JPS6010836B2 - Horizontal electroslag welding method - Google Patents

Horizontal electroslag welding method

Info

Publication number
JPS6010836B2
JPS6010836B2 JP6086677A JP6086677A JPS6010836B2 JP S6010836 B2 JPS6010836 B2 JP S6010836B2 JP 6086677 A JP6086677 A JP 6086677A JP 6086677 A JP6086677 A JP 6086677A JP S6010836 B2 JPS6010836 B2 JP S6010836B2
Authority
JP
Japan
Prior art keywords
welding
electrodes
electrode
current
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6086677A
Other languages
Japanese (ja)
Other versions
JPS53144847A (en
Inventor
巌 清水
良彦 浅井
弘昭 藤巻
一晃 坂地
真吾 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Tokuden Co Ltd Hyogo
Original Assignee
Nippon Steel Corp
Tokushu Denkyoku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Tokushu Denkyoku Co Ltd filed Critical Nippon Steel Corp
Priority to JP6086677A priority Critical patent/JPS6010836B2/en
Publication of JPS53144847A publication Critical patent/JPS53144847A/en
Publication of JPS6010836B2 publication Critical patent/JPS6010836B2/en
Expired legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K25/00Slag welding, i.e. using a heated layer or mass of powder, slag, or the like in contact with the material to be joined

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Arc Welding In General (AREA)

Description

【発明の詳細な説明】 本発明は横向ェレクトロスラグ溶接法の改良に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to improvements in lateral electroslag welding.

従釆、高炉、熱風炉、タンクなどの現地組立裾付構造物
における横シーム(横継手)の溶接は、板厚でさえもほ
とんど手溶接で行われ、自動溶接法は採用されていなか
った。
Welding of horizontal seams (horizontal joints) in locally assembled footing structures such as sluices, blast furnaces, hot blast furnaces, and tanks, even for plate thickness, was mostly done by hand, and automatic welding methods were not used.

自動溶接としてはわずかに、水平サブマージ溶接とかガ
スシールドアーク溶接が施行されている例はあるが、母
材表面の肌の食い違い、開先間隙の誤差、又初肩のアー
ク狙いのむづかしさ等、種々の問題点があり実用化され
るにいたつてし、ない。
There are a few cases where horizontal submerged welding or gas-shielded arc welding is performed as automatic welding, but there are problems such as discrepancies in the surface of the base metal, errors in the groove gap, and difficulty in aiming the arc at the beginning of the shoulder. However, there are various problems and it has not been put into practical use.

そこで本発明者の会社にあっては、従来板厚の立向自動
溶接にのみ採用されていたェレクトロスラグ溶接法を、
横シーム溶接に応用し、それを可能ならしめたばかりか
その溶接部の性状は極めてよく、かつ、ェレクトロスラ
グ溶接の特性をいかし、極めて高能率であることを知見
し、横向ェレクトロスラグ法を完成した。
Therefore, the inventor's company developed the electroslag welding method, which had previously been used only for automatic vertical welding of plate thickness.
By applying it to horizontal seam welding, they not only made it possible, but also found that the properties of the welded part were extremely good, and by taking advantage of the characteristics of electroslag welding, it was extremely efficient, and developed the horizontal electroslag method. completed.

本発明はこの横向ヱレクトロスラグ溶接法を更に改良し
、溶接能率の向上は勿論、安定した品質の溶接部を得、
さらに極厚板の溶接にも適用することを目的にせんとす
るものである。
The present invention further improves this horizontal electroslag welding method, and not only improves welding efficiency but also obtains a welded part of stable quality.
Furthermore, it is intended to be applied to welding extremely thick plates.

即ち、一般的に単電極での横向ェレクトロスラグ溶接に
あっては、関先の上側及び下側母材への溶込みは、電流
、電圧の調整により可能であるが、それは高々5仇肌板
厚の母材までであり、かつ、関先奥部では溶融メタル及
びスラグの流度あるし、は充填がうまくいかず、この部
分が第1図に見るような断面となり開先奥部に溶込み不
良を生ずることがあり、はなはだ不安定である。
That is, in general, in horizontal electroslag welding using a single electrode, it is possible to penetrate the upper and lower base metals of the joint by adjusting the current and voltage, but it is possible to penetrate the joint into the upper and lower base metals by adjusting the current and voltage. The thickness of the plate is up to the base material, and there is a flow of molten metal and slag in the deep part of the groove, so filling is not successful, and this part becomes the cross section shown in Figure 1, and the groove is deep inside the groove. Poor penetration may occur and it is extremely unstable.

図中1,2は母材、3は溶接金属を示す。又、極厚板に
適用する場合には、この傾向はますます大きくなり、ま
た、極端に溶接速度を遅くせねばならず、このために溶
融メタルが電極より先行し易くなり、下側母材への溶込
みも不安定になりがちである。そこで本発明は、これら
問題点を解決せんがため、たとえ、母材板厚が大きい場
合でも、溶接可能ならしめるため、電極を極めて有効に
配置し、即ち、溶接方向の先頭に位置する電極のねらい
位置を開先奥部に、かつ後行に位置する電極のうち少な
くとも1個の電極のねらい位置を表端面部として、開先
部の溶込みを安定ならしめ、さらにこの先頭電極と後行
電極との間に直列に溶接電流を供給することにより、各
々の電極直下のスラグおよび熔融メタルが電磁力により
反発方向に力を受け、板厚の奥および開先の表万向にス
ラグおよび溶融メタルが流動することにより、関先奥の
溶融が大きくなり、かつ、表ビードも美麗となる新しい
効果を提供するものである。
In the figure, 1 and 2 indicate the base metal, and 3 indicates the weld metal. In addition, when applied to extremely thick plates, this tendency becomes even more pronounced, and the welding speed must be extremely slow, which makes it easier for the molten metal to precede the electrode, causing damage to the lower base metal. It also tends to be unstable. Therefore, in order to solve these problems, the present invention arranges the electrodes extremely effectively so that welding is possible even when the base material plate thickness is large. Aim for stabilizing penetration of the groove by setting the aim position of at least one of the electrodes located deep inside the groove and at the trailing position as the front end surface, and then By supplying a welding current in series between the electrodes, the slag and molten metal directly under each electrode receive force in the repulsive direction due to electromagnetic force, and the slag and molten metal are distributed deep in the plate thickness and in all directions on the surface of the groove. The fluidity of the metal increases melting at the back of the joint, and provides a new effect in which the surface bead is also beautiful.

さらには、電極数が増加したことにより母材の板厚の増
大に対しても容易に対処でき、極厚(low肋程度)板
の溶接にも適用出釆るものである。
Furthermore, since the number of electrodes is increased, it is possible to easily cope with an increase in the thickness of the base material, and the present invention can be applied to welding extremely thick (about a low rib) plates.

次に図面に示す実施例を基にして本発明方法を詳細に説
明する。
Next, the method of the present invention will be explained in detail based on the embodiments shown in the drawings.

第2図に見るように、まず上下母材1,2に形成された
関先の裏面側に裏ビード形成用パッキング剤4、表面側
に水冷鋼当金5をセットし、関先内に散布ノズル6にて
フラックス7を適当量散布する。
As shown in Fig. 2, first, a packing agent 4 for forming a back bead is set on the back side of the joints formed on the upper and lower base materials 1 and 2, and a water-cooled steel dowel 5 is set on the front side, and then sprinkled inside the joints. Spray an appropriate amount of flux 7 using nozzle 6.

次にこの関先部にその溶接方向に向って所定の間隔を設
けて2個以上の電極8−,9 8‐2を配設するが、そ
の際、本発明にあっては、先頭に位置する電極8−,の
ねらい位置を開先奥部とし、後行に位置する電極のうち
少なくとも1個の電極8‐2のねらい位置を表端面部と
す。なお、本発明に於ける関先位置の奥部及び表端面部
とは母村の厚み方向に向っての位置をさすものであり、
前者は下側母村開先面の中の1′3の奥部、後者は1′
3の表側をさす。ここで先頭電極のねらい位置を関先奥
部にする理由は、L型関先であるので、当然のことなが
ら電極の溶融位置は上側母材の関先面に近づき、かつ、
電極先端からのスラグジヱツト流が上側母材の開先面に
より強力に当り、溶込みを十分に得ることができるから
であり〜電極のねらい位置を関先の中応部あるいは表部
に位置すると、電極から生成した溶滴が下側母材の中央
部あるいは表部に落下し溶融プールを形成し、後行軍極
による下側母材の溶込みの形成の防げとなるからである
。その結果溶込みの上側あるいは下側への片寄りが防が
れ、ビード外観も著しく向上する。
Next, two or more electrodes 8-, 98-2 are arranged at a predetermined interval in the welding direction at this joint part, but in this case, in the present invention, the electrodes 8-, 9-8-2 are placed at the top The aim position of the electrode 8-, which is to be removed, is the inner part of the bevel, and the aim position of at least one electrode 8-2 among the electrodes located in the rear row is the front end face part. In addition, in the present invention, the inner part and the front end surface part of the position of the base point refer to the position in the thickness direction of the mother village,
The former is at the 1'3 deep part of the lower groove surface, and the latter is at 1'
Point to the front side of 3. The reason why the leading electrode is aimed at the deep part of the joint is because it is an L-shaped joint, so naturally the melting position of the electrode is close to the joint surface of the upper base metal, and
This is because the slag jet flow from the tip of the electrode hits the groove surface of the upper base metal more strongly, and sufficient penetration can be obtained. If the electrode is aimed at the middle or surface of the joint, This is because the droplets generated from the electrode fall onto the center or surface of the lower base material and form a molten pool, which prevents the trailing pole from penetrating the lower base material. As a result, the weld is prevented from shifting upward or downward, and the appearance of the bead is significantly improved.

本実施例は電極の2個の場合について説明したが「 3
個以上になった場合は、残りの後行電極のねらい位置は
限定しない。
In this example, the case of two electrodes was explained, but "3
If the number of electrodes exceeds 1, the target positions of the remaining trailing electrodes are not limited.

板厚あるいは、溶酸速度によって適宜にねらい位置を選
定するものである。次にふ上記関先奥部をねらった先行
電極8−,の位置としては、例えば第3図に示す如く開
先(下側母材関先の中Cが3劫舷、ルートフヱイスDが
1柵)奥からの距離Aが4〜1仇吻程度が好ましく、こ
れより小さいと上側母村と短絡状態となるため溶接が不
可能であり良くない。
The target position is appropriately selected depending on the plate thickness or the rate of acid dissolution. Next, the position of the preceding electrode 8-, which aims at the deep part of the joint, is, for example, as shown in Fig. 3. ) It is preferable that the distance A from the back is about 4 to 1 distance; if it is smaller than this, a short circuit will occur with the upper parent part, making welding impossible, which is not good.

またこれより大きいと熱源が離れてしまうので関先深奥
部の安定した溶込みが得られなくなる。
If it is larger than this, the heat source will be far away, making it impossible to achieve stable penetration deep into the joint.

又、表端面部をねらった後行電極8‐2のねらい位置は
、母村表面からの距離Bが4〜1仇肋程度が好ましく、
これより小さいと表側銅板とアークを発生し、溶接不良
となる。又、これより大きいと下側母材表端面部が溶込
み不良となる。本発明法は裾付作業を容易にさせる為に
ルートフェイスを大きくしても安定なうらなみビードを
形成し得る方法を提供せんとするものである。即ち、上
記構成になる電極同志を直列につなぎ、電極間に大電流
を流すものである。これにより母村関先表面のスラグに
よる加熱及び表ビードの円滑な生成に寄与する銅当板表
面への活発な流動を行なわしめ「 さらに付随して溶融
メタルも磁力効果によって、関先奥部をねらい位置とす
る先行電極の溶融メタルはより奥部に移行して母材2を
熔融し、同時に裏ビード形成を確実にする。ここで、電
極間に直列に通電してスラグ及び溶融メタル流を反発方
向に流動させ得る理由を第4図の原理図にて説明する。
まず、先頭電極8−,と後行電極8‐2は電流の向きが
逆となり、点線のごとく流れる。(電極間隔よりも母材
との間隔の方がはるかに小さいので。)従って電極直下
のスラグ中あるいは溶融メタル中に流れる電流の方向も
逆となり、相手側の電流の作る磁界と自己の電流の流れ
により電極直下のスラグおよび溶融メタルは矢印(■)
1の方向の力を受け(フレミングの法則)実線のような
流動(→)を起し、上側母材関先面の溶込みはもちろん
のこと、開光奥部の溶融袋ピードが得られるのである。
この電流の方向を直列ではなく、並列に供給すると、こ
の現象は弱くなりZ効果がない。なぜなら図の如く、電
極を配設すること自体ですでに、ェレクトロスラグ現象
として同図の実線のようなスラグおよびメタル流を起す
煩向があるが、直列にすることにより、ますますこの煩
向が上記の理由により助長されるのに対しZて、並列に
すると逆に引き合う方向に電磁が働くので、この頃向が
減少して、上記のような効果がないのである。ここで用
いる大電流とは通常のェレクトロスラグ溶接法では40
0〜50Mであるのに対して60船2以上必要である。
Further, the aiming position of the trailing electrode 8-2 aiming at the front end surface is preferably such that the distance B from the mother village surface is about 4 to 1 rib.
If it is smaller than this, an arc will occur with the front copper plate, resulting in poor welding. Moreover, if it is larger than this, the lower base material surface end face will have poor penetration. The present invention aims to provide a method that can form a stable hemline bead even when the root face is enlarged in order to facilitate hemming work. That is, the electrodes having the above configuration are connected in series and a large current is passed between the electrodes. This causes active flow to the surface of the copper plate, which contributes to the heating by the slag on the surface of the Mohamura Seki and the smooth formation of the front bead. The molten metal of the leading electrode, which is targeted at the position, moves deeper into the interior and melts the base material 2, at the same time ensuring the formation of a back bead.Here, current is applied in series between the electrodes to prevent the slag and molten metal flow. The reason why it is possible to flow in the repulsion direction will be explained with reference to the principle diagram in FIG.
First, the direction of the current in the leading electrode 8- and the trailing electrode 8-2 is reversed, and the current flows as shown by the dotted line. (Because the distance between the base metal and the electrode is much smaller than the distance between the electrodes.) Therefore, the direction of the current flowing in the slag or molten metal directly under the electrode is also reversed, and the magnetic field created by the other side's current and the own current Due to the flow, the slag and molten metal directly under the electrode are marked with an arrow (■)
1 direction (Fleming's law) causes a flow (→) as shown by the solid line, which not only allows for penetration of the upper base material joint surface, but also achieves the melting bag speed at the back of the opening. .
If the direction of this current is supplied in parallel instead of in series, this phenomenon will be weakened and there will be no Z effect. This is because, as shown in the figure, arranging the electrodes itself has the tendency to cause slag and metal flow as the electroslag phenomenon, as shown by the solid line in the figure, but by arranging them in series, this problem becomes even more While the direction is promoted for the reason mentioned above, when the Z is arranged in parallel, electromagnetism works in the opposite direction of attraction, so the direction decreases at this time and there is no effect as described above. The high current used here is 40
0 to 50M, but 60 ships or more are required.

これにより溶融メタルの先行を抑制するとともに電磁力
も強力となり上記の効果が増大するのである。一方、後
行電極8‐2直下のスラグ流動は、表端都下側母材2の
溶込みを確実にし、鋼当板5表面へ移行して(図中他印
で示す)安定したビード形状とする。次に電極間に直列
に電流を流すための結線図を第5図により説明する。
This suppresses the advance of the molten metal and also makes the electromagnetic force strong, increasing the above effects. On the other hand, the slag flow directly under the trailing electrode 8-2 ensures penetration of the base metal 2 on the lower side of the surface edge and transfers to the surface of the steel contact plate 5, resulting in a stable bead shape (indicated by other marks in the figure). shall be. Next, a wiring diagram for passing a current in series between the electrodes will be explained with reference to FIG.

まず第5図aに示すものは、本発明方法にあって、電極
のねらい位置に限定した場合の結線図でェレクトロスラ
グ溶接法に於ける多電極のいわば通常のものである。
First, FIG. 5a shows a connection diagram limited to the target position of the electrodes in the method of the present invention, and is a so-called normal multi-electrode diagram in the electroslag welding method.

先行の電極8−,と後行の電極8‐2は並列にそれぞれ
電源9−,,9‐2につながれている。
The leading electrode 8- and the trailing electrode 8-2 are connected in parallel to power sources 9-, 9-2, respectively.

第5図dに示すものは第5図aの変形型で、電極数を3
個にした例を示す。第5図bに示すものは先行電極8−
,と後行電極8‐2とを直列につないだ場合である。
The one shown in Fig. 5d is a modified version of Fig. 5a, and the number of electrodes is 3.
An example is shown below. The one shown in FIG. 5b is the leading electrode 8-
, and the trailing electrode 8-2 are connected in series.

即ち、先行電極8−,を溶接トランス10の片方端子に
縞線し、後行電極8‐2をもう一方の端子に結線する。
That is, the leading electrode 8-2 is wired to one terminal of the welding transformer 10, and the trailing electrode 8-2 is wired to the other terminal.

トランスの中間点11は溶接母材に結線するか溶接中に
はこれをはずした状態でも良い。中間点の結線に関して
は、トランスあるいは電源特性と電極供給速度制御の種
類によって異なり、各々の電極と母材間で所定の電圧と
なるように、電極供繋合速度を制御できる機構の場合は
、中間点の結線は不必要であり、定速電極供V給方式の
場合は双極間の不平衡電流を流すために必要となる。
The intermediate point 11 of the transformer may be connected to the welding base metal or may be disconnected during welding. The connection at the intermediate point varies depending on the transformer or power supply characteristics and the type of electrode supply speed control; The connection at the intermediate point is unnecessary, and in the case of the constant-speed electrode supply V supply method, it is necessary to flow an unbalanced current between the two poles.

溶接スタート時のスラグ溶解には必要である。第5図c
に示すものは、直流定電圧の電源9−,,9‐2を2台
直列に縞線し、その直列結線個所を中間点とした場合で
あり、電極供V給速度を一定として、中間点と薄材を縞
線している。第5図e及び第5図fに示すものは、第5
図cの変形型で電極数を4個にした例である。第5図e
に示すものは先頭電極8−,と後行電極8‐2,8‐3
,8‐4とを直列につないだ場合である。即ち、先頭電
極8−,を溶接トランス9の片方の端子に結線し、後行
電極群8‐2,8‐3,8‐4をもう一方の端子に結線
し、電極8‐2を表端面部に配設し、先頭電極の電流値
と後行電極群の総電流値とが同等になるように溶接条件
を設定して比較的厚板の横向溶接にこの方法を用いる。
さらに第5図fに示すものも厚板に適用しているが先頭
電極8−,と後行軍極群の中間に位置する8‐3とを溶
接トランス9の片方の端子に結線し、後行電極群の8‐
2及び8‐4をもう一方の端子に縞線し、電極8‐2を
表端面部に配設し、8−,と8‐2の電極間では勿論の
こと、後行電極間でも反発力を発生させ、溶込の安定化
を確実ならしめる。
This is necessary to melt the slag at the start of welding. Figure 5c
What is shown in Fig. 3 is a case where two DC constant voltage power supplies 9-, 9-2 are connected in series with a striped wire, and the series connection point is set as the midpoint. The thin material is striped. What is shown in Figures 5e and 5f is the 5th
This is an example in which the number of electrodes is four in the modified type of Figure c. Figure 5 e
What is shown in FIG.
, 8-4 are connected in series. That is, the leading electrode 8-, is connected to one terminal of the welding transformer 9, the trailing electrode group 8-2, 8-3, 8-4 is connected to the other terminal, and the electrode 8-2 is connected to the front end surface. This method is used for horizontal welding of relatively thick plates by setting welding conditions so that the current value of the leading electrode group is equal to the total current value of the trailing electrode group.
Furthermore, the one shown in Fig. 5f is also applied to a thick plate, but the leading electrode 8- and 8-3 located between the trailing pole group are connected to one terminal of the welding transformer 9, and the trailing pole group is connected to one terminal of the welding transformer 9. Electrode group 8-
2 and 8-4 are striped to the other terminal, and electrode 8-2 is arranged on the front end surface, so that there is no repulsive force not only between the electrodes 8- and 8-2, but also between the trailing electrodes. generation, ensuring stabilization of penetration.

かつ後行電極群どういま溶接方向にも適当な反発力を発
生させ、溶接方向へも溶融メタルを供給させるので、高
速度溶接に適している。上記構成にあって、先頭電極と
表端面部に位置する後行電極の間隔すなわち、双極間隔
は25〜low肋程度が良い。
In addition, the trailing electrode group generates an appropriate repulsion force in the welding direction as well, and supplies molten metal in the welding direction as well, making it suitable for high-speed welding. In the above configuration, the interval between the leading electrode and the trailing electrode located on the front end surface, that is, the bipolar interval, is preferably about 25 to 10 ribs.

それより小さいと先行電極とタ後行電極との間に溶融メ
タル及び母材を通さず直接電流が流れやすくなり、効果
的電磁力作用が緩慢となるばかりでなく、板厚の中央部
で溶込みの大きい溶接部断面となり好ましくない。また
、これより間隔が大きいと電磁力作用によ0る板厚の奥
方向および表面方向への反発力が弱くなり、菱ビードの
形成及び表端面部の溶込みが不安定となる。
If it is smaller than that, it is easy for the current to flow directly between the leading electrode and the trailing electrode without passing through the molten metal and the base material, which not only slows down the effective electromagnetic force but also causes melting in the center of the plate thickness. This is undesirable as it results in a welded section with a large amount of welding. Moreover, if the interval is larger than this, the repulsive force in the depth direction of the plate thickness and the surface direction due to the action of electromagnetic force becomes weaker, and the formation of diamond beads and the penetration of the front end surface become unstable.

また、ルートフェイスは大きくても髪ビードの生成はで
き、範囲としては0〜15肋が適当である。
Further, hair beads can be produced even if the root face is large, and a suitable range is 0 to 15 ribs.

ルートフェイスが大きくとれるということは裾付作業に
おける肌合せを容易にする上で好ましい。
The fact that the root face can be made larger is preferable because it facilitates skin matching during hemming work.

次に、本発明方法により熱風炉の板厚5仇舷の機向溶接
に採用した場合の実施例について、溶接条件を第1表に
溶接前の関先形状を第6図に、さらに溶接後の溶接部の
溶接部断面マクロ写真を第7図に示した。
Next, regarding an example in which the method of the present invention is adopted for mechanical welding of a plate thickness of 5 mm for a hot air stove, the welding conditions are shown in Table 1, the joint shape before welding is shown in Fig. 6, and the joint shape after welding is shown in Fig. 6. Figure 7 shows a macro photograph of the weld section of the weld.

第1表 この第7図から判明するように、板厚方向の溶込み中の
差を小さくすることができ、角変形に及ぼす溶接応力を
緩和することもできるものである。
As is clear from Table 1 and FIG. 7, the difference in penetration in the plate thickness direction can be reduced, and the welding stress exerted on angular deformation can also be alleviated.

/またもう一つの実施例を第2表
および第8図に示すが、いずれも本発明の目的を満足し
良好な結果であった。
Another example is shown in Table 2 and FIG. 8, and all of them satisfied the object of the present invention and had good results.

第2表 以上本発明を溶接電源として直流定電圧を用い直列結線
方式による例について説明したが並列結線方式によって
も本発明の目的を達成しえるが、実験によるとルートフ
ェイスが2豚以上となると、髪波ビードが全く形成され
ない。
Table 2 above describes an example of the present invention using a series connection method using a DC constant voltage as a welding power source, but the object of the present invention can also be achieved by a parallel connection method, but experiments have shown that when the root face is two or more pigs. , no hair bead is formed.

従ってルートフェイスが2側以上の場合は別途ガウジン
グしてから溶接を行う必要がある。以下実施例を3表(
溶接条件)及び第9図(溶接結果を示す溶接部の断面マ
クロ写真)により示す。第3表 これから分るように、電極のねらい位置を限定すること
により上側母材の開先面の溶込みが十分えられ、かつ開
先奥部の溶着、さらには裏ビードの形成が可能になった
Therefore, if the root face is on two or more sides, it is necessary to perform gouging separately before welding. Below are three tables of examples (
Welding conditions) and Fig. 9 (a cross-sectional macro photograph of the welded part showing the welding results). As can be seen from Table 3, by limiting the target position of the electrode, sufficient penetration of the groove surface of the upper base material can be obtained, and it is also possible to weld the deep part of the groove and even form a back bead. became.

以上詳述したように、本発明によれば、従来不可能であ
った片面熔接を可能とし、かつ安定な寒波ビードを得る
ことができ、横向溶接の能率の向上と溶接部の安定した
品質を確保できる等の効果を有し、実用的価値は大であ
る。
As detailed above, according to the present invention, it is possible to perform single-sided welding, which was previously impossible, and to obtain a stable cold bead, thereby improving the efficiency of horizontal welding and stabilizing the quality of the welded part. It has the effect of being able to secure the required amount, and has great practical value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来法による溶接部の断面図、第2図は本発明
法を説明する斜視図、第3図は同側面図、第4図は本発
明の原理を説明する側面図、第5図a,b,c,d,e
,fは本発明に於ける結線説明図、第6図、第8図は本
発明に於ける一実施例の開先形状を示す図、第T図は本
発明の実施例における溶接後の溶接部断面マクロ写真、
第9図は本発明に於ける他の実施例における溶接後の溶
接部断面マクロ写真である。 1,2・・・…母村、3・・・・・・溶接金属、4・・
・・・・パッキング剤、5・・・・・・水冷鋼当金、6
・…・・フラックス散布ノズル、7・…・・フラツクス
、8・・・・・・電極、9.・・.・・電源、10・・
・・・・溶接トランス、11・・…・トランス中間点、
12・・・・・・電流の通路。 第1図第2図 第3図 第4図 第5図 第6図 第T図 第8図 第9図
Fig. 1 is a sectional view of a welded part according to the conventional method, Fig. 2 is a perspective view illustrating the method of the present invention, Fig. 3 is a side view of the same, Fig. 4 is a side view illustrating the principle of the present invention, and Fig. 5 Figures a, b, c, d, e
, f are connection explanatory diagrams in the present invention, Figures 6 and 8 are diagrams showing the groove shape of an embodiment of the present invention, and Figure T is a diagram showing the welding after welding in the embodiment of the present invention. Sectional macro photo,
FIG. 9 is a cross-sectional macro photograph of a welded part after welding in another embodiment of the present invention. 1, 2...Mother village, 3...Welded metal, 4...
... Packing agent, 5 ... Water-cooled steel dowel, 6
...Flux spray nozzle, 7...Flux, 8...Electrode, 9.・・・. ...Power supply, 10...
...Welding transformer, 11...Transformer intermediate point,
12...Current path. Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure T Figure 8 Figure 9

Claims (1)

【特許請求の範囲】 1 横方向水平エレクトロスラグ溶接するに際し、溶接
方向に適宜間隔を置いて少なくとも2個以上の電極を配
設すると共に、上記電極のうち、溶接方向の先頭に位置
する電極のねらい位置を開先奥部に、かつ後行に位置す
る電極のうち、少なくとも1個の電極のねらい位置を表
端面部とすることを特徴とする横向エレクトロスラグ溶
接法。 2 横方向水平エレクトロスラグ溶接するに際し、溶接
方向に適宜間隔を置いて少なくとも2個以上の電極を配
設すると共に、上記電極のうち、溶接方向の先頭に位置
する電極のねらい位置を開先奥部に、かつ後行に位置す
る電極のうち、少なくとも1個の電極のねらい位置を表
端面部とし、更に電極同志に直列に溶接電流を通電して
、先頭電極及び表端面部に位置した後行電極の電極直下
のスラグおよび溶融メタルがおたがいに反発し板厚の奥
方向及び表面方向に流動する如くなしたことを特徴とす
る横向エレクトロスラグ溶接法。
[Claims] 1. When performing lateral horizontal electroslag welding, at least two or more electrodes are arranged at appropriate intervals in the welding direction, and among the electrodes, the electrode located at the beginning in the welding direction A horizontal electroslag welding method characterized in that the aiming position is at the back of the groove and the aiming position of at least one of the electrodes located at the rear is the front end face. 2 When performing lateral horizontal electroslag welding, at least two or more electrodes are arranged at appropriate intervals in the welding direction, and among the above electrodes, the aim position of the electrode located at the beginning in the welding direction is set at the depth of the groove. The aim position of at least one of the electrodes located at the front end and the rear end is the front end face part, and the welding current is applied in series to the electrodes so that the welding current is applied to the leading electrode and the front end face part. A horizontal electroslag welding method characterized in that the slag and molten metal directly under the row electrode repel each other and flow toward the depth of the plate thickness and toward the surface.
JP6086677A 1977-05-25 1977-05-25 Horizontal electroslag welding method Expired JPS6010836B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6086677A JPS6010836B2 (en) 1977-05-25 1977-05-25 Horizontal electroslag welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6086677A JPS6010836B2 (en) 1977-05-25 1977-05-25 Horizontal electroslag welding method

Publications (2)

Publication Number Publication Date
JPS53144847A JPS53144847A (en) 1978-12-16
JPS6010836B2 true JPS6010836B2 (en) 1985-03-20

Family

ID=13154731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6086677A Expired JPS6010836B2 (en) 1977-05-25 1977-05-25 Horizontal electroslag welding method

Country Status (1)

Country Link
JP (1) JPS6010836B2 (en)

Also Published As

Publication number Publication date
JPS53144847A (en) 1978-12-16

Similar Documents

Publication Publication Date Title
KR200418345Y1 (en) Electro gas welding machine
CN107322148A (en) Welding method and the application of composite heat power supply are welded based on argon tungsten-arc welding and cold metal transfer
CN110369829A (en) A kind of electro-gas (enclosed) welding device and welding method
JP2002219571A (en) Control method for three electrode arc welding
JPS6010836B2 (en) Horizontal electroslag welding method
JPH0320310B2 (en)
JP3867164B2 (en) Welding method
JP4538616B2 (en) Arc welding method
CN104227181A (en) Double-wire-feeding welding method implemented by main electric arcs driven by auxiliary electric arcs to swing
JP2008501529A (en) Gas metal buried arc welding of lap penetration joints
KR200384956Y1 (en) Water cooled copper backing for 2 electrod eledtro gas welding
JPS5940549B2 (en) DC TIG welding method
JP3105124B2 (en) Non-consumable nozzle type electroslag welding method
JPS6048271B2 (en) Arc welding method
CN107344263A (en) The welding method of bracket part plate and steel column part plate
JP6715682B2 (en) Submerged arc welding method
JPH0373387B2 (en)
JP3212768B2 (en) Gas metal arc welding method
SU1712093A1 (en) Method of welding with three-phase arc
JP2005246385A (en) Multi-electrode one side submerged arc welding method
JPH08243747A (en) Wire filling mig welding method
JPH0747474A (en) Horizontal one layer/plural passes welding method
JPS6335352B2 (en)
JPS5827035B2 (en) Overlay welding method using a strip electrode
JPS58100970A (en) Sideways welding method