JPS60108544A - Fuel injection device of engine - Google Patents

Fuel injection device of engine

Info

Publication number
JPS60108544A
JPS60108544A JP58213879A JP21387983A JPS60108544A JP S60108544 A JPS60108544 A JP S60108544A JP 58213879 A JP58213879 A JP 58213879A JP 21387983 A JP21387983 A JP 21387983A JP S60108544 A JPS60108544 A JP S60108544A
Authority
JP
Japan
Prior art keywords
injection
valve
fuel
amount
injection valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58213879A
Other languages
Japanese (ja)
Other versions
JPH0137584B2 (en
Inventor
Asao Tadokoro
朝雄 田所
Haruo Okimoto
沖本 晴男
Masato Iwaki
正人 岩城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP58213879A priority Critical patent/JPS60108544A/en
Publication of JPS60108544A publication Critical patent/JPS60108544A/en
Publication of JPH0137584B2 publication Critical patent/JPH0137584B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10006Air intakes; Induction systems characterised by the position of elements of the air intake system in direction of the air intake flow, i.e. between ambient air inlet and supply to the combustion chamber
    • F02M35/10026Plenum chambers
    • F02M35/10045Multiple plenum chambers; Plenum chambers having inner separation walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/1015Air intakes; Induction systems characterised by the engine type
    • F02M35/10177Engines having multiple fuel injectors or carburettors per cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/104Intake manifolds
    • F02M35/108Intake manifolds with primary and secondary intake passages
    • F02M35/1085Intake manifolds with primary and secondary intake passages the combustion chamber having multiple intake valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/104Intake manifolds
    • F02M35/112Intake manifolds for engines with cylinders all in one line

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To ensure good ignitionability and combustibility, by injecting fuel by the first injection valve in a low region of intake air quantity while additionally from the second injection valve in a high region of intake air quantity and controlling the second injection valve so as to stop its injection of fuel under a specific condition. CONSTITUTION:An engine provides the first injection valves 12 in the first intake passage 7a while the second injection valves 13 in the second intake passage 7b. Then an injection valve actuating means 20 drives the first injection valve 12 when an arithmetic injection quantity by a fuel injection quantity- arithmetic means 19 is below the preset value while drives both the first and the second injection valves 12, 13 when the arithmetic injection quantity exceeds the preset value. Further a stopping means 21 of the second injection valve causes the second injection valve 13 to stop its action in a region where the second throttle valve 11 is closed. In this way, good ignitionability and combustibility can be ensured by performing accurate injection of fuel corresponding to an operating condition of the engine.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、エンジンの燃料噴射装置の改良に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an improvement in a fuel injection device for an engine.

(従来技v#) エンジンの各気筒に対して2つの吸気通路を設け、それ
ぞれの吸気通路に燃料噴射弁を配設し、エンジンの負荷
等の運転状態に応じて各吸気通路に配設した絞り弁の開
閉を行って吸気量を制御するとともに、各燃料噴射弁か
らの燃r1噴QJ量を制御し、第1噴射弁からは低吸気
最域を含む全運転領域で燃料を噴射し、第2噴射弁から
は高吸気量域で燃料を噴射するようにして、低負荷域か
ら高負荷域に至るまで精度の良い燃料イハ給制御が実現
できるようにした燃料噴口4装置は、例えば特開昭51
−12025号に見られるように公知である。
(Conventional technology v#) Two intake passages are provided for each cylinder of the engine, and a fuel injection valve is arranged in each intake passage, and the fuel injection valve is arranged in each intake passage according to the operating condition such as engine load. The throttle valve is opened and closed to control the intake air amount, and the fuel r1 injection QJ amount from each fuel injection valve is controlled, and fuel is injected from the first injection valve in the entire operating range including the lowest intake air range, For example, the fuel injection port 4 device injects fuel in a high intake air amount range from the second injection valve to achieve highly accurate fuel supply control from a low load range to a high load range. 1977
It is known as seen in No.-12025.

上記のような燃料噴射装置では、高負荷時における多幻
の燃料噴射を1本の燃料噴射弁で行うと、低負荷時の中
門の燃料@射を行うときの精度が低下するのに対し、低
流」域での供給N度の良い第1噴射弁で低負荷域の燃料
噴射を行う一′方、この第1噴射弁では供給できない高
流量域では第2噴射弁からも燃料噴射を行うようにした
ものである。
In the above-mentioned fuel injection system, if a single fuel injection valve performs multiple fuel injections during high loads, the accuracy will decrease when performing mid-range fuel injections during low loads. While the first injector, which has a good supply N degree in the low-flow region, injects fuel in the low-load region, the second injector also injects fuel in the high-flow region that cannot be supplied by the first injector. This is what I decided to do.

しかして、第2噴射弁からの燃料噴射の開始時期は前記
先行例のように、エンジンσ運転状態に応じて演算した
燃料噴射量(燃料噴射パルス幅)の大きざに対応し、こ
の演算噴射量が設定値を越えたときに第2噴射弁からも
燃料の噴射を行うようにしたものでは、高流門域用の第
2吸気通路が第2絞り弁によって開かれる前に第2噴射
弁から燃料噴射が行われる問題を有するものである。
Therefore, as in the preceding example, the start timing of fuel injection from the second injector corresponds to the magnitude of the fuel injection amount (fuel injection pulse width) calculated according to the engine σ operating state, and the calculated injection In the case where fuel is also injected from the second injection valve when the amount exceeds a set value, the second injection valve is injected before the second intake passage for the high flow area is opened by the second throttle valve. This has the problem that fuel injection is performed from the beginning.

すなわち、例えばエンジン冷間時には吸気量に対リ−る
燃料噴射量を増大して良好な暖機性を得るために、演算
噴射量を増大する冷間時補正を行うとともに、冷間時の
エンジン回転数を上昇するために吸気量を増大するよう
にしている。そして、上記補正において、エンジンの実
際の運転状態は第1噴射弁のみによる燃料噴射量だけれ
ども、エンジン温度および吸気量の検出に基づく演算噴
射量が前記設定値を越えて第2噴射弁からも燃料噴射を
行う領域となることがある。
That is, for example, when the engine is cold, in order to increase the fuel injection amount relative to the intake air amount and obtain good warm-up performance, a cold-time correction is performed to increase the calculated injection amount. The amount of intake air is increased to increase the rotational speed. In the above correction, although the actual operating state of the engine is the amount of fuel injected only by the first injector, the calculated injection amount based on the detection of the engine temperature and intake air amount exceeds the set value, and the amount of fuel injected from the second injector also exceeds the set value. This may be the area where fuel injection is performed.

よって、この場合に、第2絞り弁が開かれていないのに
第2噴射弁から燃料が噴射されることになり、この燃料
は燃焼室に流入せず吸気通路に溜るものであって、所定
の燃料が燃焼室に供給されず失火の恐れがあるとともに
、燃料の微粒化J3J、びミキシングの悪化をもたらす
不具合を有するものである。
Therefore, in this case, fuel is injected from the second injection valve even though the second throttle valve is not opened, and this fuel does not flow into the combustion chamber but accumulates in the intake passage, and does not flow into the combustion chamber. The fuel is not supplied to the combustion chamber and there is a risk of misfire, and the fuel also has problems such as atomization of the fuel and worsening of mixing.

(発明の目的) 本発明は上記事情に鑑み、冷間時補正等によって演算噴
射口が増大しても、第2吸気通路が第2絞り弁によって
開かれていないときには、上記演算噴射量の大きさにか
かわらず、第2噴射弁による燃料噴射は行わず、第1噴
射弁のみによって第1吸気通路に燃料噴射を行うように
したエンジンの燃料噴射装置を提供することを目的とす
るものである。
(Object of the Invention) In view of the above circumstances, the present invention provides that even if the calculated injection port increases due to cold time correction etc., when the second intake passage is not opened by the second throttle valve, the calculated injection amount increases. Regardless, the object of the present invention is to provide a fuel injection device for an engine in which fuel is injected into a first intake passage only by a first injector without injecting fuel by a second injector. .

(発明の構成) 本発明のエンジンの燃料噴射装置は、各気筒に対して低
吸気量域を含む全運転領域で吸気を供給する第1吸気通
路と、高吸気量域で吸気を供給する第2吸気通路とを接
続し、第1吸気通路には第1噴射弁と第1絞り弁とを設
け、第2吸気通路には第2 VS躬弁と第2絞り弁とを
設【プ、吸入空気量検出手段で検出した吸気量に応じて
燃料噴射量演算手段で燃料噴射量を演算し、噴射弁作動
手段は燃料噴射量演算手段による演算噴射量が設定値以
下のときには第1噴射弁を駆動し、この演算噴射量が設
定値を越えたときに第1および第2噴射弁を駆動するも
のであって、この噴射弁作動手段に対し第2絞り弁の閉
じている領域では第2噴射弁の作動を停止する第2噴射
弁停止手段とを備えたことを特徴とするものである。
(Structure of the Invention) The fuel injection device for an engine of the present invention includes a first intake passage that supplies intake air to each cylinder in all operating ranges including a low intake air amount range, and a first intake passage that supplies intake air in a high intake air amount range to each cylinder. The first intake passage is provided with a first injection valve and a first throttle valve, and the second intake passage is provided with a second VS valve and a second throttle valve. The fuel injection amount calculation means calculates the fuel injection amount according to the intake air amount detected by the air amount detection means, and the injection valve operating means operates the first injection valve when the injection amount calculated by the fuel injection amount calculation means is less than a set value. When the calculated injection amount exceeds a set value, the first and second injection valves are driven. The present invention is characterized by comprising a second injection valve stopping means for stopping the operation of the valve.

上記第2噴射弁停止手段としては、冷間時に第2噴射弁
からの燃料噴射を開始する設定値を大きくするもの、も
しくは、第2噴射弁の開度を検出して閉弁時には第2噴
射弁を不作動とするものなどが採用される。
The above-mentioned second injection valve stopping means may be one that increases the setting value for starting fuel injection from the second injection valve when the second injection valve is cold, or one that detects the opening degree of the second injection valve and starts the second injection when the valve is closed. A type with a non-operating valve is adopted.

(発明の効果) 本発明によれば、低吸気量域では第1噴射弁によって精
度の良い燃料噴射ヲ行うとともに、高吸気量域では第2
噴射弁からも燃料噴射を行うようにして燃料微粒化を促
進する一方、冷間時補正等によって演算噴射量が所定値
を越えて第1噴射弁および第2噴射弁の両方から燃料を
噴射する大ぎさであっても、第2噴射弁を配設している
第2吸と 気通路の第2絞り弁が閉じている領域では第2〜舅ロー
弁からの燃料噴射を行わないようにしたために、吸気の
ない吸気通路への燃料噴射を明止して運転状態に対応し
た的確な燃料噴射を行い、良好な着火性、燃焼性を確保
することができるものである。
(Effects of the Invention) According to the present invention, the first injector performs accurate fuel injection in the low intake air amount range, and the second injector injects the fuel in the high intake air amount area.
While fuel atomization is promoted by injecting fuel from the injector as well, when the calculated injection amount exceeds a predetermined value due to cold time correction etc., fuel is injected from both the first and second injectors. Even if the size is large, fuel injection from the second to lower valves is not performed in the region where the second throttle valve of the second intake and air passage where the second injection valve is installed is closed. In addition, it is possible to ensure good ignition and combustibility by specifying fuel injection into an intake passage where there is no intake air, performing accurate fuel injection corresponding to the operating condition.

(実施例) 以下、図面により本発明の実施態様を詳細に説明する。(Example) Embodiments of the present invention will be described in detail below with reference to the drawings.

実施例1 この実施例は第1図ないし第5図に示し、第1図は全体
構成図で、エンジン1の各気筒の燃焼室2に対し、2つ
の第1および第2吸気ボート3および4が開口するとと
もに、2つの第1および第2排気ボート5および6がそ
れぞれ開口している。
Embodiment 1 This embodiment is shown in FIGS. 1 to 5, and FIG. 1 is an overall configuration diagram, in which two first and second intake boats 3 and 4 are provided for the combustion chamber 2 of each cylinder of the engine 1. is opened, and the two first and second exhaust boats 5 and 6 are opened, respectively.

上記吸気ボート3,4には吸入空えを供給する吸気通路
7が接続されている。この吸気通路7は」−流端にエア
クリーナ8を有し、このエアクリーナ8の下流側に吸気
量を検出する吸入空気量検出手段9(エアフローメータ
)が介装され、この吸入空気量検出手段9より下流側の
吸気通路7が、第1吸気通路7aと第2吸気通路7bと
に分岐形成されている。第1吸気通路7aは拡張室7C
を介して各燃焼室2の第1吸気ポート3にそれぞれ接続
される一方、第2吸気通路7bは拡張室7dを介して各
燃焼室2の第2吸気ポート4にそれぞれ接続されている
An intake passage 7 for supplying intake air is connected to the intake boats 3 and 4. This intake passage 7 has an air cleaner 8 at its flow end, and an intake air amount detection means 9 (air flow meter) for detecting the amount of intake air is installed downstream of this air cleaner 8. The intake passage 7 on the more downstream side is branched into a first intake passage 7a and a second intake passage 7b. The first intake passage 7a is an expansion chamber 7C.
The second intake passage 7b is connected to the second intake port 4 of each combustion chamber 2 via an expansion chamber 7d.

上記第1吸気通路7aの入口部分には、この第1吸気通
路7aを流れる吸気量を制御する第1絞り弁10が介設
されるとともに、上記第2吸気通路7bの入口部分には
、この第2吸気通路7bを流れる吸気量を制御する第2
絞り弁11が介設され、両絞り弁io、1iはスロット
ル操作に連係して開閉作動される。第1絞り弁10は低
負荷時から開いて負荷の上昇に伴って全開状態となり、
第2絞り弁11は第1絞り弁10が設定開度以上となっ
たときに開き始め負荷の上昇とともに全開状態となるも
のである。
A first throttle valve 10 for controlling the amount of intake air flowing through the first intake passage 7a is provided at the entrance of the first intake passage 7a, and a first throttle valve 10 is provided at the entrance of the second intake passage 7b. A second
A throttle valve 11 is provided, and both throttle valves io and 1i are opened and closed in conjunction with throttle operation. The first throttle valve 10 opens when the load is low and becomes fully open as the load increases,
The second throttle valve 11 begins to open when the opening degree of the first throttle valve 10 reaches a set opening or more, and becomes fully open as the load increases.

上記第1吸気通路7aには低吸気量域を含む全運転領域
で燃料を噴射する第1噴射弁12が各気筒に対してそれ
ぞれ配設されるとともに、−F記第2吸気通路7bには
高吸気ω域で燃料を噴射する第2噴射弁13が各気筒に
対してそれぞれ配設されている。この第1および第2噴
射弁12.13にはコントロールユニット14(マイク
ロコンピュータ)からの燃料制御信号として燃料噴13
イパルスが出力され、その噴射パルス幅に応じた所定量
の燃料噴射を行う。
In the first intake passage 7a, a first injection valve 12 for injecting fuel in all operating ranges including the low intake air amount range is arranged for each cylinder, and in the second intake passage 7b indicated by -F. A second injection valve 13 that injects fuel in the high intake ω range is provided for each cylinder. The first and second injection valves 12 and 13 receive a fuel control signal from a control unit 14 (microcomputer).
An injection pulse is output, and a predetermined amount of fuel is injected according to the injection pulse width.

また、上記吸気通路7には第1絞り弁10をバイパスし
たバイパス通路15が設けられ、このバイパス通路15
の途中にバイパスエア昂を制御するバイパス制御弁16
が介装され、このバイパス制御弁16は前記コントロー
ルユニツ1〜14の制御信号に基づくりニアソレノイド
16aの作動によってその開度が調整されて、エンジン
温度(冷u1水温度)が低い程バイパスエア量を増大す
るように制御するものである。
Further, the intake passage 7 is provided with a bypass passage 15 that bypasses the first throttle valve 10.
Bypass control valve 16 for controlling bypass air flow during the
The opening of this bypass control valve 16 is adjusted by the operation of the near solenoid 16a based on the control signals from the control units 1 to 14, and the lower the engine temperature (cold U1 water temperature), the more bypass air is provided. The amount is controlled to increase.

上記コントロールユニット14には前記吸入空気量検出
手段9からの吸気組信号が入力されるとともに、回転数
センサー77からエンジン回転数信号および水温センサ
ー18からエンジン冷却水温度信号が人力される。
The control unit 14 receives an intake signal from the intake air amount detecting means 9, and receives an engine rotational speed signal from the rotational speed sensor 77 and an engine cooling water temperature signal from the water temperature sensor 18.

このコントロールユニット14は、吸入空気量検出手段
9および回転数センサー17、水温センリー18の出力
に応じて冷間時補正を含めた運転状態に対応した燃料噴
射口および時期(噴射回数)を演算する燃料噴射量演算
手段19と、この燃料噴射量演算手段19による演算噴
rJJm(噴射パルス幅)に基づき、この演算噴射量が
設定値以下のどきには第1噴射弁12に噴射パルスを出
力して駆動し、設定値を越えたときに第1および第2噴
射弁12.13に噴射パルスを出力して駆動する噴射弁
作動手段20と、上記水温センサー18の信号を受【ジ
エンジン冷間時には上記噴射弁作動手段20の設定値を
冷間増口に対応して高くし、第2噴射弁13の噴射開始
時期を遅らせ、少なくとも第2絞り弁11が閉じている
領域では第21114射弁13からの噴射作動を停止す
る第2噴射弁停止手段21と、前記水温センサー18の
出ノ〕に基づいてエンジン温度が低い程バイパス通路1
5のバイパス制御弁16を開いてバイパスエア量を増大
するような制御信号をリニアソレノイド16aに出力す
るバイパス制御弁駆動手段22とを有している。
This control unit 14 calculates the fuel injection port and timing (number of injections) corresponding to the operating state including cold time correction according to the outputs of the intake air amount detection means 9, the rotation speed sensor 17, and the water temperature sensor 18. Based on the fuel injection amount calculating means 19 and the calculated injection rJJm (injection pulse width) by this fuel injection amount calculating means 19, an injection pulse is output to the first injection valve 12 when the calculated injection amount is less than a set value. and an injection valve actuating means 20 which outputs an injection pulse to the first and second injection valves 12 and 13 when the set value is exceeded, and which receives a signal from the water temperature sensor 18. At times, the setting value of the injection valve operating means 20 is increased in accordance with the cold increase, and the injection start timing of the second injection valve 13 is delayed, so that at least in the region where the second throttle valve 11 is closed, the 21114th injection valve is 13 and the output of the water temperature sensor 18], the lower the engine temperature, the lower the bypass passage 1.
The bypass control valve driving means 22 outputs a control signal to the linear solenoid 16a to open the bypass control valve 16 of No. 5 and increase the amount of bypass air.

上記コントロールユニット14による燃料噴射制御は、
第2図に示すように、エンジン回転数Nと吸気量Qaと
の関係において、温間時には設定曲線Aを境にして下方
の領域■が第1噴則弁12による噴射領域であり、領域
■が第1および第2噴射弁12.13による噴射領域で
ある。この設定曲線Aがほぼ第2絞り弁11の開弁曲線
に相当するものであり、低吸気m域では第1噴射弁12
のみによって燃料を供給し、吸気11Qa覆なわら燃料
噴射口が設定値(噴射パルス幅の設定値)に達すると、
第2噴射弁13による燃料1174 hjを開始するも
のであり、冷間時には破線で示すようにこの設定曲線B
が高い値に設定され、燃料噴射量が増大しても第2噴射
弁13による噴射開始を遅らせることにより、冷間時の
燃料増鑓、バイパスエア門の増大に伴う第2絞り弁11
開作動前の第2噴射弁13の燃料噴射を阻止するもので
ある。
The fuel injection control by the control unit 14 is as follows:
As shown in FIG. 2, in the relationship between the engine speed N and the intake air amount Qa, when the engine is warm, the region (■) below the setting curve A is the injection region by the first injection control valve 12, and the region (■) is the injection area by the first and second injection valves 12.13. This setting curve A approximately corresponds to the valve opening curve of the second throttle valve 11, and in the low intake m region, the first injection valve 12
When the fuel injection port reaches the set value (the set value of the injection pulse width),
This is to start fuel 1174 hj from the second injection valve 13, and when it is cold, this setting curve B is shown as a broken line.
is set to a high value, and by delaying the start of injection by the second injection valve 13 even if the fuel injection amount increases, the second throttle valve 11 is increased due to the increase in fuel during cold conditions and the increase in the bypass air gate.
This prevents the second injection valve 13 from injecting fuel before the opening operation.

第3図は上記コントロールユニット14の動作を説明す
るためのフローチャートであり、スタート後、ステップ
S1で水温センサー18による水温信号を入ツノし、ス
テップS2で運転状態に対応する燃料噴射量を演算する
ものであって、吸入空気量検出手段9による吸入空気I
Qa 、回転数センサー17によるエンジン回転数N1
定数K、補正係数αなどから燃料噴射パルス幅τ(噴射
時間)をめる。なお、補正係数αは冷間時等の補正増量
を行うためのもので、加算補正値τ0は燃料噴射パルス
が第1もしくは第2噴射弁12.13に出力されても、
実際に燃料の噴射が開始されるまでに一定時間を要する
ことから、この立上りの時間を補正するためのものであ
る。また、τaは冷間補正等を加味した基本噴射時間で
、τbは加速増量時間である。
FIG. 3 is a flowchart for explaining the operation of the control unit 14. After starting, a water temperature signal from the water temperature sensor 18 is input in step S1, and a fuel injection amount corresponding to the operating state is calculated in step S2. The intake air I detected by the intake air amount detection means 9
Qa, engine rotation speed N1 determined by rotation speed sensor 17
Calculate the fuel injection pulse width τ (injection time) from the constant K, correction coefficient α, etc. Note that the correction coefficient α is for correcting and increasing fuel consumption during cold periods, etc., and the additional correction value τ0 is used even if the fuel injection pulse is output to the first or second injection valve 12.13.
Since it takes a certain amount of time to actually start fuel injection, this is to correct the rise time. Further, τa is a basic injection time that takes into account cold correction, etc., and τb is an acceleration increase time.

続いて、冷却水温tに応じバイパス制御弁16の制御量
を読出しくS3)、この制御口に応じてバイパス制御弁
16のりニアソレノイド16aを駆動するくS4)。ま
た、第2噴射弁13の噴射を開始する設定パルス幅τV
を読出しくS5)、前記ステップS2による演算噴射量
としての噴射パルス幅τa十τbがこの設定パルス幅τ
vg、上かどうか判断しく86)、この判断がNo(低
噴射m域)のときには非同期加速スイッチがオンがどう
かを判断しくS7)、非同期加速スイッチがオン(YE
S)となっている大ぎな加速状態のときにはステップS
8で非同期l114射を行う一方、この非同期加速スイ
ッチがオフ(No)のときには非同期噴射を行うことな
く、第1噴剣弁12用の噴射パルスτpと第2噴射弁1
3用の@Q−JパルスτSとと演算する(S9)。上記
低噴射m域では、第2噴射弁13用の噴射パルスτSが
樅に設定されており、この第2噴躬弁13からの燃料噴
射を行うことなく、第1噴射弁12のみによってステッ
プS2でめた噴射パルス幅τpの制御信号によって第1
噴射弁12を駆動して燃料噴射を行う(813)。
Subsequently, the control amount of the bypass control valve 16 is read out in accordance with the cooling water temperature t (S3), and the linear solenoid 16a of the bypass control valve 16 is driven in accordance with this control port (S4). Also, the set pulse width τV for starting the injection of the second injection valve 13
The injection pulse width τa + τb as the calculated injection amount in step S2 is the set pulse width τ.
If this judgment is No (low injection m range), it is necessary to judge whether the asynchronous acceleration switch is on or not (S7), and the asynchronous acceleration switch is on (YE
Step S) when there is a large acceleration state such as S).
8, asynchronous injection is performed at 8, while when this asynchronous acceleration switch is off (No), asynchronous injection is not performed and the injection pulse τp for the first injection valve 12 and the injection pulse τp for the second injection valve 1 are
@Q-J pulse τS for 3 is calculated (S9). In the low injection m range, the injection pulse τS for the second injection valve 13 is set to Fir, and the fuel injection from the second injection valve 13 is not performed, and step S2 is performed only by the first injection valve 12. The first injection pulse width τp is determined by the control signal of the injection pulse width τp.
The injection valve 12 is driven to perform fuel injection (813).

一方、上記ステップS6の判断がYESで高噴射量域の
ときには、同様に非同期加速スイッチがオンかどうかを
判断しく510)、非同期加速スイッチがオン(YES
)となっている大きな加速状態のときにはステップS1
1で非同期噴射を行う一方、非同期加速スイッチがオフ
(NO)のときには非同期噴射を行うことなく、第1噴
射弁12用の噴射パルスτpど第2噴射弁13用の噴射
パルスτSとを演算しく512) 、この制御信号によ
って第1および第2噴射弁12.13を駆動して燃料噴
射を行う(313)。なお、この例では第1噴射弁12
と第2噴射弁13とは同門(半分ずつ)の燃料を噴射す
るように設定されている。
On the other hand, if the determination in step S6 is YES and the injection amount is in the high injection amount region, it is similarly determined whether the asynchronous acceleration switch is on (510) and the asynchronous acceleration switch is on (YES).
), when the acceleration state is large, step S1
1, while performing asynchronous injection when the asynchronous acceleration switch is off (NO), calculate the injection pulse τp for the first injection valve 12 and the injection pulse τS for the second injection valve 13 without performing asynchronous injection. 512) This control signal drives the first and second injection valves 12.13 to perform fuel injection (313). Note that in this example, the first injection valve 12
and the second injection valve 13 are set to inject the same amount of fuel (half each).

このどき上記ステップ$5で読出す設定値τVの値は、
第5図のような特性に設定されている。
The value of the set value τV read out in step $5 above is now:
The characteristics are set as shown in FIG.

すなわち、水温センサー18により検出した冷却水温t
が@機完了温度to以下の低温時には大きな設定値τV
を、越えたときは小さな設定値τVを読出すように設定
されているものである。
That is, the cooling water temperature t detected by the water temperature sensor 18
is a large set value τV when the temperature is lower than @machine completion temperature to.
It is set so that when the value exceeds τV, a small set value τV is read out.

上記燃料噴射において、高噴射量域で非同期噴射を行う
場合の噴射パルスτp、τSの出力は、第4図に示ずよ
うになる。
In the above fuel injection, the outputs of the injection pulses τp and τS when performing asynchronous injection in a high injection amount range are as shown in FIG.

実施例2 この実施例は第6図に全体構成を、第7図にフローチャ
ートを示している。本例では冷却水温度の検出に代えて
第2絞り弁11の開度をスロワ1〜ルセンザ−23によ
って直接検出し、この検出信号をコン1〜ロールユニツ
1〜14の第2噴射弁停止手段21に出力し、燃料噴射
量演算手段19でエンジンの運転状態に応じて演算した
燃F4噴躬囲が、噴射弁作動手段20における設定値を
越えているときでも、第2絞り弁11が閉じている信号
が第2噴射弁停止手段21に出力されている場合には、
第2噴射弁13の作動を停止し、演算噴射毎を仝部爾1
噴射弁12によって噴射する制御信号を出力するもので
ある。その伯は前例と同様に設参プられ、第1図と同一
1’4造には同一符号を付して説明を省略する。
Embodiment 2 In this embodiment, the overall configuration is shown in FIG. 6, and the flowchart is shown in FIG. In this example, instead of detecting the cooling water temperature, the opening degree of the second throttle valve 11 is directly detected by the thrower 1 to the sensor 23, and this detection signal is sent to the second injection valve stop means 21 of the control unit 1 to the roll unit 1 to 14. Even when the fuel F4 injection range calculated by the fuel injection amount calculation means 19 according to the engine operating state exceeds the set value in the injection valve actuation means 20, the second throttle valve 11 closes. When the signal is output to the second injection valve stop means 21,
The operation of the second injection valve 13 is stopped, and each calculated injection is
It outputs a control signal for injection by the injection valve 12. The rack is installed in the same manner as in the previous example, and the same 1'4 structures as in Figure 1 are given the same reference numerals and explanations are omitted.

第7図は上記特性を得るための本例のコントロールユニ
ツ]〜14の動作を示ずフローチt−1〜であり、スタ
ー1へ後、ステップS1で運転状態に対応する燃料噴射
ωを演算するものであって、吸入空気値検出手段9によ
る吸入空気IQa 、回転数センサー17によるエンジ
ン回転数N1定数に1補正係数αなどから燃料噴射パル
ス幅τをめる。
FIG. 7 shows the control unit of this example for obtaining the above characteristics.The operation of ~14 is not shown at flow t-1~, and after moving to star 1, the fuel injection ω corresponding to the operating state is calculated in step S1. The fuel injection pulse width τ is calculated from the intake air IQa determined by the intake air value detection means 9, the engine rotational speed N1 constant determined by the rotational speed sensor 17, and the 1 correction coefficient α.

続いて、第2噴射弁13の燃料噴射を開始する設定パル
ス幅τVを読出しく82)、前記ステップS1で演算し
た噴射パルス幅τδ+τbがこの設定パルス幅τv 1
7上かどうかを判断しくS3)、この判断がNO(低噴
射量域)のときには非同期加速スイッチがオンかどうか
を判断しくS4)、非同期加速スイッチがオン(YES
)となっている大きな加速状態のときにはステップS5
で非同期噴射を行う一方、この非同期加速スイッチがオ
フ(No>のときには非同期噴射を行うことなく、第1
噴射弁12用の噴射パルスτpと第2噴射弁13用の噴
射パルスτSとを演算するくS6)。
Next, the set pulse width τV for starting fuel injection of the second injection valve 13 is read out (82), and the injection pulse width τδ+τb calculated in step S1 is the set pulse width τv 1
If the determination is NO (low injection amount area), it is determined whether the asynchronous acceleration switch is on (S4), and the asynchronous acceleration switch is on (YES).
) in a large acceleration state, step S5
On the other hand, when this asynchronous acceleration switch is off (No>), asynchronous injection is not performed and the first
The injection pulse τp for the injection valve 12 and the injection pulse τS for the second injection valve 13 are calculated (S6).

上記低噴DAω域では第2噴剣弁13用の噴射パルスτ
S′tfi零に設定されており、第2噴射弁′13から
の燃料噴射を行うことなく、第1噴射弁12のみによっ
て前記ステップS1でめた1li4射パルス幅τpの制
御信号によって第1噴射弁12を駆動して燃料噴射を行
う(S 11)。
In the above low injection DAω region, the injection pulse τ for the second injection valve 13
S'tfi is set to zero, and the first injection is performed only by the first injection valve 12 by the control signal of 1li4 injection pulse width τp obtained in step S1 without injecting fuel from the second injection valve '13. Fuel injection is performed by driving the valve 12 (S11).

一方、高噴射Q域で上記ステップS3の判断がYESの
ときには、ステップS7でスロットルセンサー23の信
号から第2絞り弁11が開いているかどうか判断し、閉
じている(No>とぎには前記ステップS4から86に
進んで、第2噴躬弁13の作動は行わない。上記ステッ
プS7の判断がYESで第2絞り弁11が開いていると
ぎには、非同期加速スイッチがオンかどうかを判断しく
S8)、非同期加速スイッチがオン(YES)とく1つ
ている大きな加速状態のとぎにはステップS9で非同期
@則を行う一方、非同期加速スイッチがオフ(No)の
ときには非同期噴射を行うことなく、ステップS10で
第1噴則弁12用の噴射パルスτpと第2噴射弁13用
の噴射パルスτSとを演算し、この噴射パルスで第1お
よび第2噴射弁12.13を駆動して燃料噴射を行う(
S 11)。
On the other hand, when the determination in step S3 is YES in the high injection Q region, it is determined in step S7 whether or not the second throttle valve 11 is open based on the signal of the throttle sensor 23, and the second throttle valve 11 is closed. Proceeding from S4 to 86, the second injection valve 13 is not operated.If the judgment in step S7 is YES and the second throttle valve 11 is open, it is not necessary to judge whether the asynchronous acceleration switch is on. S8), when the asynchronous acceleration switch is on (YES), the asynchronous @ rule is performed in step S9 after a particularly large acceleration state, while when the asynchronous acceleration switch is off (no), the asynchronous injection is not performed and step In S10, the injection pulse τp for the first injection valve 12 and the injection pulse τS for the second injection valve 13 are calculated, and the injection pulse drives the first and second injection valves 12.13 to perform fuel injection. conduct(
S11).

なお、この例では加速憎口補正τbは全量を第1噴射弁
12にJ:つで噴射するようにしている。
In this example, the acceleration correction τb is such that the entire amount is injected into the first injection valve 12 at J:.

1ズ上説明したように、演算噴射口(噴射パルス幅ra
+τb)が設定値τVを越えているときでも、第2絞り
弁11が閉じているときには第2噴射弁13による燃料
噴射は行わないようにしたものである。
As explained above, the calculation injection port (injection pulse width ra
Even when +τb) exceeds the set value τV, fuel injection by the second injection valve 13 is not performed when the second throttle valve 11 is closed.

なd3、上記実施例において、第1図に示すように第1
噴射弁12は比較的燃焼室2に近い第1吸気通路7aの
下流側部分に配設し、この第1噴射弁12 h目ら噴射
された燃料が速やかに燃焼室2に供給されるようにして
、吸気量の増減に対する燃料の応答性を良好にしている
ものであり、一方、第2噴射弁13は第1噴射弁12よ
り上流側の第2吸気通路7bに配設して噴射燃料と吸気
との混合、微粒化を良好にして、霧化を促進するように
しているものである。
d3, in the above embodiment, the first
The injection valve 12 is arranged at a downstream portion of the first intake passage 7a relatively close to the combustion chamber 2, so that the fuel injected from the first injection valve 12h is quickly supplied to the combustion chamber 2. The second injector 13 is disposed in the second intake passage 7b upstream of the first injector 12 to improve the responsiveness of the fuel to increases and decreases in the amount of intake air. This improves mixing with intake air and atomization to promote atomization.

また、第1吸気通路7aを流れる吸気量を制御する第1
絞り弁10は、第1図のように第1吸気通路7aの入口
部に介設する他、第2絞り弁11より−L流側の吸気通
路7に介設しても同様の制御作用が得られる。
Also, a first
The throttle valve 10 can be installed at the inlet of the first intake passage 7a as shown in FIG. 1, or it can be installed at the intake passage 7 on the −L flow side from the second throttle valve 11 to achieve the same control effect. can get.

さらに、上記実施例では各気筒の燃焼室に各々吸気通路
に接続した2つの吸気ボー1〜を独ftシて開口し、そ
れぞれ吸気弁で開閉するようにしているが、単一の吸気
ボートを開口し、これに接続した吸気通路を複数の吸気
通路に区画するようにしてもよい。
Furthermore, in the above embodiment, the two intake boats 1 to 1 connected to the intake passages are opened independently in the combustion chamber of each cylinder, and each is opened and closed by an intake valve, but a single intake boat is used. The intake passage which is opened and connected thereto may be divided into a plurality of intake passages.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1の実施例にお(Jるエンジンの燃
料噴射装置の概略u11成図、 第2図は第1の実施例にJ5Gプるエンジン回転数と吸
気量との関係においてI!f’i IJJ弁の噴量領域
の制御特性を示す説明図、 第3図は第1の実施例にJ5 G)る:Jン1〜にi−
ルコニットのフローチャート図、 第4図は第3図ににっ−C噴射弁に出力される燃斜噴射
パルスの一例を示す説明図、 第5図は第3図における冷却水温に対する設定値の特性
を示す説明図、 第6図は第2の実施例におけるエンジンの燃料噴射装首
の概略構成図、 第7図は第2の実施例におけるコントロールユニッ1〜
のフローチャー1〜図である。 1・・・・・・エンジン 2・・・・・・燃焼室3.4
・・・・・・吸気ボート7・・・・・・吸気通路7a・
・・・・・第1吸気通路 7b・・・・・・第2吸気通
路9・・・・・・吸入空気量検出手段 10・・・・・・第1絞り弁 11・・・・・・第2絞
り弁12・・・・・・第1噴射弁 13・・・・・・第
2噴躬弁14・・・・・・コントロールユニット18・
・・・・・水温臼ンサー 19・・・・・・燃料噴射量演算手段 20・・・・・・噴射弁作動手段 21・・・・・・第2噴射弁停止手段 23・・・・・・スロットルセンザ−
Fig. 1 is a schematic diagram of the fuel injection system of a J5 engine according to the first embodiment of the present invention, and Fig. 2 is a schematic drawing of the fuel injection system of a J5G engine according to the first embodiment of the present invention. 3 is an explanatory diagram showing the control characteristics of the injection amount region of the IJJ valve in the first embodiment.
Figure 4 is an explanatory diagram showing an example of the fuel angle injection pulse output to the Ni-C injection valve in Figure 3. Figure 5 shows the characteristics of the set value with respect to the cooling water temperature in Figure 3. 6 is a schematic configuration diagram of the fuel injection neck of the engine in the second embodiment, and FIG. 7 is a diagram showing the control unit 1 to 1 in the second embodiment.
FIG. 1 is a flowchart 1 to FIG. 1...Engine 2...Combustion chamber 3.4
...Intake boat 7...Intake passage 7a.
...First intake passage 7b... Second intake passage 9... Intake air amount detection means 10... First throttle valve 11... Second throttle valve 12...First injection valve 13...Second injection valve 14...Control unit 18.
...Water temperature sensor 19...Fuel injection amount calculation means 20...Injection valve operating means 21...Second injection valve stopping means 23...・Throttle sensor

Claims (1)

【特許請求の範囲】[Claims] (1)各気筒に対して低吸気り域を含む全運転領域で吸
気を供給する第1M気通路と、高吸気ω域で吸気を供給
する第2吸気通路と、第1吸気通路に設けられる第1噴
射弁と、第2吸気通路に設けられる第2噴射弁と、第1
吸気通路の吸気量を制御する第1絞り弁と、第2吸気通
路の吸気量を制御する第2絞り弁と、吸気量を検出する
吸入空気5を検出手段と、吸入空気量検出手段の出力に
応じて燃料噴射量を演算する燃料噴射m演算手段と、該
燃料噴射量演算手段による演算噴射量が設定値以下のど
きには第1噴射弁を駆動し、この演算噴射量が設定値を
越えたどきに第1および第2噴射弁を駆動するrpJ射
弁作動手段と、該噴射弁作動手段に対し第2絞り弁の閉
じている領域では第2噴射弁の作動を停什する第2噴射
弁停止手段とを備えたことを特徴とするエンジンの燃料
噴射装置。
(1) A first M air passage that supplies intake air to each cylinder in all operating ranges including the low intake air range, a second intake passage that supplies intake air in the high intake ω range, and a first intake passage are provided. a first injection valve; a second injection valve provided in the second intake passage;
A first throttle valve that controls the amount of intake air in the intake passage, a second throttle valve that controls the amount of intake air in the second intake passage, a means for detecting intake air 5 that detects the amount of intake air, and an output of the intake air amount detection means. A fuel injection m calculation means calculates the fuel injection amount according to the fuel injection amount, and when the calculated injection amount by the fuel injection amount calculation means is less than or equal to the set value, the first injection valve is driven, and this calculated injection amount exceeds the set value. rpJ injection valve operating means that drives the first and second injection valves when the throttle valve is exceeded; 1. A fuel injection device for an engine, comprising: injection valve stopping means.
JP58213879A 1983-11-14 1983-11-14 Fuel injection device of engine Granted JPS60108544A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58213879A JPS60108544A (en) 1983-11-14 1983-11-14 Fuel injection device of engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58213879A JPS60108544A (en) 1983-11-14 1983-11-14 Fuel injection device of engine

Publications (2)

Publication Number Publication Date
JPS60108544A true JPS60108544A (en) 1985-06-14
JPH0137584B2 JPH0137584B2 (en) 1989-08-08

Family

ID=16646521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58213879A Granted JPS60108544A (en) 1983-11-14 1983-11-14 Fuel injection device of engine

Country Status (1)

Country Link
JP (1) JPS60108544A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012067638A (en) * 2010-09-22 2012-04-05 Hitachi Automotive Systems Ltd Fuel injection control device of internal combustion engine

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5917269A (en) * 1982-07-21 1984-01-28 Hitachi Ltd Accommodating magazine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5917269A (en) * 1982-07-21 1984-01-28 Hitachi Ltd Accommodating magazine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012067638A (en) * 2010-09-22 2012-04-05 Hitachi Automotive Systems Ltd Fuel injection control device of internal combustion engine
CN102410098A (en) * 2010-09-22 2012-04-11 日立汽车系统株式会社 Apparatus and method for controlling fuel injection of internal combustion engine
US8689768B2 (en) 2010-09-22 2014-04-08 Hitachi Automotive Systems, Ltd. Apparatus and method for controlling fuel injection of internal combustion engine
CN102410098B (en) * 2010-09-22 2016-01-27 日立汽车系统株式会社 The fuel injection control system of internal-combustion engine and method

Also Published As

Publication number Publication date
JPH0137584B2 (en) 1989-08-08

Similar Documents

Publication Publication Date Title
JPS6119816B2 (en)
JPS582444A (en) Air-fuel ratio control
US6397820B1 (en) Method and device for controlling a combustion engine
JPS60108544A (en) Fuel injection device of engine
JPS6118663B2 (en)
JPH04279742A (en) Fuel injection control device of internal combustion engine
JP2764515B2 (en) Fuel supply device for internal combustion engine
JPH0618047Y2 (en) Fuel injection engine
JPS60108546A (en) Fuel injection device of engine
JPH1047171A (en) Exhaust gas reflux device for internal combustion engine
JP3627462B2 (en) Control device for internal combustion engine
JPS62237023A (en) Cooling water controller for engine
JPS60108529A (en) Suction device of engine
JPS60108545A (en) Fuel injection device of engine
JPH071021B2 (en) Air-fuel ratio controller for engine
JPS6119815B2 (en)
JPS6118662B2 (en)
JPS62265446A (en) Idling revolution-number controller for internal combustion engine
JPS62237025A (en) Cooling water controller for engine
JPH0337354A (en) Fuel injection timing controller of engine
JPS6189936A (en) Control apparatus of engine
JP2873735B2 (en) Engine control device
JPS6118661B2 (en)
JPH04232353A (en) Suction device of engine
JPH0672562B2 (en) Engine fuel injector