JPS60108032A - Closing volume measuring method - Google Patents

Closing volume measuring method

Info

Publication number
JPS60108032A
JPS60108032A JP58216812A JP21681283A JPS60108032A JP S60108032 A JPS60108032 A JP S60108032A JP 58216812 A JP58216812 A JP 58216812A JP 21681283 A JP21681283 A JP 21681283A JP S60108032 A JPS60108032 A JP S60108032A
Authority
JP
Japan
Prior art keywords
exhalation
velocity
concentration
volume
elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58216812A
Other languages
Japanese (ja)
Other versions
JPH0158981B2 (en
Inventor
宗重 倉橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Koden Corp
Original Assignee
Nippon Koden Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Koden Corp filed Critical Nippon Koden Corp
Priority to JP58216812A priority Critical patent/JPS60108032A/en
Publication of JPS60108032A publication Critical patent/JPS60108032A/en
Publication of JPH0158981B2 publication Critical patent/JPH0158981B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、肺機能測定のために、吸気初期にルを強制的
に吸気させ、呼気時における呼気量に対するHe濃屁を
測定するHe−ボウラス(Bolus)法によるクロー
ジングボリューム測定方法に関するものであるθ 第1図は、この方法を実施するための従来の装置を示す
もので、呼気初期には用バック1かHeを一方向弁3を
通して吸気させ、そのバック圧が低下すると切替コック
2が自動的に切替わシ、続いて大気を吸気する。呼気時
には一方向弁4を通して供給される呼気のHe11度が
熱線式、オリフィス式、質量分析式等のHeセンサ5で
測定され、その出力信号がX−Yレコーダ6のY軸入力
端にHe濃度信号として供給される。また、超音波式7
0−センサ或は図示の差圧式フローセンサ7に増幅器8
及び積分器9を後続させた呼気量測定器の出力信号がそ
のX軸入力端に呼気量信号として供給される。このよう
な装置によりX=Yレコーダ6に呼気量変化に対するH
e濃度変化が描記され、そのHe濃度曲線の傾斜からク
ロージングボリュームが測定される。しかしながら、こ
のような装置ではHeセンサとフローセンサが別々に設
けられているために装置が大型、かつ高価になるだけで
なく、流路管容積も自ずと大きくなるために時間遅れ或
は立上)なtbに起因して測定精度も高くできなかった
DETAILED DESCRIPTION OF THE INVENTION The present invention uses the He-Bolus method for measuring lung function, in which He-Bolus is forcibly inhaled at the beginning of inspiration and the He-Bolus concentration is measured relative to the expiratory volume during exhalation. FIG. 1 shows a conventional device for carrying out this method. At the beginning of expiration, a bag 1 or He is inhaled through a one-way valve 3, and the bag pressure is When the temperature drops, the switching cock 2 is automatically switched and then the atmosphere is sucked in. During exhalation, the He11 degree of exhaled air supplied through the one-way valve 4 is measured by a He sensor 5 such as a hot wire type, an orifice type, or a mass spectrometry type, and the output signal is sent to the Y-axis input end of an X-Y recorder 6 to record the He concentration. Supplied as a signal. In addition, ultrasonic type 7
0-sensor or the differential pressure type flow sensor 7 shown in the figure and an amplifier 8
The output signal of the expiratory volume measuring device followed by the integrator 9 is supplied to its X-axis input terminal as an expiratory volume signal. With such a device, the X=Y recorder 6 records H for changes in expiratory volume.
The e concentration change is plotted and the closing volume is determined from the slope of the He concentration curve. However, in such a device, the He sensor and the flow sensor are provided separately, which not only makes the device large and expensive, but also increases the volume of the flow pipe, resulting in a time delay or start-up). Due to the large tb, it was not possible to achieve high measurement accuracy.

また、差圧式70−センサを用いる場合■・混入による
感度変化の問題もあった。
In addition, when using a differential pressure type 70-sensor, there was also the problem of sensitivity change due to contamination.

よって、本発明線単−センサによシ呼気フp−及びHe
11!!度を測定可能にするり四−ジングボリューム測
定方法を提供する仁とを目的とする。
Therefore, the sensor of the present invention can detect exhaled air and He.
11! ! The object of the present invention is to provide a method for measuring volume that makes it possible to measure volume.

この目的の解決に際して本発明は、Heの音速が表1に
示す如く他の呼吸ガス成分の場合互に近似しているにも
拘わらず、特異的に大巾に高くなる点に着眼したもので
ある。
In solving this objective, the present invention focuses on the fact that, as shown in Table 1, although the sound velocity of He is similar to that of other respiratory gas components, it is uniquely significantly higher. be.

表1 ガス音速(0°C) そして、さらにHeの強制吸気によシ呼気中のHe組成
率が大きくなるために、その濃度変動で音速が大巾に変
動することに着眼し、呼気流路管に沿って離間された送
受信素子間における呼気方向とその逆方向の伝搬速度位
相差、シングルアランド法における発振周波数差から呼
気流速V及び音速Cをめ、■を呼気フローに、またCを
He濃度信号に対応させることによシ前記目的を解決し
た。換言すれば、本発明はそれ自体周知の時間差法、シ
ングルアランド(周波数差)法、位相差法等の速度差法
による超音波式呼吸流量計の出力信号を基に単にVを算
出するだけで々く、Cも算出してその変動をHeの濃度
変動として処理させることを特徴とする。
Table 1 Gas sound velocity (0°C) Furthermore, we focused on the fact that the He composition ratio in exhaled air increases due to forced inhalation of He, so the sound speed fluctuates widely due to concentration fluctuations. Determine the expiratory flow velocity V and the sound velocity C from the propagation velocity phase difference in the exhalation direction and the opposite direction between the transmitting and receiving elements spaced apart along the tube, and the oscillation frequency difference in the single Alland method, where ■ is the exhalation flow, and C is He The above object was solved by making it correspond to the concentration signal. In other words, the present invention simply calculates V based on the output signal of an ultrasonic pneumotachograph using a velocity difference method such as a time difference method, a single-Around (frequency difference) method, or a phase difference method, which are well known per se. It is characterized in that C is also calculated and its fluctuations are treated as He concentration fluctuations.

以下、本発明による方法を実施する装置例を図を基に説
明する。
Hereinafter, an example of an apparatus for carrying out the method according to the present invention will be explained based on the drawings.

第2図において、吸気供給部分は第1図と同じであり、
その呼吸気流路10に沿ってその管内で超音波を送受信
し得るリング状の1対の超音波振動子11.11′(以
下単に素子とする)が装着されている。そしてこれらの
素子11.11′に、交互に一方の素子11にパルス送
信をさせた場合には他方の素子11′にこれを受信させ
、逆に素子’11に受信させた場合には素子xfに送信
させる送受信回路12と、C及びVを算出する演算部2
0が付属している。この演算部20は、素子11.11
間における超音波の呼気方向伝搬時間T1及び逆方向伝
搬時間T2を送受信回路12の送受信信号を基に測定す
る伝搬時間測定部21と、Tl及びTiIの逆数値を算
出する逆数部22.23と、それぞれの逆数値の加算部
24及び減算部25とから構成されている。
In Figure 2, the intake air supply part is the same as in Figure 1,
A pair of ring-shaped ultrasonic transducers 11 and 11' (hereinafter simply referred to as elements) that can transmit and receive ultrasonic waves within the tube are attached along the respiratory air flow path 10. When these elements 11 and 11' are made to alternately send a pulse to one element 11, the other element 11' receives it, and conversely, when element '11 is made to receive it, element xf a transmitting/receiving circuit 12 that transmits data to
0 is attached. This calculation unit 20 includes elements 11 and 11.
a propagation time measurement section 21 that measures the exhalation direction propagation time T1 and backward propagation time T2 of the ultrasonic waves between the two on the basis of the transmitted and received signals of the transmitting and receiving circuit 12; and a reciprocal section 22.23 that calculates the reciprocal values of Tl and TiI. , an addition section 24 and a subtraction section 25 for the respective reciprocal values.

これによシ、素子11.11’間距離をLとするれらの
算出値に相当するパ信号及び埜信号り の積分信号が例えば第1図のX−Yレコーダ6或はブラ
ウン管波形表示装置等の出力装置へY軸及びX軸入力と
して供給される。このような測定に際して吸気初期にH
eを例えば300cc程度を吸気するとなれば、呼気時
において呼気のHe組成率は5〜10チ程度であシ、か
つ他の組成ガスよシも音速が約3倍であることによシ、
C T信号、即ち音速信号がHe濃度信号として十分な測定
精度で得られる。
As a result, the integral signals of the PA signal and the NO signal, which correspond to the calculated values when the distance between the elements 11 and 11' is L, can be outputted to, for example, the X-Y recorder 6 in FIG. 1 or the cathode ray tube waveform display device. are supplied as Y-axis and X-axis inputs to output devices such as the following. During such measurements, H
If, for example, about 300 cc of e is inhaled, the He composition ratio of the exhaled breath during exhalation is about 5 to 10 cm, and the speed of sound is about 3 times that of other composition gases.
A CT signal, ie, a sound velocity signal, can be obtained with sufficient measurement accuracy as a He concentration signal.

尚、第2図において、素子11.11′は死腔量を含む
無駄な容積を許容できる限贋で呼気専用の流路管27に
配置することも可能である。
In addition, in FIG. 2, the elements 11, 11' can also be arranged in the flow path tube 27 exclusively for exhalation, as long as the wasted volume including the dead space volume can be tolerated.

素子11.11′は、第3図に示す如く気流路管に科目
横断方向に配置しても良い。送受信回路12は、素子1
1111′を同時に送信させ、相手方の素子11又は1
1′の送信信号を互に受信させることもできる。第2図
における一方の素子11又は11′からの送信パルスを
他方の素子1f又は]、1が受信するごとに、一方の素
子11又は1丁へ次の送信を行わせることによシそれぞ
れの送信周波数から速度を算出するシングルアランド法
を利用する場合は次のようにV及びCを算出する。演算
部の計数器によ)計数された素子11の送信周波数をf
厘、素子1丁の送信周波数をfz、画素子間の距離をL
とすると1.1− 止α fz = 旦二X L ゝ L となる。
The elements 11.11' may be arranged transversely in the airflow tube as shown in FIG. The transmitting/receiving circuit 12 includes an element 1
1111' at the same time, the other party's element 11 or 1
1' transmission signals can also be mutually received. Each time the other element 1f or 1 receives a transmission pulse from one element 11 or 11' in FIG. When using the single Alland method of calculating the speed from the transmission frequency, V and C are calculated as follows. The transmission frequency of the element 11 counted by the counter in the calculation section is f
Rin, the transmission frequency of one element is fz, and the distance between pixel elements is L.
Then, 1.1-stop α fz = dan2X L ゝ L .

そこで加減算回路によシ計数値f1及びfzの差及び和
をめると、 f・−f・−−1,f・+f・= 二 V L’ L となシ、伝搬速度に対応した呼気上流側からの送信周波
数ft及び呼気下流側からの送信周波数f2の差及び和
からV及びCがまる。
Therefore, by adding the difference and sum of the count values f1 and fz to the adder/subtractor circuit, we get f・−f・−−1, f・+f・=2V L' L. V and C are calculated from the difference and sum of the transmission frequency ft from the side and the transmission frequency f2 from the exhalation downstream side.

第2図における双方の素子11.1丁からの送信信号を
互に相手方の素子11′、11で受信して、それぞれの
迷信信号に対する受信信号の位相差から速度を算出する
位相差法を利用する場合は次のようになる。送信周波数
をfO1伝搬距離りに対応した素子11′の受信信号の
位相ずれをφ1、素子11の受信信号の位相ずれをφ2
として演算部において、 を先ず算出する。ここで最大呼気フローでもn1= n
u であるようにf・を選択しておくと、式1式%(2
) となシ、シたがってこの式から が算出される。さらに式(1)、(2)からφ8+φ凰
= (Δφ言+2n七)+(Δφ凰+2 nu z )
1 =(σ:〜=十石、V−) 2πLf・91+1 となシ、シたがってこの式からCは次のようになる。
A phase difference method is used in which the transmitted signals from both elements 11.1 in Fig. 2 are received by the opposing elements 11' and 11, and the speed is calculated from the phase difference of the received signal with respect to each superstition signal. If you do, it will look like this: The phase shift of the received signal of element 11' corresponding to the transmission frequency fO1 propagation distance is φ1, and the phase shift of the received signal of element 11 is φ2.
In the arithmetic section, first calculate. Here, even at the maximum expiratory flow, n1 = n
If f・ is selected so that u
) Tonashi, therefore, is calculated from this formula. Furthermore, from equations (1) and (2), φ8+φ凰= (Δφ凰+2n7)+(Δφ凰+2 nu z )
1 = (σ: ~= Jukoku, V-) 2πLf・91+1 Therefore, from this formula, C becomes as follows.

この式と式(3)とから■は次のようになる。From this equation and equation (3), ■ becomes as follows.

即ち伝搬速度差に対応した呼気下流側に生じる位相差△
φ1及び呼気上流側に生じる位相差Δφ2の差及び和か
ら■及びCがまる。
In other words, the phase difference △ that occurs on the downstream side of exhalation corresponding to the propagation velocity difference
■ and C are calculated from the difference and sum of φ1 and the phase difference Δφ2 occurring on the upstream side of expiration.

以上、本発明により超音波振動素子間を通過する呼気に
ついての呼気流方向及びその逆方向の超音波伝搬速度の
差及び和を基に従来の呼気フローだけでなく、音速も算
出してHem度信号として利用することにより、クロー
ジングボリューム測定に際して単一の超音波式センサに
よシ呼気フロー及びHe濃度の測定が可能になる。
As described above, according to the present invention, not only the conventional exhalation flow but also the sound velocity is calculated based on the difference and sum of the ultrasonic propagation velocity in the exhalation flow direction and the opposite direction for exhalation passing between the ultrasonic vibrating elements. By using it as a signal, it becomes possible to measure expiratory flow and He concentration with a single ultrasonic sensor during closing volume measurement.

したがって、装置をよシ廉価、かつ小型化にし、呼気開
始時の応答特性も改善される。
Therefore, the device can be made cheaper and smaller, and the response characteristics at the beginning of exhalation can also be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のクロージングボリューム測定装置の構成
、第2図は本発明によるクロージングボリューム測定方
法を実施するだめの装置及び第3図は本発明による別の
装置例を示す。 11.1f・・・超音波振動素子 20・・・演算部 φ1) 代理人 福 留 正 治 第1図 第2図 第3図 11 ’ 一一一一一・ 手続補正書 昭和59年7月21日 特許庁長官 志 賀 学 殿 1、弱性の表示 11r(和58年 特 許 願 第216812号2、
発明の名称 クロージングボリューム測定方法3、補正
をする者 ・h件との関係 出願人 住所 東京都新宿区西落合1丁目31番4号名称 「1
本光電工業株式会社 4、代 理 人 〒151 6、補正の対象 明細月の発明の詳細な説明の欄 7、補」「の内容 明細書の4頁6行、4頁1o行、6頁2o行「アランド
」を「アラウンド」に訂正致します。
FIG. 1 shows the configuration of a conventional closing volume measuring device, FIG. 2 shows a device for implementing the closing volume measuring method according to the present invention, and FIG. 3 shows another example of the device according to the present invention. 11.1f...Ultrasonic vibration element 20...Calculating unit φ1) Agent Masaharu Fukutome Figure 1 Figure 2 Figure 3 Figure 11' 11111 Procedural Amendment July 21, 1982 Manabu Shiga, Director General of the Japan Patent Office1, Indication of Weakness 11r (Japanese Patent Application No. 216812, 2013,
Title of the invention Closing volume measurement method 3, person making the correction/relationship with case h Applicant address 1-31-4 Nishiochiai, Shinjuku-ku, Tokyo Name "1"
Honkoden Kogyo Co., Ltd. 4, Agent 〒151 6, Detailed explanation of the invention of the month subject to amendment column 7, Supplementary contents of the description, page 4, line 6, page 4, line 1o, page 6, 2o I will correct the line "Around" to "Around".

Claims (1)

【特許請求の範囲】[Claims] 吸気初期にHeを強制吸気させ、呼気時に呼気量及び呼
気中のHe濃度を測定し、両側定値の相対関係からクロ
ージングボリュームを測定する方法において、呼吸気流
路に沿って超音波送受信素子を離間して配置し、これら
の素子間における呼気方向及びその逆方向の超音波伝搬
速度から呼気速度V及び音速Cを算出し、この呼気速度
Vを呼気フローそして音速CをHe濃度に対応させるこ
とを特徴とするクロージングボリューム測定方法。
In the method of forcibly inhaling He at the beginning of inspiration, measuring the expiratory volume and He concentration in expiration during exhalation, and measuring the closing volume from the relative relationship between constant values on both sides, the ultrasonic transmitting and receiving elements are spaced apart along the respiratory air flow path. The expiratory velocity V and the sound velocity C are calculated from the ultrasonic propagation velocity in the exhalation direction and the opposite direction between these elements, and the expiration velocity V is made to correspond to the exhalation flow and the sound velocity C is made to correspond to the He concentration. Closing volume measurement method.
JP58216812A 1983-11-17 1983-11-17 Closing volume measuring method Granted JPS60108032A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58216812A JPS60108032A (en) 1983-11-17 1983-11-17 Closing volume measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58216812A JPS60108032A (en) 1983-11-17 1983-11-17 Closing volume measuring method

Publications (2)

Publication Number Publication Date
JPS60108032A true JPS60108032A (en) 1985-06-13
JPH0158981B2 JPH0158981B2 (en) 1989-12-14

Family

ID=16694271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58216812A Granted JPS60108032A (en) 1983-11-17 1983-11-17 Closing volume measuring method

Country Status (1)

Country Link
JP (1) JPS60108032A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008545452A (en) * 2005-05-10 2008-12-18 エヌスパイアー ヘルス,インコーポレイテッド Method and apparatus for analyzing lung performance
US11026597B2 (en) 2017-06-01 2021-06-08 Koko It, Llc Apparatus and methods for calibrating and/or validating pulmonary function test equipment

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5146995A (en) * 1974-10-18 1976-04-22 Matsushita Electric Ind Co Ltd KANENSEIGASUKENCHISOSHINO SEIZOHOHO
JPS554528A (en) * 1978-06-27 1980-01-14 Sumitomo Bakelite Co Ltd Method and apparatus for measuring gas concentration
JPS5587037A (en) * 1978-12-25 1980-07-01 Yoshibumi Tanaka Quantitative method of mixed gas and its element for analysis
JPS57107139A (en) * 1980-12-22 1982-07-03 Tokyo Shibaura Electric Co Breathing gas measuring
JPS5819235A (en) * 1981-07-29 1983-02-04 日本光電工業株式会社 Apparatus for inspecting lang function

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5146995A (en) * 1974-10-18 1976-04-22 Matsushita Electric Ind Co Ltd KANENSEIGASUKENCHISOSHINO SEIZOHOHO
JPS554528A (en) * 1978-06-27 1980-01-14 Sumitomo Bakelite Co Ltd Method and apparatus for measuring gas concentration
JPS5587037A (en) * 1978-12-25 1980-07-01 Yoshibumi Tanaka Quantitative method of mixed gas and its element for analysis
JPS57107139A (en) * 1980-12-22 1982-07-03 Tokyo Shibaura Electric Co Breathing gas measuring
JPS5819235A (en) * 1981-07-29 1983-02-04 日本光電工業株式会社 Apparatus for inspecting lang function

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008545452A (en) * 2005-05-10 2008-12-18 エヌスパイアー ヘルス,インコーポレイテッド Method and apparatus for analyzing lung performance
US11026597B2 (en) 2017-06-01 2021-06-08 Koko It, Llc Apparatus and methods for calibrating and/or validating pulmonary function test equipment

Also Published As

Publication number Publication date
JPH0158981B2 (en) 1989-12-14

Similar Documents

Publication Publication Date Title
Hyatt et al. Direct writeout of total respiratory resistance.
Mead et al. Physical properties of human lungs measured during spontaneous respiration
JP2568763B2 (en) Gas flow measurement system
US4581942A (en) Measuring conduit for flow rate and concentration of fluid
EP1102564A1 (en) Method and apparatus for respiratory gas analysis employing measurement of expired gas mass
US3410264A (en) Instrument for measuring total respiratory and nasal air resistance
CN101340941A (en) Method and apparatus for estimating lung volume at the end of exhalation
Buess et al. A pulsed diagonal-beam ultrasonic airflow meter
EP2322917B1 (en) Method for the signal linearization of a gas sensor output signal
JPH1133119A (en) Breath circuit
JPS60108032A (en) Closing volume measuring method
US3901078A (en) Ultrasonic system for fluid flow measurement
JPH01199122A (en) Clinical gas flow rate measuring apparatus
US4019382A (en) Apparatus for use in the measurement of the flow rate of fluid flow
US4237904A (en) Medical apparatus for the measurement of respiratory flow independent of gaseous composition
JP2004294434A (en) Acoustic type gas analyzer
Fletcher et al. On-line computation of pulmonary compliance and work of breathing.
JPH05329132A (en) Breath by breath metabolism measuring apparatus
WO2007065476A1 (en) Apparatus and method for measuring a gas flow
JPH05332799A (en) Portable breathing air flowrate measurement device
JPH019531Y2 (en)
JP7244947B2 (en) Flow sensor for respiratory function test
Elliott et al. Turbulent airflow meter for long-term monitoring in patient-ventilator circuits
Cardus et al. Development of a computer technique for the on-line processing of respiratory variables
JP4004639B2 (en) Oxygen consumption meter