら
ず350℃以上550℃以下の温度領域で時効処理する
ことにより析出硬化が生じ、はじめて優れた耐エ
ロージヨン性が得られる。 このような理由により本発明においては、耐エ
ロージヨン性の優れたチタン合金を得るために上
記の範囲にその組成および時効処理条件を限定し
た。 〔実施例〕 次に、本発明を実施例により詳細に説明する。 第1表に本発明に係る実施例および比較例のエ
ロージヨン試験の結果を示す。エロージヨン試験
は、磁歪振動型キヤビテーシヨンエロージヨン試
験機を用いて行ない、耐エロージヨン性を評価し
た。試験条件は、振動周波数20KHz、振動振幅
35μm、試験液水道水、液温20℃、試験時間2時
間とし、評価は試験後の重量減の大小で行なつ
た。 第1表に示す組成の各供試材(市販合金を除
く)のチタン合金は、高純度アルゴン雰囲気中で
アーク溶解した後、No.1〜4、17〜24、29、32、
33、37〜46、67〜76については950℃で、またNo.
5〜8、47〜51については900℃で、さらにNo.9
〜16、25〜28、30、31、34、35、36、52〜66、77
〜81については850℃で熱間圧延加工を行い、一
部は冷間圧延を行い板材を製造した。
[Industrial Field of Application] The present invention is applicable to steam turbine blades, pumps, impellers, aircraft, pneumatic transportation piping for powder and granular materials, chemical industries, coal conversion processes, and other areas where erosion is an industrial problem. This invention relates to an alloy with excellent erosion resistance. [Prior Art] In general, materials used in areas where the material is eroded by the action of droplets, raindrops, fluids such as gases containing vapor or liquids containing bubbles, and liquids containing solid particles include: Excellent erosion resistance is required. Conventionally, various special steels and high-strength alloys such as stellite have been used as materials of this kind, but materials with high erosion resistance and specific strength are needed for high-speed rotating parts, and materials with high erosion resistance and specific strength are used in corrosive environments. Since a material with high corrosion resistance is required, no metal material has been known so far that exhibits good erosion resistance over a wide range of usage conditions. [Problem to be solved by the invention] Erosion, which is a phenomenon in which materials are worn out due to mechanical and chemical effects, is a phenomenon that occurs in steam turbine blades, pumps, impellers, aircraft, air transportation piping for powder and granules, chemical industries, This has become a problem in coal conversion processes, etc., and has been highlighted as a material issue that determines the success or failure of these technologies. As an example, let's take the example of low-pressure turbine blades used in thermal power generation and nuclear power generation.Currently, 12% Cr steel and 17-4PH steel are used for blades,
Because it rotates at high speed in wet steam containing about 15% water droplets, the final stage blades undergo severe erosion. Therefore, Stellite, a cobalt-based alloy with excellent erosion resistance, is attached to the tip of the blade by brazing or welding as an erosion shield material for the purpose of preventing erosion. However, in recent years, efforts have been made to lengthen the final stage blades of low-pressure turbines in order to improve the efficiency of power generation, and titanium alloys with high specific strength have begun to be considered as blade materials. In this case, since Stellite is a cobalt-based alloy, it is difficult to obtain a highly reliable welded joint between it and the titanium alloy blade. Furthermore, in nuclear power generation, an erosion shielding material that does not contain cobalt and replaces stellite is desired from the perspective of reducing radiation exposure. Therefore, when a titanium alloy is used for the final stage blade of a turbine, a titanium alloy that is based on the same titanium as the blade, has high specific strength, and does not contain cobalt is considered to be effective as an erosion shield material for the steam turbine blade. Although Ti-15Mo-5Zr alloys have been tried as shielding materials, they are still insufficient in terms of erosion resistance, and titanium alloys with higher erosion resistance are being sought. Although the example of a low-pressure turbine blade has been shown above, it is essential to improve the erosion resistance of materials used in other parts subject to erosion. In view of the above-mentioned problems, the present invention has developed a highly erosion-resistant titanium alloy for use in steam turbine blades, pumps, impellers, aircraft, pneumatic transportation piping for powder and granules, chemical industries, coal conversion processes, etc. where erosion is an industrial problem. The purpose is to provide an erosion-resistant material that can be used in areas that are attracting attention. [Means for Solving the Problems] The erosion phenomenon is a phenomenon in which a solid material is eroded by a liquid, gas, or solid particles with a flowing velocity. In general, erosion resistance of metal materials is related to hardness, and it has been reported that in the same alloy system, the higher the hardness, the better the erosion resistance. In order to investigate whether this tendency applies to titanium alloys, the present inventors conducted magnetostrictive vibration erosion tests to examine the relationship between hardness and erosion loss, focusing on existing β-type titanium alloys that can obtain high hardness through heat treatment. The investigation was conducted using a machine. As a result, as shown in FIG. 1, a good correlation was found between the Vickers hardness and erosion loss of the test material also in titanium alloys. Therefore, the present inventors conducted research on titanium alloys that can obtain high hardness through heat treatment, with the aim of developing a titanium alloy that has better erosion resistance than conventional titanium alloy materials. As a result, the hardness of titanium alloys obtained by adding appropriate amounts of additional elements that cause eutectoid reactions with titanium, especially chromium, and further adding appropriate amounts of aluminum and iron, increases significantly in hardness through aging heat treatment. It was found that the erosion resistance was also dramatically improved. Based on the above findings, the present invention has been developed based on the following findings: chromium 6.0% to 16.0% by weight, aluminum 2.0% to 7.0% by weight, iron 1.0% to 5.0% by weight.
A titanium alloy with excellent erosion resistance characterized by containing the following and 0.1% by weight or more and 0.3% by weight or less of oxygen, the balance being titanium and unavoidable impurities, and welding in which overlay welding is performed using this alloy. and plates obtained by hot or cold working of this alloy at 350°C with or without solution treatment.
The present invention relates to a heat treatment method for a titanium alloy with excellent erosion resistance, which is characterized by performing aging treatment in a temperature range of 550° C. or lower, and a method for producing the same. The reasons for limiting the composition ratio in the present invention are as follows. First, if the chromium content is less than 6.0% by weight, precipitation of TiCr 2 will be insufficient even during heat treatment, and sufficient hardness will not be obtained and excellent erosion resistance will not be exhibited. Furthermore, if the content exceeds 16.0% by weight, the workability will decrease due to the precipitation of TiCr 2 during hot working, making it impossible to obtain a sound plate or the like. In addition, aluminum content is 2.0% by weight
If it is less than that, sufficient hardness cannot be obtained due to insufficient precipitation of α phase even by heat treatment, and excellent erosion resistance is not exhibited. Furthermore, if the content exceeds 7.0% by weight, embrittlement progresses due to the formation of Ti 3 Al, making processing difficult. If the iron content is less than 1.0% by weight, sufficient hardness cannot be obtained even by heat treatment, and excellent erosion resistance is not exhibited. Furthermore, if the content exceeds 5.0% by weight, hardness increases and embrittlement progresses, resulting in poor workability. If the oxygen content is less than 0.1% by weight, sufficient hardness will not be obtained and excellent erosion resistance will not be exhibited. On the other hand, if the oxygen content exceeds 0.3% by weight, workability decreases, making it difficult to manufacture plate materials and welding rods for overlay welding. The welded part where overlay welding was performed using the alloy with the above composition, and the plate material obtained by hot or cold working this alloy, with or without solution treatment, at a temperature of 350°C or more and 550°C or less Precipitation hardening occurs by aging treatment in this region, and excellent erosion resistance is obtained for the first time. For these reasons, in the present invention, the composition and aging treatment conditions are limited to the above ranges in order to obtain a titanium alloy with excellent erosion resistance. [Example] Next, the present invention will be explained in detail with reference to Examples. Table 1 shows the results of erosion tests for Examples and Comparative Examples according to the present invention. The erosion test was conducted using a magnetostrictive vibration type cavitation erosion tester to evaluate erosion resistance. Test conditions are vibration frequency 20KHz, vibration amplitude
35 μm, the test solution was tap water, the liquid temperature was 20° C., and the test time was 2 hours, and evaluation was performed based on the weight loss after the test. After arc melting the titanium alloys of the compositions shown in Table 1 (excluding commercially available alloys) in a high-purity argon atmosphere, Nos. 1 to 4, 17 to 24, 29, 32,
33, 37-46, 67-76 at 950℃, and No.
5-8, 47-51 at 900℃, and No.9
~16, 25~28, 30, 31, 34, 35, 36, 52~66, 77
-81 were hot-rolled at 850°C, and some were cold-rolled to produce plates.

【表】【table】

【表】【table】

【表】【table】

〔発明の効果〕〔Effect of the invention〕

以上に説明したように、本発明によれば、スチ
ームタービンブレード、ポンプ、インペラー、航
空機、粉粒体の空気輸送配管、化学工業および石
炭転換プロセス等のエロージヨンが発生し易い部
位に利用できる耐エロージヨン性に優れたチタン
合金を得ることができる。
As described above, the present invention provides an erosion-resistant structure that can be used in areas where erosion is likely to occur, such as steam turbine blades, pumps, impellers, aircraft, air transportation piping for powder and granular materials, chemical industries, and coal conversion processes. A titanium alloy with excellent properties can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はチタン合金のビツカース硬さとエロー
ジヨン減量の関係を示すグラフである。
FIG. 1 is a graph showing the relationship between the Vickers hardness and erosion loss of titanium alloys.

Claims (1)

【特許請求の範囲】 1 クロム6.0重量%以上16.0重量%以下、アル
ミニウム2.0重量%以上7.0重量%以下、鉄1.0重量
%以上5.0重量%以下、および酸素0.1重量%以上
0.3重量%以下を含み残部チタンおよび不可避的
な不純物よりなる耐エロージヨン性に優れたチタ
ン合金。 2 請求項1記載のチタン合金を用いて肉盛溶接
を行つた溶接部を溶体化処理の有無にかかわらず
350℃以上550℃以下の温度領域で時効処理するこ
とにより優れた耐エロージヨン性を得ることを特
徴とするチタン合金の熱処理方法。 3 請求項1記載のチタン合金を熱間もしくは冷
間加工後溶体化処理の有無にかかわらず350℃以
上550℃以下の温度領域で時効処理することを特
徴とする耐エロージヨン性に優れたチタン合金の
製造方法。
[Scope of Claims] 1 Chromium 6.0% to 16.0% by weight, aluminum 2.0% to 7.0% by weight, iron 1.0% to 5.0% by weight, and oxygen 0.1% by weight or more
A titanium alloy with excellent erosion resistance, containing 0.3% by weight or less with the remainder being titanium and unavoidable impurities. 2. A welded part where overlay welding is performed using the titanium alloy according to claim 1, with or without solution treatment.
A method for heat treatment of titanium alloys characterized by obtaining excellent erosion resistance by aging treatment in a temperature range of 350°C or higher and 550°C or lower. 3. A titanium alloy with excellent erosion resistance, characterized in that the titanium alloy according to claim 1 is aged in a temperature range of 350°C or higher and 550°C or lower, with or without solution treatment after hot or cold working. manufacturing method.
JP27023489A 1989-10-19 1989-10-19 Titanium alloy excellent in erosion resistance and production thereof Granted JPH03134126A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27023489A JPH03134126A (en) 1989-10-19 1989-10-19 Titanium alloy excellent in erosion resistance and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27023489A JPH03134126A (en) 1989-10-19 1989-10-19 Titanium alloy excellent in erosion resistance and production thereof

Publications (2)

Publication Number Publication Date
JPH03134126A JPH03134126A (en) 1991-06-07
JPH0572454B2 true JPH0572454B2 (en) 1993-10-12

Family

ID=17483424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27023489A Granted JPH03134126A (en) 1989-10-19 1989-10-19 Titanium alloy excellent in erosion resistance and production thereof

Country Status (1)

Country Link
JP (1) JPH03134126A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4581425B2 (en) * 2003-07-25 2010-11-17 大同特殊鋼株式会社 β-type titanium alloy and parts made of β-type titanium alloy
JP2006200008A (en) * 2005-01-21 2006-08-03 Daido Steel Co Ltd beta-TYPE TITANIUM ALLOY AND PARTS MADE FROM beta-TYPE TITANIUM ALLOY
JP5130850B2 (en) 2006-10-26 2013-01-30 新日鐵住金株式会社 β-type titanium alloy
JP2009270163A (en) * 2008-05-08 2009-11-19 Daido Steel Co Ltd Titanium alloy
CN101935776B (en) * 2010-09-30 2012-08-22 洛阳双瑞精铸钛业有限公司 Beta titanium alloy material and preparation method thereof
FR3097236B1 (en) * 2019-06-12 2021-05-28 Centre Nat Rech Scient Titanium alloys with improved mechanical properties

Also Published As

Publication number Publication date
JPH03134126A (en) 1991-06-07

Similar Documents

Publication Publication Date Title
JPH03134124A (en) Titanium alloy excellent in erosion resistance and production thereof
EP2121996B1 (en) Filler metal composition and method for overlaying low nox power boiler tubes
US8419868B2 (en) Process and method to increase the hardness of Fe-Cr-C weld overlay alloy
EP1095167B1 (en) Advanced ultra-supercritical boiler tubing alloy
Arivazhagan et al. An assessment of hardness, impact strength, and hot corrosion behaviour of friction-welded dissimilar weldments between AISI 4140 and AISI 304
WO1997039153A1 (en) Alloy having high corrosion resistance in environment of high corrosiveness, steel pipe of the same alloy and method of manufacturing the same steel pipe
JPH02156034A (en) Alloy based on anticorrosive nickel
Ding et al. Formation of lamellar carbides in alloy 617-HAZ and their role in the impact toughness of alloy 617/9% Cr dissimilar welded joint
CN102021559A (en) Cobalt-based alloy powder for laser cladding of steam turbine last-stage blade
Xu et al. Effect of welding on the corrosion behavior of X65/Inconel 625 in simulated solution
Zhang et al. High-temperature solid particle erosion characteristics and damage mechanism of AlxCoCrFeNiSi high-entropy alloy coatings prepared by laser cladding
JPH0572454B2 (en)
JPS6314845A (en) Corrosion and abrasion resistant steel
JP4312408B2 (en) Corrosion resistant austenitic alloy
JP2020508872A (en) Use of nickel-chromium-molybdenum alloy
Sakthivel et al. Integrity Assessment of 10Cr Ferritic Steel/Alloy 617M Dissimilar Metal Weld Joint under Creep Condition
RU2637844C1 (en) Heat resistant nickel-based alloy for producing boiler parts and steam turbines operating under ultra-supercritical steam parameters
JPH0572453B2 (en)
JP4412964B2 (en) Coating alloys with corrosion and wear resistance
JPH06179952A (en) Austenitic stainless steel for soda recovering boiler heat transfer pipe
JPH03134145A (en) Titanium alloy having excellent erosion resistance and its manufacture
Kumar et al. Studies on Hot Corrosion of the 2.25 Cr-1Mo Boiler Tube Steel and Its Weldments in the Molten Salt Na 2 SO 4-60 pct V 2 O 5 Environment
Ohno et al. Development of low thermal expansion nickel base superalloy for steam turbine applications
JP5550298B2 (en) Ni-based alloy for forged parts of steam turbine, turbine rotor of steam turbine, moving blade of steam turbine, stationary blade of steam turbine, screwed member for steam turbine, and piping for steam turbine
Chandraker et al. HOT CORROSION BEHAVIOUR OF NICKEL CHROMIUM COATING AT DIFFERENT TEMPERATURES (800 o C AND 900 o C) ON SA213 T91 BOILER STEEL WELDMENTS

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term