JPH0274835A - Superconducting temperature sensor - Google Patents
Superconducting temperature sensorInfo
- Publication number
- JPH0274835A JPH0274835A JP22605388A JP22605388A JPH0274835A JP H0274835 A JPH0274835 A JP H0274835A JP 22605388 A JP22605388 A JP 22605388A JP 22605388 A JP22605388 A JP 22605388A JP H0274835 A JPH0274835 A JP H0274835A
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- superconducting
- sensor
- temperature sensor
- resistance value
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000463 material Substances 0.000 claims abstract description 14
- 238000005259 measurement Methods 0.000 abstract description 10
- 230000035945 sensitivity Effects 0.000 abstract 1
- 238000009529 body temperature measurement Methods 0.000 description 5
- 239000010409 thin film Substances 0.000 description 4
- 238000001514 detection method Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 230000005678 Seebeck effect Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical group [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Landscapes
- Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野]
この発明は、超電導物質が温度に応じて超電導状態から
常電導状態に、又は常電導状態から超電導状態に移行す
る際の、電気抵抗値の変化を利用して温度を感知する超
電導温度センサに関する。[Detailed Description of the Invention] [Field of Industrial Application] This invention is directed to the study of the electrical resistance value when a superconducting material transitions from a superconducting state to a normal conducting state or from a normal conducting state to a superconducting state depending on the temperature. This invention relates to a superconducting temperature sensor that detects temperature using changes.
従来、温度センサとしては、温度の変化に応じて抵抗値
が変化することを利用したサーミスタなどの測温抵抗体
、ゼーベック効果を利用した熱電対などが多く用いられ
ている。Conventionally, as temperature sensors, temperature measuring resistors such as thermistors that utilize the fact that the resistance value changes in response to changes in temperature, thermocouples that utilize the Seebeck effect, and the like are often used.
しかしながら、このような従来の温度センサは測定範囲
は広いが、検出精度は必ずしも充分高いとは言えず、と
くに、測定温度範囲は狭くてよいから高精度に測定した
いという用途に対しては、不向きであった。However, although such conventional temperature sensors have a wide measurement range, the detection accuracy is not necessarily high enough, and they are particularly unsuitable for applications where a narrow measurement temperature range is required and high precision measurement is desired. Met.
この発明は、このような従来の状況に着目してなされた
もので、特定の領域の温度を高分解能で測定できるよう
にすることを、その解決しようとする課題としている。The present invention was made in view of this conventional situation, and an object of the present invention is to make it possible to measure the temperature of a specific region with high resolution.
上記課題を解決するため、この発明では、測定温度を感
知し該温度に応じて温度情報を変化させる感温部を有し
、この感温部を超電導物質で構成している。In order to solve the above problems, the present invention includes a temperature sensing section that senses a measured temperature and changes temperature information according to the temperature, and this temperature sensing section is made of a superconducting material.
〔作用]
感温部として用いている超電導物質(例えば、Bi系、
TI系高温超電導材)が常電導状態から超電導状態に、
又はその反対に移行する際の境界領域の電気抵抗値は、
一般に第4図に示すようになり、かなり急激に変化する
。同図の例では、臨界温度前後の温度領域である約16
に〜27に間の温度変化に対する電気抵抗値の変化は、
任意目盛で0.5〜4.5と大きく変化している。この
ため、上記温度領域では、電気抵抗値を知ることにより
、高精度な温度検出を行うことができる。[Function] The superconducting material used as the temperature sensing part (e.g. Bi-based,
TI-based high-temperature superconducting material) changes from a normal conducting state to a superconducting state,
Or the electrical resistance value of the boundary area when transitioning to the opposite is:
In general, it changes quite rapidly, as shown in Figure 4. In the example shown in the figure, the temperature range is approximately 16°C, which is around the critical temperature.
The change in electrical resistance value due to temperature change between
It varies greatly from 0.5 to 4.5 on an arbitrary scale. Therefore, in the above temperature range, by knowing the electrical resistance value, highly accurate temperature detection can be performed.
この原理によって測定可能な温度範囲は、感温部として
用いる超電導物質の種類によって異なるので、測定した
い温度又は温度範囲に合致した臨界特性を有する物質を
選択すればよい。The temperature range that can be measured based on this principle varies depending on the type of superconducting material used as the temperature sensing section, so it is sufficient to select a material that has critical characteristics that match the temperature or temperature range to be measured.
(第1実施例)
次に、この発明の第1実施例を第1図乃至第2図に基づ
き説明する。(First Embodiment) Next, a first embodiment of the present invention will be described based on FIGS. 1 and 2.
第1図において、2は超電導温度センサ、4は抵抗温度
変換装置、6は表示装置を夫々示す。In FIG. 1, 2 represents a superconducting temperature sensor, 4 represents a resistance temperature converter, and 6 represents a display device.
超電導温度センサ2は、第2図に示す如く、側面からみ
てコ字状に形成され絶縁体から成る基台2・aと、この
基台2aの両端に張設された感温部としての超電導線2
bと、この超電導線2bの両端に夫々当接するリードワ
ッシャ2c、2cとを有している。ここで、超電導線2
bの材質は、その常電導状態と超電導状態との間の臨界
特性が所望の測定温度又は測定温度範囲を含む組成のも
のが選択されている。なお、第2図中、2dは止め台、
2eは止めネジであり、8はリードワッシャ2Cに接続
されたリード線である。As shown in FIG. 2, the superconducting temperature sensor 2 includes a base 2.a formed in a U-shape when viewed from the side and made of an insulator, and a superconducting temperature sensor as a temperature sensing section stretched across both ends of the base 2a. line 2
b, and lead washers 2c, 2c that abut on both ends of the superconducting wire 2b, respectively. Here, superconducting wire 2
The material b is selected to have a composition whose critical characteristic between the normal conductive state and the superconducting state includes the desired measurement temperature or measurement temperature range. In addition, in Fig. 2, 2d is a stopper,
2e is a set screw, and 8 is a lead wire connected to the lead washer 2C.
このように構成された超電導センサ2は、リード線8,
8を介して抵抗温度変換装置4に接続されている。The superconducting sensor 2 configured in this way includes lead wires 8,
It is connected to the resistance temperature converter 4 via 8.
抵抗温度変換装置4は、測定時には、超電導センサ2に
所定値の電圧を印加し、この印加電圧とセンサ2を流れ
る電流との関係から抵抗値を求め、この抵抗値に対応す
る温度を予め設定した記憶テーブルを参照して求め、こ
の求めた温度に応じた表示信号を表示装置6に送出する
ようになっている。表示装置6は、入力した表示信号に
対応する温度表示を行うように構成されている。During measurement, the resistance temperature converter 4 applies a predetermined voltage to the superconducting sensor 2, calculates a resistance value from the relationship between the applied voltage and the current flowing through the sensor 2, and presets a temperature corresponding to this resistance value. A display signal corresponding to the determined temperature is sent to the display device 6. The display device 6 is configured to display a temperature corresponding to the input display signal.
次に、この実施例の作用効果を説明する。Next, the effects of this embodiment will be explained.
温度測定に際しては、超電導温度センサ2を被測定雰囲
気中に置き、抵抗温度変換装置4及び表示装置6を駆動
させればよい。これにより、超電導温度センサ2は、雰
囲気中の温度に応じて温度情報としての電気抵抗値を変
化させる。とくに、温度が測定したい領域に到達すると
、センサ2が常電導状態及び超電導状態間の境界領域に
なるから、その抵抗値の変化率が大きい状態になる。つ
まり、センサ2は測定温度に対応して高分解能の抵抗値
を有する。For temperature measurement, the superconducting temperature sensor 2 may be placed in the atmosphere to be measured, and the resistance temperature converter 4 and the display device 6 may be driven. Thereby, the superconducting temperature sensor 2 changes the electrical resistance value as temperature information according to the temperature in the atmosphere. In particular, when the temperature reaches the region to be measured, the sensor 2 enters the boundary region between the normal conductive state and the superconducting state, and therefore enters a state where the rate of change in its resistance value is large. That is, the sensor 2 has a high-resolution resistance value corresponding to the measured temperature.
そこで、抵抗温度変換装置4は、センサ2の抵抗値を捕
捉し、この抵抗値を温度に変換し、温度に応じた表示信
号を1表示装置6に出力する。表示装置6は、表示信号
に基づき温度を表示する。Therefore, the resistance temperature conversion device 4 captures the resistance value of the sensor 2, converts this resistance value into temperature, and outputs a display signal according to the temperature to the 1 display device 6. The display device 6 displays the temperature based on the display signal.
このようにして、超電導線2bの常電導状態及び超電導
状態間の臨界領域の温度−抵抗特性を積極的に用いるこ
とにより、特定の温度範囲ながら、従来には無い高精度
な温度情報の検出及び温度の測定を行うことができる。In this way, by actively using the temperature-resistance characteristics of the critical region between the normal conductive state and the superconducting state of the superconducting wire 2b, it is possible to detect and detect temperature information with a high degree of accuracy not previously possible within a specific temperature range. Temperature measurements can be taken.
とくに、超電導物質の臨界温度範囲は低温度領域にある
ことから、低温の測定に好適となる。In particular, since the critical temperature range of superconducting materials is in a low temperature region, it is suitable for low temperature measurements.
ところで、超電導線2bの常電導状態及び超電導状態間
の電気抵抗値の変化が急峻な場合(とくに第1種物質)
は、測定温度範囲は狭くなるが、その分、高精度に検知
でき、一方、電気抵抗値の変化が緩やかな場合(とくに
第2種物質:この場合でも、従来の測温抵抗体、熱電対
に比べると充分に急峻な変化である)は、所定の検出精
度を確保しつつ、測定温度範囲を広くとれる。By the way, when the change in electrical resistance value between the normal conductive state and the superconducting state of the superconducting wire 2b is steep (especially in the case of a type 1 substance)
Although the measurement temperature range is narrower, it can be detected with high precision.On the other hand, when the change in electrical resistance value is gradual (especially for type 2 substances), even in this case, conventional resistance temperature detectors and thermocouples can be used. ) is a sufficiently steep change compared to , it is possible to widen the measurement temperature range while ensuring a predetermined detection accuracy.
(第2実施例)
次に、この発明の第2実施例を第3図に基づき説明する
。この第2実施例は、感温部を薄膜状に形成したもので
ある。(Second Embodiment) Next, a second embodiment of the present invention will be described based on FIG. 3. In this second embodiment, the temperature sensing portion is formed in the form of a thin film.
この実施例における超電導温度センサ10は、第3図に
示すように、セラミックなどの絶縁基板10aと、この
絶縁基板10a上に蒸着によって形成された感温部とし
ての超電導薄膜tabとを有して成る。そして、超電導
薄膜fobの両端にリード線12.12が電気的に接続
され、このリード線12.12が第1実施例と同一の抵
抗温度変換装置に接続されている。その他は、第1実施
例と同様である。As shown in FIG. 3, the superconducting temperature sensor 10 in this embodiment includes an insulating substrate 10a made of ceramic or the like, and a superconducting thin film TAB as a temperature sensing portion formed by vapor deposition on the insulating substrate 10a. Become. Lead wires 12.12 are electrically connected to both ends of the superconducting thin film fob, and these lead wires 12.12 are connected to the same resistance temperature converter as in the first embodiment. The rest is the same as the first embodiment.
このため、本第2実施例によっても、第1実施例と同等
の作用効果が得られるほか、第1実施例の超電導線に比
べて耐震性に優れ且つ小形になる。Therefore, the second embodiment also provides the same effects as the first embodiment, and has superior earthquake resistance and is smaller than the superconducting wire of the first embodiment.
以上説明したように、この発明の温度センサは、測定温
度を感知し該温度に応じて温度情報を変化させる感温部
を、超電導物質で構成した超電導温度センサとしたため
、超電導物質の常電導状態と超電導状態との間の臨界範
囲において、温度変化に対する抵抗変化の急峻な特性を
利用することができ、これがため、従来の緩慢な温度−
抵抗特性を用いる場合に比べて、特定の温度範囲ながら
、温度情報、即ち電気抵抗値の変化を分解能良く検出で
き、したがって、低温度の測定などの分野において高精
度な温度測定を行うことができるという効果が得られる
。As explained above, in the temperature sensor of the present invention, the temperature sensing part that senses the measured temperature and changes temperature information according to the temperature is a superconducting temperature sensor made of a superconducting material. In the critical range between the superconducting and
Compared to the case of using resistance characteristics, it is possible to detect temperature information, that is, changes in electrical resistance value, with better resolution within a specific temperature range, and therefore, it is possible to perform highly accurate temperature measurements in fields such as low temperature measurement. This effect can be obtained.
第1図はこの発明の第1実施例に係る測定系を示すブロ
ック図、第2図は第1実施例の超電導温度センサの概略
を示す側面図、第3図はこの発明の第2実施例における
超電導温度センサの概略を示す平面図、第4図は超電導
物質の温度−電気抵抗特性の一例を示すグラフである。
図中、2,10は超電導温度センサ、2bは感温部とし
ての超電導線、10bは感温部としての超電導薄膜であ
る。FIG. 1 is a block diagram showing a measurement system according to a first embodiment of the present invention, FIG. 2 is a side view schematically showing the superconducting temperature sensor of the first embodiment, and FIG. 3 is a second embodiment of the present invention. FIG. 4 is a plan view schematically showing a superconducting temperature sensor, and FIG. 4 is a graph showing an example of temperature-electrical resistance characteristics of a superconducting material. In the figure, 2 and 10 are superconducting temperature sensors, 2b is a superconducting wire as a temperature sensing section, and 10b is a superconducting thin film as a temperature sensing section.
Claims (1)
させる感温部を有し、この感温部を超電導物質で構成し
たことを特徴とする超電導温度センサ。(1) A superconducting temperature sensor characterized in that it has a temperature sensing part that senses a measured temperature and changes temperature information according to the temperature, and the temperature sensing part is made of a superconducting material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22605388A JPH0274835A (en) | 1988-09-09 | 1988-09-09 | Superconducting temperature sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22605388A JPH0274835A (en) | 1988-09-09 | 1988-09-09 | Superconducting temperature sensor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0274835A true JPH0274835A (en) | 1990-03-14 |
Family
ID=16839056
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22605388A Pending JPH0274835A (en) | 1988-09-09 | 1988-09-09 | Superconducting temperature sensor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0274835A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2756800C1 (en) * | 2020-12-08 | 2021-10-05 | Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС" | Superconducting resistance thermometer |
-
1988
- 1988-09-09 JP JP22605388A patent/JPH0274835A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2756800C1 (en) * | 2020-12-08 | 2021-10-05 | Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС" | Superconducting resistance thermometer |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA3049707C (en) | Device and method for the in-situ calibration of a thermometer | |
US5288147A (en) | Thermopile differential thermal analysis sensor | |
JPS63243885A (en) | Flow velocity detector | |
US4227411A (en) | Relative humidity measurement | |
JP2810541B2 (en) | Lambda sensor internal resistance measurement circuit | |
JPH0658821A (en) | Temperature sensor | |
Alsnaie et al. | Study and Design of a Multi-range Programmable Sensor for Temperature Measurement | |
US2678422A (en) | Electrical measuring system | |
JPH0274835A (en) | Superconducting temperature sensor | |
US5979243A (en) | Microfabricated multifunction strain-temperature gauge | |
US6784012B2 (en) | Method for measuring temperature in a wide range using a tunnel junction | |
Katzmann et al. | Thin-film AC-DC converter with thermoresistive sensing | |
JP3300110B2 (en) | Gas detector | |
JPH0666643A (en) | Substrate with temperature detector | |
JPS645260B2 (en) | ||
WO2024175553A1 (en) | Quantum computing system comprising a cryogenic temperature sensor and temperatur measuring method | |
JPH08101156A (en) | Sensing device for atmospheric gas | |
JPH0228443Y2 (en) | ||
SU565220A1 (en) | Temperature sensor thermal element | |
SU723382A1 (en) | Liquid film thickness sensor | |
SU1719924A1 (en) | Thermoelectric thermometer | |
JPH0587641A (en) | Thermosensitive device | |
JPH05215768A (en) | Semiconductor acceleration detector | |
JPH0786434B2 (en) | Temperature difference measurement method in magnetic field | |
Vandrish | Ceramic Applications in Temperature Sensing |