JPS60108570A - Vane-angle controller for fluid machinery equipped with movable blade - Google Patents

Vane-angle controller for fluid machinery equipped with movable blade

Info

Publication number
JPS60108570A
JPS60108570A JP58215662A JP21566283A JPS60108570A JP S60108570 A JPS60108570 A JP S60108570A JP 58215662 A JP58215662 A JP 58215662A JP 21566283 A JP21566283 A JP 21566283A JP S60108570 A JPS60108570 A JP S60108570A
Authority
JP
Japan
Prior art keywords
piece
blade angle
shaft
axial direction
angle control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58215662A
Other languages
Japanese (ja)
Other versions
JPH0122474B2 (en
Inventor
Daisuke Konno
紺野 大介
Taizo Azuma
東 泰造
Takashi Ono
大野 隆史
Tomohiro Wakukawa
湧川 朝宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP58215662A priority Critical patent/JPS60108570A/en
Publication of JPS60108570A publication Critical patent/JPS60108570A/en
Publication of JPH0122474B2 publication Critical patent/JPH0122474B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B3/00Machines or engines of reaction type; Parts or details peculiar thereto
    • F03B3/12Blades; Blade-carrying rotors
    • F03B3/14Rotors having adjustable blades
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Hydraulic Turbines (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

PURPOSE:To prevent a thrust bearing from being applied with a blade-angle operation force by using a slidable piece connected to screw members and a slidable ring. CONSTITUTION:A slidable ring 8 is connected to a slidable piece 10 through a bearing 9, permitting relative revolution and suppressing the transfer in the axial direction with respect to the slidable piece 10. The female screw 10s on the inner periphery of the slidable piece 10 is engaged with a male screw 16s cutting- formed onto the outer periphery of a thrust ring 16 which is installed in relative revolution with respect to a main shaft 1 through a bearing 17 which is fixed onto the main shaft 1, interposed between a shaft nut 18 screwed onto the main shaft 1 and a distance piece 19 attached onto the stepped part of the main shaft 1, and fixed onto the thrust ring 16 by the shoulder of the thrust ring 16 and a bearing press 33. The thrust ring 16 is slided into a pedestal 20 fixed onto a base 15a through a key 21, prevented from revolving. The key 21 and the pedestal 20 do not support the thrust ring 16 in the axial direction.

Description

【発明の詳細な説明】 本発明は可動翼を備えた流体機械の翼角制御装置に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a blade angle control device for a fluid machine equipped with movable blades.

翼角制御装置は流体機械の可動翼を取付ける回転軸中に
可動翼駆動のための翼角制御用操作軸を軸方向移動可能
に備えるが、翼角制御用操作軸に作用する翼角操作力を
該回転軸に依って支持するものと回転軸以外の静止物体
にて支持するものとがある。翼角操作力を静止物体にて
支持して可動翼を動作するものは回転軸と前記静止物体
との相互間にこの作用力が働くことになり、この為回転
軸を支持する推力軸受にこの作用力が追加される為、よ
り大容量の推力軸受にせねばならないという欠点がある
。これに対して回転軸にて翼角操作力を支持するものは
回転軸上に翼角制御用操作軸を作動する手段を備える為
、回転軸を支持する推力軸受に翼角操作力が加わらない
The blade angle control device is equipped with a blade angle control operating shaft for driving the movable blade in a rotary shaft on which a movable blade of a fluid machine is attached, so that the blade angle control operation shaft can be moved in the axial direction. There are those in which the rotary shaft is used to support the rotary shaft, and those in which the rotary shaft is supported by a stationary object other than the rotary shaft. If the movable blade is operated by supporting the blade angle control force with a stationary object, this acting force will act between the rotating shaft and the stationary object, so this force will be applied to the thrust bearing that supports the rotating shaft. The disadvantage is that a larger capacity thrust bearing is required due to the additional acting force. On the other hand, in the case where the blade angle control force is supported by the rotary shaft, the blade angle control force is not applied to the thrust bearing that supports the rotary shaft because the rotary shaft is equipped with a means for operating the blade angle control control shaft. .

従来回転軸上で翼角制御用操作軸を作動させる手段とし
ては一般に回転軸上に回転軸と同窓に油圧シリンダを設
け゛C油圧シリンダのピストンと翼角制御用操作軸を連
結した如き構成がとられていた。しかし、このような油
圧駆動装置の場合には油圧供給装置、翼角制御の為のフ
ィードバック機構などを備える必要があり装置は大型複
雑化し、かつ油圧シールの問題があり、翼角一定として
運転中においても油圧を加えておかねばならず運転経費
も少なしとしないものであった。
Conventionally, as a means for operating the operating shaft for controlling the blade angle on the rotating shaft, a hydraulic cylinder is generally provided on the rotating shaft in the same window as the rotating shaft, and the piston of the hydraulic cylinder and the operating shaft for controlling the blade angle are connected. It had been taken. However, in the case of such a hydraulic drive device, it is necessary to have a hydraulic pressure supply device, a feedback mechanism for controlling the blade angle, etc., making the device large and complicated, and there is a problem with hydraulic seals, so it is difficult to operate with a constant blade angle. Even in this case, hydraulic pressure had to be added, and the operating costs were considerable.

それゆえに比較的小型の流体機械の翼角制御には機械的
駆動装置が用いられることが多い。
Therefore, mechanical drive devices are often used to control the blade angle of relatively small fluid machines.

しかしながら従来の機械的駆動装置は例えば特公昭5ざ
一407g号公報に記載されている発明のようにすべて
翼角制御用操作軸の推力を回転軸以外の静止物体で支持
するものである為、回転軸を支持する推力軸受が大型化
するという欠点があった。
However, all conventional mechanical drive devices, such as the invention described in Japanese Patent Publication No. 5 Zaichi No. 407g, support the thrust of the blade angle control operating shaft with a stationary object other than the rotary shaft. The drawback is that the thrust bearing that supports the rotating shaft becomes larger.

本発明は可動翼を備えた流体機械の翼角制御装置におい
て上記の欠点を除去する為に翼角制御用操作軸を直接駆
動する油圧手段を用いず、かつ翼角制御用操作軸の推力
を回転軸上で支持する構造の機械的作動手段を提供する
ことを目的としたものである。
In order to eliminate the above-mentioned drawbacks in a blade angle control device for a fluid machine equipped with movable blades, the present invention eliminates the use of hydraulic means for directly driving the blade angle control operating shaft, and instead uses the thrust force of the blade angle controlling operating shaft. The object is to provide a mechanical actuation means for a structure supported on a rotating shaft.

以下、本発明の実施例を図面に従って説明する。第1図
は縦断面図である。実施例はポンプとしてのべるが水車
の場合も同様である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a longitudinal sectional view. Although the embodiment is described as a pump, the same applies to a water wheel.

可動翼を備えた流体機械の中空の回転軸(以下主軸と称
す)/の内部には翼角制御用操作軸−が軸方向移動自在
に挿通している。この翼角制御用操作軸−には図示され
ないが図下方にて可動翼に連結された直接の操作部材が
係合される。翼角制御用操作軸コは円板形のクロスヘッ
ドlに嵌入し、かつ翼角制御用操作軸−にねじ込まれた
軸ナツトjに依り固定されている。クロスヘッドlには
軸方向の孔に複数の連結棒6が嵌入し、連結棒6にねじ
込まれたナットクにより固定されている。連結棒6はカ
ップリング3Jを軸方向移動自在に貫通し、主軸l上に
軸方向にのみ移動可能に滑入した滑りリングgに接続さ
れている。滑りリングgは駒IOに対して軸方向移動し
ないように、かつ相対回転自在に軸受9を介して駒10
に連結されている。
A blade angle control operating shaft is inserted into a hollow rotating shaft (hereinafter referred to as the main shaft) of a fluid machine equipped with movable blades so as to be movable in the axial direction. Although not shown, a direct operating member connected to the movable wing at the bottom of the figure is engaged with this blade angle control operating shaft. The operating shaft for controlling the blade angle is fitted into a disc-shaped crosshead l, and is fixed by a shaft nut j screwed onto the operating shaft for controlling the blade angle. A plurality of connecting rods 6 are fitted into axial holes in the crosshead l, and are fixed by nuts screwed into the connecting rods 6. The connecting rod 6 passes through the coupling 3J so as to be axially movable and is connected to a sliding ring g which is slid onto the main shaft l so as to be movable only in the axial direction. The sliding ring g attaches to the piece 10 via the bearing 9 so that it does not move in the axial direction with respect to the piece IO and can rotate freely relative to the piece IO.
is connected to.

駒10の外周には回転子//が駒10と一体に回転する
べくキー/2を介して固定され、ケーシングl!r内周
にキーlダにより回り止めされて固定された固定子13
と電動機を構成する。
A rotor // is fixed to the outer periphery of the piece 10 via a key /2 so as to rotate together with the piece 10, and the casing l! A stator 13 fixed to the inner periphery of the r by being prevented from rotating by a key holder.
and constitute an electric motor.

駒10の内周には主軸/と同窓のめねじ70日が切られ
ている。めねじioeは主軸lにねじ込まれた軸ナツト
ig、主軸/の段部に当接したディスタンスピースl?
に挟持されて主軸lに固定され、且つスラストリング/
I−の肩と軸受押え33によりスラストリングl乙に固
定された軸受17を介し主軸lと相対回転可能に設けら
れたスラストIJソング6の外周に切られたおねじ76
Bと係合している。スラストリング16はキー21を介
しベース/、taに固定したペデスタル、20に屑入し
回転を阻止されている。
The inner periphery of the piece 10 has a 70-day internal thread that is the same as the main shaft. The female thread ioe is the shaft nut ig screwed into the main shaft l, and the distance piece l is in contact with the stepped part of the main shaft.
The thrust ring/
A male thread 76 is cut on the outer periphery of the thrust IJ song 6, which is provided so as to be rotatable relative to the main shaft l via the bearing 17 fixed to the thrust ring L by the shoulder of the I- and the bearing retainer 33.
It is engaged with B. The thrust ring 16 is prevented from rotating due to debris entering the pedestal 20 fixed to the base/ta through a key 21.

このキー21.ペデスタルs6による回転阻止機構はス
ラストリング/≦を軸方向に支持しない。このため、翼
角操作力は主軸lにて支持される。
This key 21. The rotation prevention mechanism by the pedestal s6 does not support the thrust ring /≦ in the axial direction. Therefore, the blade angle operating force is supported by the main axis l.

なお、スラストリング/6の廻り止めにキー2/のかわ
りにビンやスプライン等を用いてもよいし、磁石を用い
ることもできる。第4図は水平断面図で示すスラストリ
ング/jの廻り止めに磁石を用いた他の実施例でスラス
トリング16上に一対の永久磁石−5を固着し、ペデス
タル20に該永久磁石と対向する永久磁石と極性の異な
る電磁石を設け、コイルコロに電流を流すことによって
スラス) IJング/Aの廻り止めを行なうものである
Note that a bottle, a spline, or the like may be used instead of the key 2/, or a magnet may be used to prevent the thrust ring/6 from rotating. FIG. 4 is a horizontal sectional view showing another embodiment in which magnets are used to prevent the rotation of the thrust ring /j, in which a pair of permanent magnets 5 are fixed on the thrust ring 16, and the pedestal 20 faces the permanent magnets. An electromagnet with a polarity different from that of a permanent magnet is installed, and a current is passed through the coil roller to stop the IJ ring/A from rotating.

駒IOの下端に固定された主軸/と同窓の円板、2+に
はケーシング/3の内面軸方向に設けた案内により上下
動可能に支持されるシフタデ3が係合し、シフタ41.
?に固定した垂直方向の指針フタはケーシング15の底
を移動可能に密封挿通してケーシング/jに固定した例
えば非接触型変位計、ポテンショメータ等の位置検出器
27に指斜<zpの位置が検出され、それにより、シフ
タデ3、円板λダを介して駒IOの位置が判明し、駒I
Oは軸受デを介して滑りリングt1連結棒6、クロスヘ
ラドグ、翼角制御用操作軸−と共に同時に変位するから
、翼角の現在値が判明するようになっている。位置検出
器−27の信号SFは制御器−8に送られ、制御器コざ
では所望翼角の設定値Sとの差S −SFがθになるよ
うに固定子/3を附勢して回転子//の回転を制御する
ようになっている。
The shifter 3, which is supported in a vertically movable manner by a guide provided in the inner axial direction of the casing 3, is engaged with the disk 2+, which is in the same window as the main shaft fixed to the lower end of the piece IO, and the shifter 41.
? A vertical pointer lid fixed to the casing 15 is movably inserted through the bottom of the casing 15 in a sealed manner, and the position of the finger slope <zp is detected by a position detector 27 fixed to the casing 15, such as a non-contact displacement meter or potentiometer. As a result, the position of piece IO is known through shiftade 3 and disk λda, and piece I
Since O is simultaneously displaced together with the sliding ring t1 connecting rod 6, the cross paddle dog, and the operating shaft for controlling the blade angle through the bearing D, the current value of the blade angle can be determined. The signal SF from the position detector 27 is sent to the controller 8, which energizes the stator 3 so that the difference S - SF between the desired blade angle and the set value S becomes θ. The rotation of rotor // is controlled.

カップリング3Lはキー:L3を介して主軸lに嵌入さ
れ、主軸/にねじ込まれた軸ナツト2λlこより軸方向
に締めつけられて主軸lに固定されており、キー、23
を介して主動力の伝達を行なっている。カップリング3
Jには対をなすカップリング3uが固定され、カップリ
ング3uに固定された動力伝達軸3θにより動力は主軸
lに伝達される。
The coupling 3L is fitted onto the main shaft l via a key L3, and is fixed to the main shaft l by being tightened in the axial direction by a shaft nut 2λl screwed into the main shaft.
The main power is transmitted through the coupling 3
A pair of couplings 3u is fixed to J, and power is transmitted to the main shaft l by a power transmission shaft 3θ fixed to the coupling 3u.

ケーシング/まの上部にはケーシングカバーコブ、軸封
部材3/が共締めして固定され、軸封部材31の上部円
筒部分はカップリング3uに固定された円筒形軸封部材
3−2に隙間少く挿入されている。ケーシングカバー−
”?ノ内周側の円筒部分は駒10の上部外周に接近して
いる。
A casing cover knob and a shaft sealing member 3/ are fastened together and fixed to the upper part of the casing/coupling, and the upper cylindrical part of the shaft sealing member 31 has a gap between the cylindrical shaft sealing member 3-2 fixed to the coupling 3u. A little inserted. Casing cover
The cylindrical portion on the inner periphery of the piece 10 is close to the upper outer periphery of the piece 10.

駒ioの上端には軸受デの軸受押え3gと漏斗31が共
締めされている。ディスタンスピースlりとディスタン
スピース/?の下部円筒部に入り込んだベース/、?F
Lに固定された円筒形の軸封部材3jとで主軸/は軸封
されている。
A bearing holder 3g of the bearing D and a funnel 31 are fastened together to the upper end of the piece io. Distance Peace L and Distance Peace/? The base inserted into the lower cylindrical part of /? F
The main shaft is sealed with a cylindrical shaft sealing member 3j fixed to L.

ケーシング/Sとケーシング/jに固定されたベース/
jaにより油槽が形成されており、油ポンプ36により
吸込まれた該油槽の油は油冷却器37を介して冷却して
漏斗3ダ、軸受デ、軸受/7からペデスタル2Q中に入
りペデスタル20の半径方向の溝20aから油槽に戻る
Casing/S and casing/Base fixed to J/
ja forms an oil tank, and the oil in the oil tank sucked in by the oil pump 36 is cooled through the oil cooler 37 and enters the pedestal 2Q through the funnel 3, bearing D, and bearing/7. It returns to the oil tank through the radial groove 20a.

軸受ヂより落下した油はスラストリングと駒のねじ対偶
10s、/Asの潤滑も行うようになっている。
The oil falling from the bearing also lubricates the thrust ring and the screw pair 10s, /As of the bridge.

可動翼を有する流体機械の運転中は常に主軸lやカップ
リング3J3JL、動力伝達軸30などの主動力伝達系
と共に翼角制御用操作軸コ、軸ナツト5、クロスヘラド
グ、連結棒6、ナツト?、滑りリングt1ディスタンス
ピース19及び輔ナツト/g等が一体に回転する。翼角
度を一定に保持しておく場合には駒IOに固定された回
転子//とケーシングisに固定された固定子13によ
り構成される電動機に回転力を発生させない機制御する
かもしくは通電しない。
During operation of a fluid machine with movable blades, the main power transmission system such as the main shaft 1, couplings 3J3JL, and power transmission shaft 30 is always operated, as well as the operating shaft for controlling the blade angle, the shaft nut 5, the cross paddle dog, the connecting rod 6, and the nut. , the sliding ring t1 distance piece 19, the nut/g, etc. rotate together. If the blade angle is to be kept constant, the electric motor consisting of the rotor fixed to the piece IO and the stator 13 fixed to the casing IS should be controlled so as not to generate rotational force, or should not be energized. .

回転子//及び駒IQは回転しないので駒10は移動せ
ず連結されている滑りリングgは軸方向に不動であり、
連結棒6、クロスヘラドグを介して翼角制御用操作軸コ
は軸方向に移動しない。つまり翼角度は一定に保たれる
。翼角制御を行なう場合には前記電動機に回転力を発生
させることにより回転子l/は回転し、駒IOは回転す
る。駒IOの内周に切られためねじ70Bとスラストリ
ングl乙の外周に切られたおねじ/68とのねじ対偶に
より駒10自身を軸方向に移動させる。駒IOの運動は
軸受9を介して回転を解放し軸方向運動のみを滑りリン
グざに伝達する。滑りリングt1連結棒t1クロスヘッ
ドダ、翼角制御用操作軸コは一体に軸方向に運動するた
め翼角制御用操作軸−の軸方向移動を得、翼角度が変化
する。翼角度を上記と逆に変化させる場合には上記と逆
方向に電動機の回転子//を回転させる機制御すればよ
い。
Since the rotor // and the piece IQ do not rotate, the piece 10 does not move and the connected sliding ring g is immobile in the axial direction.
The blade angle control operating shaft does not move in the axial direction via the connecting rod 6 and the cross paddle dog. In other words, the wing angle remains constant. When performing blade angle control, the rotor l/ is rotated by generating rotational force in the electric motor, and the piece IO is rotated. The piece 10 itself is moved in the axial direction by a screw pair consisting of an internal thread 70B cut on the inner periphery of the piece IO and a male thread 68 cut on the outer periphery of the thrust ring 1B. The movement of the piece IO releases rotation through the bearing 9, and only the axial movement is transmitted to the sliding ring. Since the sliding ring t1 connecting rod t1 crosshead and the blade angle control operating shaft move together in the axial direction, the blade angle control operating shaft moves in the axial direction and the blade angle changes. If the blade angle is to be changed in the opposite direction to that described above, the machine may be controlled to rotate the rotor of the electric motor in the opposite direction to that described above.

駒IOの軸方向の変位は位置検出器コクにより知ること
ができ翼角度が判明し、既述のようにして設定翼角Sに
翼角度は設定される。
The displacement of the piece IO in the axial direction can be detected by the position detector Koku, and the blade angle is determined, and the blade angle is set to the set blade angle S as described above.

この様な装置に用いられる回転子//、固定子/3から
なる電動機は例えばステッピングモータ、低周波多極モ
ータ、サイリスタモータ等に構成するのが適当であり、
パルスモータに構成し数値制御をすれば好適である。
It is appropriate that the electric motor consisting of rotor// and stator/3 used in such a device is configured as, for example, a stepping motor, a low frequency multipolar motor, a thyristor motor, etc.
It is preferable to use a pulse motor and perform numerical control.

第3図は本発明の他の実施例を示す縦断面図である。こ
の実施例は駒をねじ部材の回りに回動附勢させる操作駆
動手段の部分が前実施例と異なる。
FIG. 3 is a longitudinal sectional view showing another embodiment of the present invention. This embodiment differs from the previous embodiment in the operating driving means for urging the bridge to rotate around the screw member.

駒IOの外周には平歯車39が切られており、平歯車3
デにはケーシング15内に固定せられ主軸lと平行な出
力軸を配した油圧モータlllの軸端lこ固定された平
歯車lIJがかみ合っている。平歯車39と平歯車+、
2は常時かみ合いを保つために少くとも何れかが駒/θ
の移動量だけ他の歯車よりも歯幅を大きくしである。
A spur gear 39 is cut on the outer periphery of the piece IO.
A spur gear lIJ is engaged with the shaft end l of a hydraulic motor lll which is fixed in the casing 15 and has an output shaft parallel to the main shaft l. Spur gear 39 and spur gear +,
2, in order to maintain constant engagement, at least one of them is a piece/θ
The face width is made larger than other gears by the amount of movement.

油圧モータ4(/を回転すると平歯車ダコが回転し、平
歯車39に回転を伝え、駒10は回転する。従って油圧
モータlI/を正逆転することにより翼角の制御を行う
ことができる。この実施例においては駒10の軸方向の
移動が許されれば駒/θの外周には平歯車、?テでなく
はすば歯車でもよく、これとかみ合うはすば歯車駆動と
しでもよい。この場合ははすば歯車対の一方の歯車の軸
方向移動に伴う回転変位分が駒lθの回動に対して加減
算されるものとなる。駒/θの外周の歯車にかみ合う歯
車は駒lθの軸方向移動を許し得ればよいから、ウオー
ム、ねじ歯車、ラック等であってもよい。ラックの場合
はラックを流体圧サーボシリンダにより駆動する。
When the hydraulic motor 4 (/) rotates, the spur gear Tako rotates, transmitting the rotation to the spur gear 39, and the piece 10 rotates. Therefore, the blade angle can be controlled by rotating the hydraulic motor lI/ in the forward and reverse directions. In this embodiment, if the axial movement of the piece 10 is permitted, the outer periphery of the piece /θ may be a helical gear instead of a spur gear or ?te, or a helical gear drive that meshes with this may be used. In this case, the rotational displacement due to the axial movement of one gear of the helical gear pair is added to or subtracted from the rotation of the piece lθ.The gear meshing with the gear on the outer periphery of the piece /θ is As long as it allows axial movement, it may be a worm, a screw gear, a rack, etc. In the case of a rack, the rack is driven by a fluid pressure servo cylinder.

尚駒IOを流体圧作動の駆動源にて作動することは従来
例の油圧作動の可動翼を備えた流体機械の翼角制御装置
が油圧シリンダの推力を直接翼角制御用操作軸−に加え
ているのとは異なり、駒10の駆動源であり、油圧モー
タはその一例である。
In addition, operating the Koma IO with a fluid pressure-operated drive source means that the conventional blade angle control device of a fluid machine equipped with hydraulically operated movable blades applies the thrust of a hydraulic cylinder directly to the blade angle control operating shaft. The drive source for the piece 10 is a hydraulic motor, for example.

第弘図は本発明の更に別の実施例を示す断面図である。Figure 1 is a sectional view showing yet another embodiment of the present invention.

この実施例は駒外周の平歯車に噛み合う伝動装置が第3
図の実施例と異なる。
In this embodiment, the third transmission device meshes with the spur gear on the outer periphery of the piece.
This is different from the embodiment shown in the figure.

駒10の外周の平歯車3qには主軸lと平行な翼角操作
力入力軸ダ!に固定された平歯車4tコがかみ合ってい
る。翼角操作力入力軸lIsはケーシング/3に設けた
軸受lIA 、!7で回転自在に支承されており、この
入力軸4tjの上端にはかさ歯車atが固定されている
。翼角操作用の原動機SOに一端が連結され、ケーシン
グ15に軸受j/、3.2を介して支持された操作駆動
軸S3の他端には小かさ歯車ytが固定されており、こ
の小かさ歯車+?はかさ歯車lItにかみ合っている。
The spur gear 3q on the outer periphery of the piece 10 has a blade angle control force input shaft parallel to the main axis l! The 4t spur gears fixed to are meshed with each other. The blade angle control force input shaft lIs is a bearing lIA provided in the casing /3! 7, and a bevel gear at is fixed to the upper end of this input shaft 4tj. A small bevel gear yt is fixed to the other end of the operation drive shaft S3, which is connected at one end to the prime mover SO for controlling the blade angle and supported by the casing 15 via a bearing j/3.2. Bevel gear+? It meshes with the bevel gear lIt.

原動機Sθを付勢すると小かさ歯車ダタが回転し、かさ
歯車pg、平歯車クーが回転し、平歯車39に回転を伝
え、駒IOが回転し、前述の実施例と同様に翼角度を変
更することができる。
When the prime mover Sθ is energized, the small bevel gear Data rotates, the bevel gear pg and the spur gear Coo rotate, transmitting the rotation to the spur gear 39, the piece IO rotates, and the blade angle is changed as in the previous embodiment. can do.

この実施例においては、平歯車39は平歯車lIλとか
み合いながら軸方向に移動するから、常時かみ合いを保
つため平歯車3?の歯幅は軸方向移動量を考慮した長さ
となっているが、逆に平歯車q2の歯幅を広くして平歯
車3tの幅を強度必要な幅としてもよく、あるいは第6
図に示すように翼角操作力入力軸+1と平歯車4tコを
スプライン結合して、平歯車39.tユを同幅とし、平
歯車グーの両側にっば4/2aを固定してつば1I2a
で平歯車3?を挟んで平歯車39の移動に伴って平歯車
’12をスプライン軸上をすべるようにしてもよい。ま
た、平歯車12のすべり機構としてスプラインの代りに
すべりキー、ホールスプラインなどを用いてもよい。
In this embodiment, since the spur gear 39 moves in the axial direction while meshing with the spur gear lIλ, in order to maintain the mesh at all times, the spur gear 3? The face width of the spur gear q2 is set to a length that takes into account the amount of axial movement, but conversely, the face width of the spur gear q2 may be increased to make the width of the spur gear 3t the width required for strength.
As shown in the figure, the blade angle operating force input shaft +1 and 4 spur gears are spline-coupled, and the spur gear 39. Make the width of t the same, fix the 4/2a on both sides of the spur gear goo, and make the collar 1I2a.
And spur gear 3? The spur gear '12 may be made to slide on the spline shaft as the spur gear 39 moves across the spline shaft. Further, as the sliding mechanism of the spur gear 12, a sliding key, a Hall spline, etc. may be used instead of a spline.

本発明の可動翼を備えた流体機(戒の翼角制御装置は中
空の回転軸中を翼角制御用操作軸が−に通し、該操作軸
を軸方向に移動させることにより翼角度を制御する可動
翼を備えた流体機械の翼角制御装置において、回転軸に
回転可能に軸方向に移動しないように設けられ、回転軸
と同志のねじ部を持ちケーシングに軸方向移動可能にか
つケーシングに対して相対回転しないように支持された
ねじ部材と、前記ねじ部材のねじ部に係合するねじを備
え軸受を介して滑りリングに対して回転自在で軸方向?
こ連結された駒と、該駒を前記ねじ部材の回りlこ回動
附勢させる操作駆動手段と、翼角制御用操作軸に剛に連
結された軸方向移動自在かつ回転軸に対して回転不可h
ヒな滑りリングとで構成したから、回転軸の推力軸受に
は具用操作力が作用せず、該推力軸受を小型化できる。
The blade angle control device of the fluid machine (Kai) equipped with movable wings of the present invention has a blade angle control operating shaft passed through a hollow rotating shaft, and the blade angle is controlled by moving the operating shaft in the axial direction. In a blade angle control device for a fluid machine equipped with a movable blade, the blade is installed on the rotating shaft so as to be rotatable but not movable in the axial direction. A screw member supported so as not to rotate relative to the slide ring, and a screw that engages with the threaded portion of the screw member, and is rotatable in the axial direction with respect to the sliding ring via a bearing.
The connected pieces, an operation driving means for urging the pieces to rotate around the screw member, and a piece that is axially movable and rotatable with respect to the rotary shaft, which is rigidly connected to the blade angle control operation shaft. Not possible
Since it is constructed with a large sliding ring, no tool operating force acts on the thrust bearing of the rotating shaft, and the thrust bearing can be downsized.

また、既設の固定翼ポンプを可動賀化する場合、スラス
ト軸受の変更が不要なのでポンプ駆動の主モータを変更
することなしに可動翼化を達成できる。駒の回転軸に対
する相対回転をねじ対偶を用いて軸方向運動に変換して
いるので、翼が受ける流体力により翼角制御用操作軸が
推力を受けてもねじの摩擦により駒は回転しない。つま
り翼角制御用作軸以外は翼角を一定に保つ為に動力を必
要としない。
Furthermore, when converting an existing fixed-blade pump to a movable pump, the thrust bearing does not need to be changed, so the movable-blade pump can be achieved without changing the main motor that drives the pump. Since the relative rotation of the piece with respect to the rotation axis is converted into axial motion using a pair of screws, the piece does not rotate due to the friction of the screw even if the blade angle control operating shaft receives thrust due to the fluid force applied to the blade. In other words, no power is required to keep the blade angle constant except for the operating shaft for controlling the blade angle.

ねじ部材は回転せず駒の正逆転の絶対的な回転に従って
翼角が立ったりねたりする方向に変化するので駒の操作
附勢手段を制御するのが簡単であり、翼角を一定にして
おく場合には駒の操作附勢手段は停止しておくことが出
来るから翼角操作動力費の節約となる。
Since the screw member does not rotate and the blade angle changes in the direction of rising and falling according to the absolute rotation of the piece in forward and reverse directions, it is easy to control the means for operating and biasing the piece, and when keeping the blade angle constant. Since the bridge operating/energizing means can be stopped during operation, power costs for controlling the wing angle can be saved.

駒の操作駆動手段を該駒外周に固定した回転子と該回転
子と空隙をおいて固設した固定子とからなる電動機とし
た場合、駒の駆動にはラジアル荷重が働かず駒の駆動力
が少なく運動が円滑である。
When the piece operation drive means is an electric motor consisting of a rotor fixed to the outer periphery of the piece and a stator fixed with a gap between the rotor and the rotor, no radial load is applied to drive the piece, and the piece has less driving force and movement. is smooth.

駒の操作駆動手段を該駒外周に設けた歯車とかみ合う歯
車を正逆方向の運動可能な駆動源により駆動するように
した場合は該駆動源を電動機、油圧モータ、流体圧モー
タ、流体圧サーボシリンダ等によることができて構成の
自由度が高い0
When the operation driving means of the piece is such that a gear that meshes with a gear provided on the outer periphery of the piece is driven by a drive source that can move in forward and reverse directions, the drive source may be an electric motor, a hydraulic motor, a fluid pressure motor, or a fluid pressure servo cylinder. etc., and has a high degree of freedom in configuration.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例の縦断面図、第二図は第1図の
一部の他の実施例を示す水平断面図、第3図は本発明の
他の実施例の縦断面図、第7図は本発明の更に他の実施
例の縦断面図、第5図は第1図のA−A断面図、g6図
は第り図の一部の他の実施例を示す縦断面図である。 /・・主軸 コ・・翼角制御用操作軸 3 J。 3u・・カップリング lIe・クロスヘッド5・・軸
ナツト 6・・連結棒 7・番ナツトt・・滑りリング
 デ・拳軸受 10・・駒lθ8・・めねじ //・・
回転子 ia−*キー i3・争固定子 13・・ケー
シング/ j a* *ベース /6IIIIスラスト
リング/As・・おねじ /7・伽軸受 /1・・軸ナ
ツト /?・・ディスタンスピース 20e・ペデスタ
ル コOa・・溝、2/@l−−コλ・−軸ナット コ
3・−キー コダ・・円板 、2S・・永久磁石 26
・・コイル コア・・位置検出器 −t・・制御器 コ
ブ−・カバー 30・・動力伝達軸 Jl、32・・軸
封部材 33.31・・軸受押え 347・・漏斗3S
−・軸封部材 36・中油ポンプ 37・・油冷却器 
3q・・平歯車 ll/争・油圧モータ ダコ・・平歯
車 4IUa@・つば グ3・・シフタ ダダ・・指針
 lI!・・翼角操作力入力軸 ダA 、lI7・・軸
受 1111・・かさ歯車 419嗜・小かさ歯車 g
o・拳原動機j/。 !r2・・軸受 S3・・操作駆動軸。 特許出願人 株式会社荏原製作所 代 理 人 新 井 −部
Fig. 1 is a longitudinal sectional view of an embodiment of the present invention, Fig. 2 is a horizontal sectional view showing a part of another embodiment of Fig. 1, and Fig. 3 is a longitudinal sectional view of another embodiment of the invention. , FIG. 7 is a vertical cross-sectional view of still another embodiment of the present invention, FIG. 5 is a cross-sectional view taken along the line A-A in FIG. 1, and FIG. It is a diagram. /...Main shaft Co...Operation shaft for blade angle control 3 J. 3u...Coupling lIe・Crosshead 5...Shaft nut 6...Connecting rod 7. Nut t...Sliding ring De-Kist bearing 10...Block lθ8...Female thread //...
Rotor ia-*Key i3・Stator 13・・Casing/J a* *Base /6III Thrust Ring/As・・Male thread /7・Gallery bearing /1・・Shaft nut /?・・Distance piece 20e・Pedestal Ko Oa・Groove, 2/@l−− λ・−Axis nut Ko 3・−Key Koda・Disc, 2S・・Permanent magnet 26
...Coil Core...Position detector -t...Controller Cob--Cover 30...Power transmission shaft Jl, 32...Shaft sealing member 33.31...Bearing holder 347...Funnel 3S
-・Shaft sealing member 36・Medium oil pump 37・・Oil cooler
3q...Spur gear ll/War/Hydraulic motor Dako...Spur gear 4IUa@/Brim 3...Shifter Dada...Guideline lI! ...Blade angle operating force input shaft DaA, lI7...Bearing 1111...Bevel gear 419-Small bevel gear g
o・Fist engine j/. ! r2...bearing S3...operation drive shaft. Patent applicant: Ebara Corporation Representative: Arai-be

Claims (1)

【特許請求の範囲】 / 中空の回転軸中を翼角制御用操作軸が貫通し、該操
作軸を軸方向に移動させることにより翼角度を制御する
可動翼を備えた流体機械の翼角制御装置において、回転
軸に回転可能に軸方向移動しないように設けられ、回転
軸と同窓のねじ部を持ち、ケーシングに軸方向移動自在
にかつケーシングに対して相対回転しないように支持さ
れたねじ部材と、前記ねじ部材のねじ部に係合するねじ
を備え軸受を介して滑りリングに対して回転自在で軸方
向に連結された駒と、該駒を前記ねじ部材の回りに回動
附勢させる操作駆動手段と、翼角制御用操作軸に剛に連
結された軸方向移動自在かつ回転軸に対して回転不可能
な滑りリングとからなる可動翼を備えた流体機械の翼角
制御装置。 ユ 駒の操作駆動手段が、該駒外周に固定した回転子と
該回転子と空隙をおいて固設した固定子とからなる電動
機である特許請求の範囲第1項記載の可動翼を備えた流
体機械の翼角制御装置。 ユ 駒の操作駆動手段が、該駒外周に設けられた歯車と
、該歯車と噛み合い駆動源に連結された歯車伝動装置と
からなる特許請求の範囲第1項記載の可動翼を備えた流
体機械の翼角制御装置。
[Claims] / Blade angle control of a fluid machine equipped with a movable blade in which a blade angle control operating shaft passes through a hollow rotating shaft, and the blade angle is controlled by moving the operating shaft in the axial direction. In a device, a screw member that is rotatably installed on a rotating shaft so as not to move in the axial direction, has a threaded portion that is in the same window as the rotating shaft, and is supported by a casing so as to be able to move freely in the axial direction and not rotate relative to the casing. a piece including a screw that engages with the threaded portion of the threaded member and rotatably connected in the axial direction to the sliding ring via a bearing; and the piece is rotationally biased around the threaded member. A blade angle control device for a fluid machine including a movable blade including an operation drive means and a sliding ring rigidly connected to an operating shaft for controlling the blade angle and movable in the axial direction but not rotatable with respect to the rotating shaft. A fluid equipped with movable wings according to claim 1, wherein the operation drive means of the piece is an electric motor comprising a rotor fixed to the outer periphery of the piece and a stator fixed with a gap from the rotor. Mechanical blade angle control device. A fluid machine equipped with movable blades according to claim 1, wherein the operation drive means of the piece comprises a gear provided on the outer periphery of the piece, and a gear transmission meshing with the gear and connected to a drive source. Wing angle control device.
JP58215662A 1983-11-16 1983-11-16 Vane-angle controller for fluid machinery equipped with movable blade Granted JPS60108570A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58215662A JPS60108570A (en) 1983-11-16 1983-11-16 Vane-angle controller for fluid machinery equipped with movable blade

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58215662A JPS60108570A (en) 1983-11-16 1983-11-16 Vane-angle controller for fluid machinery equipped with movable blade

Publications (2)

Publication Number Publication Date
JPS60108570A true JPS60108570A (en) 1985-06-14
JPH0122474B2 JPH0122474B2 (en) 1989-04-26

Family

ID=16676096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58215662A Granted JPS60108570A (en) 1983-11-16 1983-11-16 Vane-angle controller for fluid machinery equipped with movable blade

Country Status (1)

Country Link
JP (1) JPS60108570A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018112192A (en) * 2013-06-27 2018-07-19 アブ アル−ラブ カリル マフムード Water turbine with variable buoyancy

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57212398A (en) * 1981-06-24 1982-12-27 Hitachi Ltd Apparatus for changing angle of variable vane of pump

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57212398A (en) * 1981-06-24 1982-12-27 Hitachi Ltd Apparatus for changing angle of variable vane of pump

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018112192A (en) * 2013-06-27 2018-07-19 アブ アル−ラブ カリル マフムード Water turbine with variable buoyancy

Also Published As

Publication number Publication date
JPH0122474B2 (en) 1989-04-26

Similar Documents

Publication Publication Date Title
US4356736A (en) Imbalance-oscillation exciter
US4310768A (en) Constant speed drive
CN108620897A (en) High-precision rotary working-table with automatic gap eliminating device and its automatic anti-backlash method
JPH0159830B2 (en)
JPS60108570A (en) Vane-angle controller for fluid machinery equipped with movable blade
US6003409A (en) Play-free device for driving a rotary table
GB1086188A (en) Improvements in or relating to machine tools
US3006209A (en) Reversing transmission
US2953362A (en) Radially adjustable boring head and means for indicating the position of adjustment of the boring arms
US4083503A (en) Paper stock rotor axial position controlling and locking device
CN102385396B (en) High-power high-accuracy double worm wheel two speed gearbox for solar photo-thermal power generation giant bracket
JP3363163B2 (en) Variable pitch propeller drive
JPS642783B2 (en)
JPH07123631A (en) Electric actuator
JPS642784B2 (en)
JP2811092B2 (en) Operation method in double disc refiner for papermaking
JPS6256358B2 (en)
US3381577A (en) Power drive for machine tool
JPH0151672B2 (en)
JPH0133643B2 (en)
CN219954163U (en) Axial clearance adjusting device of speed reducer
JPS63166692A (en) Pitch altering device for marine propeller
CN219432381U (en) Hand wheel interlocking device
US2502234A (en) Control for hydraulic motors
JPH0213156B2 (en)