JPH019531Y2 - - Google Patents

Info

Publication number
JPH019531Y2
JPH019531Y2 JP2443983U JP2443983U JPH019531Y2 JP H019531 Y2 JPH019531 Y2 JP H019531Y2 JP 2443983 U JP2443983 U JP 2443983U JP 2443983 U JP2443983 U JP 2443983U JP H019531 Y2 JPH019531 Y2 JP H019531Y2
Authority
JP
Japan
Prior art keywords
container
vital capacity
volume
pressure
respiratory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2443983U
Other languages
Japanese (ja)
Other versions
JPS59130705U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP2443983U priority Critical patent/JPS59130705U/en
Publication of JPS59130705U publication Critical patent/JPS59130705U/en
Application granted granted Critical
Publication of JPH019531Y2 publication Critical patent/JPH019531Y2/ja
Granted legal-status Critical Current

Links

Description

【考案の詳細な説明】 本考案は、呼吸気の導入される容器の一端を移
動可能にし、その端部の変位量から呼吸気量を測
定するように成つた機械式のスパイロメータ(呼
吸計)に関するものである。
[Detailed description of the invention] The present invention is a mechanical spirometer (respirometer) that measures the amount of respiratory air by making one end of the container into which breathing air is introduced movable, and measuring the amount of breathing air from the amount of displacement of that end. ).

一般に、スパイロメータを用いた肺機能検査に
おいて、特に努力性肺活量とその呼出開始点から
測定された時間肺活量との比で示す時間肺活量率
(例えば1秒率)は、肺機能の良否を決定する重
要な指標となる。このような測定は、ニユーモタ
コグラフを用いて流体抵抗管における差圧信号を
電子回路により積分することによつても行うこと
ができるが、差圧は気体の質量により変化するた
めに、呼気に含まれるCO2或は麻酔ガス等の成分
が明らかでないと測定精度が落ちる欠点がある。
そこで、通常構造的に嵩ばることを甘受してベネ
デイクト・ロス型、ローリングシール型或はベロ
ー型等の冒頭に述べた種の機械式のスパイロメー
タが用いられているが、その可動部分の慣性質量
は無視することができず、特に呼吸気量の急激に
変化する領域を測定する前述の時間肺活量率の測
定精度に関して問題があつた。この欠点は特公昭
53−41920により、容器内圧を検出し、これが大
気圧になるように容器端部を移動させるサーボ制
御装置を付加することにより改善されたが、この
ような容器端部の応動遅れの補償は、サーボ系特
有の追従遅れに起因して自ずと限界があつた。
In general, in pulmonary function tests using a spirometer, the temporal vital capacity rate (for example, the 1-second rate), which is the ratio of forced vital capacity to the temporal vital capacity measured from the start of exhalation, determines the quality of lung function. This is an important indicator. Such measurements can also be performed by using a pneumotachograph and integrating the differential pressure signal in the fluid resistance tube with an electronic circuit, but since the differential pressure changes depending on the mass of gas, There is a drawback that measurement accuracy decreases if the components such as CO 2 or anesthetic gas contained are not clear.
Therefore, mechanical spirometers of the type mentioned above, such as the Benedict-Ross type, rolling seal type, or bellows type, are usually used at the cost of being bulky, but the inertia of the moving parts Mass cannot be ignored, and there have been problems in particular with respect to the measurement accuracy of the above-mentioned temporal vital capacity rate, which measures regions where respiratory volume rapidly changes. This drawback is due to
53-41920, an improvement was made by adding a servo control device that detects the internal pressure of the container and moves the end of the container so that the internal pressure becomes atmospheric pressure, but compensation for such a response delay at the end of the container is There was a limit due to the follow-up delay peculiar to servo systems.

よつて、本考案は急激に変化する呼吸気量であ
つてもより高精度に測定し得るスパイロメータを
提供することを目的とする。
Therefore, an object of the present invention is to provide a spirometer that can measure respiratory air volume with higher accuracy even when the respiratory volume changes rapidly.

次に本考案を図示の実施例を基に説明する。 Next, the present invention will be explained based on the illustrated embodiments.

第1図において、1は可とう性パイプ2を通し
て呼吸気が導入される円筒状の容器であり、呼吸
気導入側と反対側の容器1の端部4はローリング
シール3により呼吸気量に応じて移動可能に形成
されている。5は、端部4に固着されることによ
り軸受6に沿つて端部4の移動を案内するロツド
である。10は、呼吸気量即ち端部4の変位量を
検出するためにロツド5の変位量を検出する変位
量センサ、11は容器1の内圧を検出する圧力セ
ンサである。12及び13は、両センサ10,1
1の検出信号をそれぞれ増幅する増幅器であり、
このうち増幅器13は可変抵抗器14により利得
を調整できる。15は、両増幅器12,13の増
幅出力を加算して換気量或は肺活量等の測定を可
能にする呼吸気量信号を出力する加算回路であ
る。
In FIG. 1, reference numeral 1 denotes a cylindrical container into which breathing air is introduced through a flexible pipe 2, and an end 4 of the container 1 on the opposite side to the breathing air introduction side is provided with a rolling seal 3 depending on the breathing air volume. It is configured to be movable. Reference numeral 5 denotes a rod that is fixed to the end 4 and guides the movement of the end 4 along the bearing 6. 10 is a displacement sensor that detects the displacement of the rod 5 in order to detect the respiratory air volume, that is, the displacement of the end portion 4; and 11 is a pressure sensor that detects the internal pressure of the container 1. 12 and 13 are both sensors 10, 1
An amplifier that amplifies each of the detection signals of 1,
Among these, the gain of the amplifier 13 can be adjusted by a variable resistor 14. Reference numeral 15 denotes an adding circuit that adds the amplified outputs of both amplifiers 12 and 13 and outputs a respiratory volume signal that enables measurement of ventilation volume, vital capacity, etc.

次に、第2図を参照して動作を説明する。 Next, the operation will be explained with reference to FIG.

例えば時間肺活量率を測定するために、被検者
が可とう性パイプ2をくわえて最大努力性呼気を
開始すると、容器1内へ急激に呼気が導入され
る。これにより、端部4は外方へ移動しようとす
るがそれ自体或はロツド5及びローリングシール
3等の慣性質量により応動が遅れ、変位量センサ
10の出力信号aは急激な呼気量増加にも拘わら
ず緩やかな立上りになる。このような呼気に対す
る端部4の応動遅れに対応して容器1の内圧は大
気圧から上昇し、したがつて圧力センサ11の出
力信号bは呼気開始と共に急上昇し、端部4が以
後のより緩やかな呼気量変化に追従して移動する
に伴い急激に低下する。これらの出力信号a,b
は増幅器12及び13でそれぞれ増幅され信号
a′,b′となり、加算回路15において加算され
る。その結果、呼気開始時の応動遅れを補償され
た努力性肺活量に精確に対応した呼吸気量信号c
が発生される。即ち、可変抵抗器14により出力
信号b′のレベルが端部4の応動遅れに対応するよ
うに予め調整されていることにより、呼吸気量信
号cは呼気開始時から精度良く努力性肺活量に追
従する。したがつて、この呼吸気量信号cが例え
ば記録計へ供給されることにより精確に努力性肺
活量の曲線を描記し、時間肺活量率例えば1秒率
も精度良く測定できる。
For example, in order to measure the hourly vital capacity rate, when a subject holds the flexible pipe 2 in their mouth and begins maximal forced exhalation, exhaled air is rapidly introduced into the container 1. As a result, the end portion 4 tries to move outward, but the response is delayed due to the inertial mass of itself or the rod 5, the rolling seal 3, etc., and the output signal a of the displacement sensor 10 is also affected by the rapid increase in expiratory volume. Regardless, it will rise slowly. Corresponding to this delay in the response of the end portion 4 to exhalation, the internal pressure of the container 1 rises from atmospheric pressure, and therefore the output signal b of the pressure sensor 11 rises rapidly with the start of exhalation, and the end portion 4 It rapidly decreases as you move, following gradual changes in expiratory volume. These output signals a, b
are amplified by amplifiers 12 and 13, respectively, and the signal
a' and b', which are added in the adder circuit 15. As a result, a respiratory volume signal c that accurately corresponds to the forced vital capacity compensated for the response delay at the start of exhalation.
is generated. That is, since the level of the output signal b' is adjusted in advance by the variable resistor 14 to correspond to the response delay of the end portion 4, the respiratory volume signal c accurately follows the forced vital capacity from the beginning of expiration. do. Therefore, by supplying this respiratory volume signal c to, for example, a recorder, a forced vital capacity curve can be accurately drawn, and the hourly vital capacity rate, for example, the rate per second, can be measured with high accuracy.

尚、増幅器13は最適な固定利得にしておくこ
ともでき、場合によつてはレベル調整された両セ
ンサの出力を加算した後に増幅することもでき
る。また、前述の実施例では両センサ共に圧力及
び呼吸気量に対応した直流信号を出力するものと
して説明したが、変位量センサ及び圧力センサを
差動トランス式として実施する場合には、出力波
形は第2図の各波形a′〜cが側にも対称に現れ
た波形を包絡線とする変調波形になる。例えば、
これらの差動トランスの入力を共通に商用電源と
する場合、第1図の加算回路の入力端で同相にな
るようにし、必要により位相の微調整を行う。さ
らに、本考案はベロー型或は水を充たした容器内
にベル形状の容器を伏せ、この容器をローラを介
してカウンタウエイトで吊したベネデイクト・ロ
ス型等の種々の構造の容器を備えたスパイロメー
タにも適用可能である。
Note that the amplifier 13 can be set to an optimal fixed gain, and in some cases, the level-adjusted outputs of both sensors can be added and then amplified. In addition, in the above embodiment, both sensors were explained as outputting DC signals corresponding to pressure and respiratory volume, but when the displacement sensor and pressure sensor are implemented as differential transformer type, the output waveform is Each of the waveforms a' to c in FIG. 2 becomes a modulated waveform whose envelope is a waveform that appears symmetrically on both sides. for example,
When the inputs of these differential transformers are commonly connected to a commercial power source, the input ends of the adder circuit shown in FIG. 1 are made to have the same phase, and the phase is finely adjusted if necessary. Furthermore, the present invention can be applied to a Spiro with containers of various structures, such as a bell-shaped container or a Benedict-Ross type, in which a bell-shaped container is placed upside down in a water-filled container and suspended by a counterweight via rollers. It is also applicable to meters.

以上、本考案により容器の移動部分の応動遅れ
に起因する呼吸気量の測定誤差に対して、移動部
分の変位量信号へ容器内圧信号を加算するオープ
ンループの補償を行うことにより、簡単に時間肺
活量率を含めた急激な変化を伴う呼吸気量が高精
度で測定可能になる。
As described above, according to the present invention, by performing open-loop compensation in which the container internal pressure signal is added to the displacement amount signal of the moving part to compensate for the measurement error of respiratory air volume caused by the response delay of the moving part of the container, it is possible to easily It becomes possible to measure respiratory volume, which is accompanied by rapid changes, including vital capacity rate, with high precision.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案によるスパイロメータ(容器は
断面図で示す)及び第2図はその電子回路部分の
波形を示す。 1……容器、4……端部、10……変位量セン
サ、11……圧力センサ。
FIG. 1 shows a spirometer according to the invention (the container is shown in cross-section) and FIG. 2 shows waveforms of its electronic circuitry. 1... Container, 4... End, 10... Displacement sensor, 11... Pressure sensor.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 被検者の呼吸気が導入され、かつ移動する端部
を備えた容器と、この容器内の圧力を検出する圧
力センサと、前記端部の移動を検出する変位量セ
ンサと、前記両センサの出力信号を加算する加算
回路とを有することを特徴とするスパイロメー
タ。
A container having a moving end into which breathing air of a subject is introduced, a pressure sensor that detects the pressure within the container, a displacement sensor that detects movement of the end, and both of the sensors. A spirometer characterized by having an addition circuit that adds output signals.
JP2443983U 1983-02-23 1983-02-23 spirometer Granted JPS59130705U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2443983U JPS59130705U (en) 1983-02-23 1983-02-23 spirometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2443983U JPS59130705U (en) 1983-02-23 1983-02-23 spirometer

Publications (2)

Publication Number Publication Date
JPS59130705U JPS59130705U (en) 1984-09-01
JPH019531Y2 true JPH019531Y2 (en) 1989-03-16

Family

ID=30155481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2443983U Granted JPS59130705U (en) 1983-02-23 1983-02-23 spirometer

Country Status (1)

Country Link
JP (1) JPS59130705U (en)

Also Published As

Publication number Publication date
JPS59130705U (en) 1984-09-01

Similar Documents

Publication Publication Date Title
US3726271A (en) Spirometer with automatic electronic zeroing circuit
JP2568763B2 (en) Gas flow measurement system
Mead et al. Physical properties of human lungs measured during spontaneous respiration
Hyatt et al. Direct writeout of total respiratory resistance.
Clements et al. Estimation of pulmonary resistance by repetitive interruption of airflow
US3659590A (en) Respiration testing system
Wald et al. A computers system for respiratory parameters
US4333476A (en) Comprehensive pulmonary measurement technique
Karlberg et al. Respiratory Studies in Newborn Infants: I. Apparatus and Methods for Studies of Pulmonary Ventilation and the Mechanics of Breathing. Principles of Analysis in Mechanics of Breathing 1
US5386833A (en) Method for calibrating a carbon dioxide monitor
Virgulto et al. Electronic circuits for recording of maximum expiratory flow-volume (MEFV) curves.
US6629933B1 (en) Method and device for determining per breath the partial pressure of a gas component in the air exhaled by a patient
JPH019531Y2 (en)
Cogswell et al. Lung function in childhood: III. Measurement of airflow resistance in healthy children
Leong et al. A new technique for tidal volume measurement in unanaesthetized small animals
WO1998033542A1 (en) Boxless measurement of thoracic gas volume
US3006336A (en) Servo-spirometer
Meriläinen A fast differential paramagnetic O 2-sensor
JPS62188969A (en) Exhalation analysis
US3391569A (en) Respiration monitor calibrator
US3703893A (en) Method and apparatus for determining work of breathing
Fletcher et al. On-line computation of pulmonary compliance and work of breathing.
DE69132126D1 (en) MEASURING DEVICE FOR OXYGEN RECORDING
Chakrabarti et al. A spirometer for the continuous measurement of expired tidal volume
SU655386A1 (en) Device for registering breathing parameters