JPS60108761A - Measurement of current - Google Patents

Measurement of current

Info

Publication number
JPS60108761A
JPS60108761A JP58217452A JP21745283A JPS60108761A JP S60108761 A JPS60108761 A JP S60108761A JP 58217452 A JP58217452 A JP 58217452A JP 21745283 A JP21745283 A JP 21745283A JP S60108761 A JPS60108761 A JP S60108761A
Authority
JP
Japan
Prior art keywords
resistor
current
temperature sensing
measured
sensing element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58217452A
Other languages
Japanese (ja)
Inventor
Terunori Mihara
輝儀 三原
Takeshi Oguro
大黒 健
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP58217452A priority Critical patent/JPS60108761A/en
Publication of JPS60108761A publication Critical patent/JPS60108761A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

PURPOSE:To elevate the accuracy by feeding a current to be measured and a reference current to a first resistor and a temperature sensing element and a second resistor and a temperature sensing element connected in series to a current path to be measured integrated on a common semiconductor substrate to detect output of temperature sensing elements. CONSTITUTION:In a system 31 to be measured, a reference system 32 and an arithmetic system 33 integrated on one semiconductor substrate with a circuit to be measured, a temperature sensing element 13 is arranged close to a resistor 8 in the system 31 inserted in series into a current path to be measured while a temperature sensing element 14 is arranged close to a resistor 9 connected in series to the reference power source 12 in the system 32. In addition, a pulse signal is applied for a fixed time DELTAt to a common control terminal G of switching elements 10 and 11 in the systems 31 and 32, a current (i) to be measured and the reference current I are fed to the resistors 8 and 9 and changes in the outputs of the elements 13 and 14 are applied to a divider 17 through differentiators 15 and 16 of the system 33. Thus, the resistors 8 and 9 and the elements 13 and 14 can be formed in the same structure with the same geometric shape.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、半導体集積回VFI (以下ICという)
を対象とした電流測定方法に関し、特に、測定回路系を
被測定回路系とともにIC化づるのに適した電流検出方
法に関する。
[Detailed Description of the Invention] (Industrial Application Field) This invention relates to semiconductor integrated circuit VFI (hereinafter referred to as IC).
The present invention relates to a current measuring method intended for use in electronic devices, and particularly relates to a current detecting method suitable for integrating a measuring circuit system together with a circuit system under test into an IC.

(従来技術とその問題点) 【Cを測定対象とした電流測定は、例えばバイポーラI
Cの特定回路部分の過電流保護などの目的で一般的に行
なわれており、簡便な測定系で正確な電流測定を行なう
ことが大きな課題である。
(Prior art and its problems) [Current measurement using C as a measurement target is, for example, bipolar I
This is generally done for the purpose of overcurrent protection of a specific circuit part of C, and it is a big problem to accurately measure the current with a simple measurement system.

従来、この種の分野では一般に次のような方法で電流測
定が行なわれている。
Conventionally, in this type of field, current measurement has generally been performed using the following method.

第2図に示すように、被測定回路を含むICの半導体基
板4の一部に拡散層5を形成して抵抗体3を作り(6は
シリコン酸化膜、7は電極をそれぞれ示している)、こ
の抵抗体3を被測定電流経路に直列に接続する。
As shown in FIG. 2, a resistor 3 is made by forming a diffusion layer 5 on a part of the semiconductor substrate 4 of the IC including the circuit under test (6 indicates a silicon oxide film, and 7 indicates an electrode). , this resistor 3 is connected in series to the current path to be measured.

そして第1図に示t J:うに、」:配紙抗体3の両端
に電圧検出器1を測定し、被測定電流iを、抵抗体3の
抵抗1ifi Rと電圧検出器1による検出電圧■とか
らオームの法則(i−V/R)からめている。これにつ
いては、例えばオーム社発行の半導体ハンドブックの第
514頁に記載されている。
Then, as shown in FIG. This is related to Ohm's law (i-V/R). This is described, for example, on page 514 of the Semiconductor Handbook published by Ohm Publishing.

しかしながら、このような従来の電流測定方法にあって
は、抵抗体3となる拡散層5の製造バラツキや抵抗体3
の温度特性(拡散抵抗の温度特性の一般的傾向を第3図
に示している)の影響で高精度な測定が行なえないとい
う問題があった。つまり、電流iを正確にめるには抵抗
ft1Rが正確に判っていなければならない。
However, in such a conventional current measurement method, manufacturing variations in the diffusion layer 5 that become the resistor 3 and
There was a problem in that highly accurate measurements could not be carried out due to the temperature characteristics of the diffusion resistance (the general trend of the temperature characteristics of the diffused resistance is shown in FIG. 3). In other words, in order to accurately set the current i, the resistance ft1R must be accurately known.

ところが、製造バラツキによる抵抗値Rの誤差が避けが
たいとともに、抵抗値Rが第3図のように温度に伴って
変化するのも避けられない。このような抵抗値Rの誤差
や温度特性が、従来の電流測定方法では直接的に測定値
に影響し、高精度な測定は望めない。
However, errors in the resistance value R due to manufacturing variations are unavoidable, and it is also unavoidable that the resistance value R changes with temperature as shown in FIG. Such errors in the resistance value R and temperature characteristics directly affect the measured value in the conventional current measuring method, and highly accurate measurement cannot be expected.

(発明の目的) この発明の目的は、測定系を複雑にすることなく、IC
を対象とした回路電流の測定を、ICの各素子のIu造
バラツキや温度特性に影響されずに高精度に行なうこと
のできる電流測定方法をW供することにある。
(Object of the invention) The object of the invention is to
An object of the present invention is to provide a current measurement method that can measure a circuit current with high accuracy without being affected by variations in IU structure or temperature characteristics of each element of an IC.

(発明の構成) 、上記の目的を達成するために、この発2明は、被測定
電流路に直列に挿入された第1の抵抗体と、この第1の
抵抗体に近接配置された第1の感温素子と、第2の抵抗
体と、この第2の抵抗体に近接配置された第2の感温素
子とを共通の半導体基板に集積形成しておき、上記第1
の抵抗体に未知の被測定電流を、また上記第2の抵抗体
に既知の基準電流をそれぞれ一定期間通電し、この通電
に伴う上記第1および第2の抵抗体の発熱による上記第
1および第2の感?!素子の出ノ]変化をそれぞれ検出
し、その検出値から上記被測定電流の大ぎさをめること
を特徴とする。
(Structure of the Invention) In order to achieve the above object, the second invention includes a first resistor inserted in series in the current path to be measured, and a second resistor disposed close to the first resistor. A first temperature sensing element, a second resistor, and a second temperature sensing element disposed close to the second resistor are integrated on a common semiconductor substrate, and the first temperature sensing element is integrated on a common semiconductor substrate.
An unknown current to be measured is applied to the resistor, and a known reference current is applied to the second resistor for a certain period of time. A second feeling? ! The present invention is characterized in that each change in the output of the element is detected, and the magnitude of the current to be measured is determined from the detected value.

(実施例のぴ2明) 第4図はこの発明の電流測定方法を適用して構成された
電流測定装置の構成を示している。この装置は被測定系
31と基準系32と演算系33に大別されるが、この実
施例においては、これらの全てが被測定回路とともに1
つの半導体基板にIC化されているものとする。
(Picture 2 of Embodiment) FIG. 4 shows the configuration of a current measuring device constructed by applying the current measuring method of the present invention. This device is roughly divided into a system under test 31, a reference system 32, and an arithmetic system 33, but in this embodiment, all of these are integrated into one system together with the circuit under test.
It is assumed that an IC is formed on one semiconductor substrate.

被測定系31には、未知の被測定電流iが流される被測
定電流路に直列挿入された抵抗体8およびスイッチング
素子10と、抵抗体8に近接配置された感温素子13が
含まれる。
The system to be measured 31 includes a resistor 8 and a switching element 10 inserted in series in a current path to be measured through which an unknown current to be measured i flows, and a temperature sensing element 13 disposed close to the resistor 8 .

!!準元系32は、抵抗体9・スイッチング素子11・
基準電流源12の直列回路と、抵抗体9に近接配置され
た感温素子14が含まれる。
! ! The quasi-element system 32 includes a resistor 9, a switching element 11, and
It includes a series circuit of a reference current source 12 and a temperature sensing element 14 placed close to the resistor 9.

上記2つのスイッチング素子10と11のゲートは共通
の制御端子Gに接続されており、この制#端子Gに図示
しないIIJIII系より加えられる幅Δtのパルス信
号を受けて、スイッチング素子10と11は一定期間通
電だけオン駆動される。
The gates of the two switching elements 10 and 11 are connected to a common control terminal G, and upon receiving a pulse signal with a width Δt applied from the IIJIII system (not shown) to the control terminal G, the switching elements 10 and 11 are connected to a common control terminal G. It is turned on only for a certain period of time.

スイッチング素子10がオンすると、抵抗体8には未知
の被測定電流iが通電される。またスイッチング素子1
1がオンザると、抵抗体9には基準電流源12より既知
の基準電流1oが通電される。
When the switching element 10 is turned on, an unknown current to be measured i is applied to the resistor 8. Also, switching element 1
1 is on, a known reference current 1o is applied to the resistor 9 from the reference current source 12.

演棹系33には、感温素子13の出力変化を検出する微
分器15と、感温素子9の出力変化を検出する微分器1
6と、両微分器15.16の11力比をめる割忰器17
が含まれる。
The derivation system 33 includes a differentiator 15 that detects changes in the output of the temperature sensing element 13 and a differentiator 1 that detects changes in the output of the temperature sensing element 9.
6, and a divider 17 that calculates the 11 power ratio of both differentiators 15 and 16.
is included.

この演算系33は、抵抗体8および9にそれぞれ」ニ述
のように通電したときの、その通電に伴う抵抗体8.9
の発熱による感温素子13.14の出力変化をそれぞれ
検出し、後述のようにその検出値から被測定電流iの大
きさを算出する。
This calculation system 33 calculates the resistance of the resistors 8 and 9 when the resistors 8 and 9 are energized as described above.
The output changes of the temperature sensing elements 13 and 14 due to heat generation are detected respectively, and the magnitude of the measured current i is calculated from the detected values as described later.

第5図は上記抵抗体8と感温素子13の具体的な構造例
を示しており、(△)は平面図、(B>はb−bIi!
断面図である。
FIG. 5 shows a specific structural example of the resistor 8 and temperature sensing element 13, where (△) is a plan view and (B> is b-bIi!).
FIG.

抵抗体8は、N型半尋体jj板26に矩形のリング状に
P型拡r&層を形成されて、13す、電極20と21が
その画情端子になっている。
The resistor 8 is formed by forming a rectangular ring-shaped P-type enlarged layer on an N-type semicircular JJ plate 26, and the electrodes 20 and 21 serve as image terminals.

感温素子13は矩形リングの抵抗体8の内側に形成きれ
ており、この例ではl) N接合ダイオードを感温素子
としている。
The temperature sensing element 13 is formed inside the rectangular ring resistor 8, and in this example, an N-junction diode is used as the temperature sensing element.

つまり、N型基板26にP型のアノード領域25が形成
され、更にその一部にN生型のカソード領域24が形成
されており、それぞれに電極22゜23が接合されてい
る。なお27はシリコン酸化膜を示している。
That is, a P-type anode region 25 is formed on an N-type substrate 26, and an N-type cathode region 24 is further formed in a part of the anode region 25, and electrodes 22 and 23 are connected to each of them. Note that 27 indicates a silicon oxide film.

このJ:うに抵抗体8が感温索子13を囲lυでおり、
抵抗体8の熱が感温索子13に有効に伝わるJ:うに考
慮されている。
This J: sea urchin resistor 8 surrounds the temperature-sensitive cord 13,
The heat of the resistor 8 is effectively transferred to the temperature-sensitive cable 13.

なお、基11系32の抵抗体9と感温素子14について
は図示していないが、これらは第5図と全く同じ構造で
作られ、被測定系31の抵抗体8・感温素子13に近接
して設けられる。つまり抵抗体8と9、また感温素子1
3と14はそれぞれ同一構造で同一幾何学形状に形成さ
れており、その結束これらは非常に特性の揃ったものと
なっている。
Although the resistor 9 and temperature-sensitive element 14 of the group 11 system 32 are not shown, they are made with the exact same structure as in FIG. located close together. In other words, resistors 8 and 9, and temperature sensing element 1
3 and 14 are each formed in the same structure and the same geometric shape, and their properties are very uniform.

次に、以上の構成を前提としてこの発明の電流測定方法
を31明する。測定時以外はスイッチング素子10と1
1をAフにしておき、測定時に一定時間Δtだけとれら
をオン駆動する。
Next, the current measuring method of the present invention will be explained based on the above configuration. Switching elements 10 and 1 except during measurement
1 is set to A off, and they are turned on for a certain period of time Δt during measurement.

抵抗値Rの抵抗体8に被測定電流iが時間Δtだけ通電
されると、抵抗体8はQ=i”RΔtの発熱をし、それ
自身および周辺の湿度を上昇させる。その結果、これに
近接配置された感温索子13による検出温UTが上昇す
る。
When a current to be measured i is applied to a resistor 8 having a resistance value R for a time Δt, the resistor 8 generates heat of Q=i''RΔt and increases the humidity of itself and the surrounding area. The temperature UT detected by the temperature-sensitive cable 13 disposed close to each other increases.

全く同様に、抵抗値R8の抵抗体9に基準電流r0が時
間Δ【だけ通電されると、抵抗体9はQo−To’Ro
Δ1の発熱をし、それ自身および周辺の温度を上4させ
る。その結果、これに近接配置された感温索子14によ
る検出温度Toが上昇する。
In exactly the same way, when the reference current r0 is applied to the resistor 9 having a resistance value R8 for a time Δ[, the resistor 9 becomes Qo-To'Ro
It generates heat of Δ1, raising the temperature of itself and its surroundings by 4. As a result, the temperature To detected by the temperature sensitive cable 14 disposed close to this rises.

第5図に示した構造の素子で測定した結果、抵抗体8の
通電時間とN流iと、感温素子13で検出される温度変
化は第6図に示ずようになる。
As a result of measurement using the element having the structure shown in FIG. 5, the energization time of the resistor 8, the N current i, and the temperature change detected by the temperature sensing element 13 are as shown in FIG.

第6図に示すように、通電時間がto(数ns)より短
い領域では、発熱にJ:る温度上昇は半導体チップの熱
容量だけで決まるため、通電時間に比例し、しかも温度
上昇率dT/dtは第7図に示すように電流iに比例、
することが見出された。
As shown in Fig. 6, in a region where the current conduction time is shorter than to (several ns), the temperature rise due to heat generation is determined only by the heat capacity of the semiconductor chip, so it is proportional to the current conduction time, and the temperature increase rate dT/ dt is proportional to the current i as shown in Figure 7,
It was found that

通電時間がtOJ:り艮くなると、チップ自身の放熱性
の影響により上記の直線性が失われる。
When the current application time becomes tOJ, the above-mentioned linearity is lost due to the effect of the heat dissipation of the chip itself.

前述したパルス幅Δ【 (測定時の通電時間)は上記時
間t。より小さく設定されている。
The above-mentioned pulse width Δ[ (current application time during measurement) is the above-mentioned time t. is set smaller.

なお、以上述べた発熱と温度上昇の関係は、抵抗体8・
感温素子13と同一構造の抵抗体9・感温索子14にも
当て嵌まる。
The relationship between heat generation and temperature rise described above is based on the resistor 8.
This also applies to the resistor 9 and temperature-sensing cable 14, which have the same structure as the temperature-sensing element 13.

ところで、感温素子13.14としてダイアj−ドを用
いた場合、温度T、Toはそれぞれのダイオードの順方
向電圧によって検出される。良く知られているように、
ダイオードの順方向電圧はその温度に比例する。
By the way, when diodes are used as the temperature sensing elements 13 and 14, the temperatures T and To are detected by the forward voltage of each diode. As is well known,
The forward voltage of a diode is proportional to its temperature.

さて、微分器15では感温素子13の出力から温度変化
率d’r/dtがめられ、同様に微分器16では感温素
子14の出力から温度変化率dT。
Now, the differentiator 15 determines the temperature change rate d'r/dt from the output of the temperature sensing element 13, and similarly, the differentiator 16 determines the temperature change rate dT from the output of the temperature sensing element 14.

/dtがめられる。また割算器17では両微分器15.
16の出力の比 (d丁/dt) / (d To /dt) −Pがめ
られる。
/dt is detected. Also, in the divider 17, both differentiators 15.
The output ratio (dTo/dt)/(dTo/dt)-P of 16 is found.

この値Pは電流比i / T oに等しく、従って未知
の被測定電流iは、既知の基tI!電流■。と上記Pと
により、1=IoXPとしてめられる。
This value P is equal to the current ratio i/T o, so the unknown measured current i is equal to the known base tI! Current■. and the above P, it can be determined that 1=IoXP.

以上述べた電流測定方法においては、被測定系31の抵
抗体8・感温素子13と基準系32の抵抗体9・感温索
子14とを同一構造にしたため、rCプロセス上で特性
の揃ったものが容易に作れる。
In the current measurement method described above, since the resistor 8 and temperature sensing element 13 of the system under test 31 and the resistor 9 and temperature sensing element 14 of the reference system 32 have the same structure, their characteristics are uniform in the rC process. You can easily make things.

加えて、上述の方法では、温度上昇率比Pから未知の電
流値iをめるので、抵抗体8.9に第3図のような温度
特性があっても、また抵抗体8゜9および感温索子13
.14にプロセス、ヒのバラツキがあっても、その影響
がお豆いにキャンセルされ、測定結果に影響しt、にい
という大きな利点が得られる。つまり高精度な電流測定
が容易に行なえる。
In addition, in the above method, since the unknown current value i is calculated from the temperature rise rate ratio P, even if the resistor 8.9 has the temperature characteristics as shown in FIG. Temperature sensitive cord 13
.. Even if there are variations in the process or heat in 14, the influence is canceled out to a great extent, and the measurement result is not affected, which is a great advantage. In other words, highly accurate current measurement can be easily performed.

なお、以上の説明で1j膜抵抗として拡散抵抗を、感温
素子としてダイオードを用いたが、本発明の趣旨から明
らかなように、抵抗体と感温索子はこれに限定されるも
のではなく、特性の揃ったベア素子であれば良い。
In the above explanation, a diffused resistor was used as the 1j film resistor, and a diode was used as the temperature-sensitive element, but as is clear from the spirit of the present invention, the resistor and temperature-sensitive cord are not limited to these. , bare elements with uniform characteristics may be used.

例えば抵抗体としてポリシリコン抵抗を始めとする膜抵
抗を用いることができ、また瀾痩センサとしてバイポー
ラ・トランジスタを用いることもできる。これらはIc
プロセスとのマツチング竹から適宜に選択すれば良いこ
とである。
For example, a membrane resistor such as a polysilicon resistor can be used as the resistor, and a bipolar transistor can also be used as the decline sensor. These are Ic
It is only a matter of selecting an appropriate bamboo material for matching the process.

また、抵抗体8・感温素子13および抵抗体9・感温素
子14以外の構成要素については必ずしも同一の半導体
基板上に集積形成する必要はない。
Furthermore, the components other than the resistor 8/temperature sensing element 13 and the resistor 9/temperature sensing element 14 do not necessarily have to be integrated on the same semiconductor substrate.

(発明の効果) 以上詳細に説明したように、この発明に係る電流測定方
法によれば、IC中の適宜な被測定回路の電流測定を、
電流検出用抵抗体のバラツキや温度特性に影響されず、
高精度に行なうことができる。また電流測定系のプロセ
ス上のバラツキも問題にならず、これらを容易にIC化
することができる。
(Effects of the Invention) As explained in detail above, according to the current measurement method according to the present invention, current measurement of an appropriate circuit under test in an IC can be performed by:
Unaffected by variations in the current detection resistor and temperature characteristics,
This can be done with high precision. Further, process variations in the current measurement system are not a problem, and these can be easily integrated into an IC.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の電流測定方法の説明図、第2図は従来の
電流測定に用いられる検出用抵抗の構造図、第3図は検
出用抵抗の抵抗値の温度特性の一例を示す図、第4図は
この発明に係る電流測定方法を適用した測定系のブロッ
ク図、第5図は本発明に用いられる検出系の要部である
抵抗体と感温素子の構造例を示す平面図と断面図、第6
図a3よび第7図は第5図にお【フる抵抗体への通電時
間・通電電流と感温素子の検出温度の変化を示す特性図
である。 8・・・・・・・・・・・・第1の抵抗体9・・・・・
・・・・・・・第2の11℃抗体13・・・・・・・・
・中筒1の感温素子14・・・・・・・・・・・・第2
の感温素子15.16・・・微分器 17・・・・・・・・・・・・割算器 特V[出願人 日産自動車株式会社
Fig. 1 is an explanatory diagram of a conventional current measurement method, Fig. 2 is a structural diagram of a detection resistor used in conventional current measurement, and Fig. 3 is a diagram showing an example of the temperature characteristics of the resistance value of the detection resistor. FIG. 4 is a block diagram of a measurement system to which the current measurement method according to the present invention is applied, and FIG. Sectional view, No. 6
Figures a3 and 7 are characteristic diagrams showing the changes in the energizing time and energizing current to the resistor and the temperature detected by the temperature sensing element shown in FIG. 5. 8......First resistor 9...
・・・・・・Second 11℃ antibody 13・・・・・・・・・
・Temperature-sensing element 14 of middle tube 1... 2nd
Temperature sensing element 15.16 Differentiator 17 Divider special V [Applicant Nissan Motor Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] (1)被測定電流路に直列に挿入された第1の抵抗体と
、この第1の抵抗体に近接配置された第1の感温素子と
、第2の抵抗体と、この第2の抵抗体に近接配置された
第2の感温素子とを共通の半導体基板に集積形成してお
き、上記第1の抵抗体に未知の被測定電流を、また上記
第2の抵抗体に既知の基準電流をそれぞれ一定期間通電
し、この通電に伴う上記第1および第2の抵抗体の発熱
による上記第1おJ:び第2の感温素子の出力変化をそ
れぞれ検出し、その検出値から上記被測定電流の大ぎさ
をめることを特徴とする電流測定方法。
(1) A first resistor inserted in series in the current path to be measured, a first temperature sensing element placed close to the first resistor, a second resistor, and a second resistor. A second temperature sensing element disposed close to the resistor is integrated on a common semiconductor substrate, and an unknown current to be measured is applied to the first resistor, and a known current is applied to the second resistor. A reference current is applied to each of them for a certain period of time, and changes in the output of the first and second temperature sensing elements due to the heat generation of the first and second resistors due to this energization are detected, and from the detected values. A current measuring method characterized by determining the magnitude of the current to be measured.
(2)上記第1および第2の抵抗体、また上記第1およ
び第2の感温素子は、それぞれ同一構造で同一幾何学形
状に形成されていることを特徴とする特+?T請求の範
囲第1項記載の電流測定方法。
(2) The first and second resistors and the first and second temperature sensing elements are each formed in the same structure and the same geometric shape. A current measuring method according to claim 1.
JP58217452A 1983-11-18 1983-11-18 Measurement of current Pending JPS60108761A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58217452A JPS60108761A (en) 1983-11-18 1983-11-18 Measurement of current

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58217452A JPS60108761A (en) 1983-11-18 1983-11-18 Measurement of current

Publications (1)

Publication Number Publication Date
JPS60108761A true JPS60108761A (en) 1985-06-14

Family

ID=16704453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58217452A Pending JPS60108761A (en) 1983-11-18 1983-11-18 Measurement of current

Country Status (1)

Country Link
JP (1) JPS60108761A (en)

Similar Documents

Publication Publication Date Title
US5195827A (en) Multiple sequential excitation temperature sensing method and apparatus
US9857247B2 (en) Method and device for sensing isotropic stress and providing a compensation for the piezo-hall effect
US7828479B1 (en) Three-terminal dual-diode system for fully differential remote temperature sensors
JP2002289789A (en) On-chip temperature detection device
US6948847B2 (en) Temperature sensor for a MOS circuit configuration
GB2071946A (en) Temperature detecting device
US10914636B2 (en) Thermopile self-test and/or self-calibration
US7018095B2 (en) Circuit for sensing on-die temperature at multiple locations
US3430077A (en) Semiconductor temperature transducer
US4498007A (en) Method and apparatus for neutron radiation monitoring
JPS60108761A (en) Measurement of current
US5663574A (en) Power semiconductor component with monolithically integrated sensor arrangement as well as manufacture and employment thereof
US6566721B2 (en) Semiconductor device
WO2022168156A1 (en) Semiconductor equipment
JP2824360B2 (en) Semiconductor device for current detection
US8922227B2 (en) Systems and methods for detecting surface charge
SU892379A1 (en) Device for measuring magnetic field induction
JPS6328615Y2 (en)
JPS63274883A (en) Semiconductor measuring instrument
JPH0233946A (en) Semiconductor device
SU853424A1 (en) Device for measuring temperature, magnetic field intesity and mechanical stresses
JPH0274835A (en) superconducting temperature sensor
JPH0554647A (en) Integrated circuit device
JPH06186088A (en) Voltage measuring device
JPS61102529A (en) Semiconductor temperature detector