JPS6010792A - Superconducting transistor - Google Patents
Superconducting transistorInfo
- Publication number
- JPS6010792A JPS6010792A JP58119337A JP11933783A JPS6010792A JP S6010792 A JPS6010792 A JP S6010792A JP 58119337 A JP58119337 A JP 58119337A JP 11933783 A JP11933783 A JP 11933783A JP S6010792 A JPS6010792 A JP S6010792A
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- electrodes
- insulating film
- superconductor
- switching operation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N60/00—Superconducting devices
- H10N60/10—Junction-based devices
- H10N60/128—Junction-based devices having three or more electrodes, e.g. transistor-like structures
Landscapes
- Superconductor Devices And Manufacturing Methods Thereof (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の技術分野〕
本発明は、超伝導素子に係わり、特に交流・直流ジョセ
フソン効果を利用した超伝導トランジスタの構造に関す
る。DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to superconducting elements, and particularly to the structure of superconducting transistors that utilize AC and DC Josephson effects.
従来の超伝導素子としては、ジョセフソン接合を1個使
ったジョセフソン素子が知られているが、これは2端子
素子であシ入出力を分離できないため使いにくい。そこ
で、第1図に示すような入出力を分離した回路が、i!
されている。As a conventional superconducting element, a Josephson element using a single Josephson junction is known, but this is a two-terminal element and cannot separate input and output, making it difficult to use. Therefore, a circuit with separate input and output as shown in FIG.
has been done.
これは、磁界制御型であシ、信号電流Iaにより発生し
た磁束によりジョセフソン接合(J・J)に流れる電流
を可変するものである。しかしながら、この構造では複
数のジョセフソン素子を集積化する場合、隣接素子から
の磁界の影響を防止するため、各素子をある程度以上離
して配設する必要があ一ル、高集積化の点で難点があっ
た。また、スイッチング速度がインダクタンスによって
決定されるので、スイッチング動作が遅いと云う欠点が
あった。This is a magnetic field control type, and the current flowing through the Josephson junction (JJ) is varied by the magnetic flux generated by the signal current Ia. However, in this structure, when integrating multiple Josephson elements, it is necessary to space each element at least a certain distance apart to prevent the influence of magnetic fields from adjacent elements, which makes it difficult to achieve high integration. There was a problem. Furthermore, since the switching speed is determined by the inductance, there is a drawback that the switching operation is slow.
このような問題を解決するものとして最近。Recently as a solution to such problems.
第2図に示す如くジョセフソン接合素子を2個直列に接
続した3端子累子が提案されている。As shown in FIG. 2, a three-terminal transponder in which two Josephson junction elements are connected in series has been proposed.
とれは、デバイス構造及び原理共に通常の半導体パイI
−ラトランジスタと類似′、シておシ、原理としてはイ
ンソエクタ電流Itを流すと、アクセグタ電流Iaが急
激に変わると云うものである。すなわち、S’、−I、
−8重接合に電流Iiを流し、8.に準粒子を注入する
ことによって、S、の超伝導エネルギ・ギャップを小さ
くしS、からS、への準粒子のトンネル効果を促がしs
88−’1−8m接合に電流Iaを流すものである。Both the device structure and principle are similar to the normal semiconductor pie I.
- Similar to a transistor, the principle is that when an injector current It flows, an accessor current Ia changes rapidly. That is, S', -I,
- Flow current Ii through the 8-fold junction; 8. By injecting quasiparticles into S, the superconducting energy gap of S is reduced and the tunneling effect of quasiparticles from S to S is promoted.
A current Ia is passed through the 88-'1-8m junction.
f:rお、第2図中5Iss!*8、it超伝導金属を
示しす、”1mI2は絶縁膜を示している。f:r Oh, 5Iss in Figure 2! *8, IT indicates superconducting metal, 1mI2 indicates insulating film.
ところで、この柚の3端子素子は上述した如く準粒子注
入麩よるスイッチング動作及び増幅動作で5通常のバイ
ポーラトランジスタの8きを2個のジョセフソン接合素
子の直列接続にょシ実現したものである。したがって、
スイッチング動作は前記第1図に示した回路よシは速く
なるが、バイポーラトランジスタのそれに比して速くな
るものではない。また、ジョセフソン接合素子を2重に
実現する必要があシ、製造技術的にも極めて困難であっ
た。By the way, this Yuzu three-terminal element is realized by connecting five ordinary bipolar transistors in series with two Josephson junction elements by switching and amplifying operations using quasi-particle implantation as described above. therefore,
Although the switching operation is faster than that of the circuit shown in FIG. 1, it is not as fast as that of a bipolar transistor. Furthermore, it was necessary to realize a double Josephson junction element, which was extremely difficult in terms of manufacturing technology.
本発明の目的は、高集積化をはかり得ると共に高速スイ
ッチング動作を可能とし、かつその製造が容易である超
伝導トランジスタを提供するととにある。An object of the present invention is to provide a superconducting transistor that is highly integrated, enables high-speed switching operation, and is easy to manufacture.
本発明の骨子は、電圧制御によりジョセフソン接合素子
間に流れる電流を制御することにょ)高速スイッチング
動作を実現することにある。The gist of the present invention is to realize high-speed switching operation by controlling the current flowing between Josephson junction elements by voltage control.
薄い絶縁膜を超伝導体で挾んだジョセフソン接合素子に
おいて、各導体間の電位差にょシ導体間を流れる電流が
変化することが知られている。この点に着目して本発明
者等が鋭意研究を重ねた結果、ジョセフソン素子のいず
れかの超伝導体上に十分厚い絶縁膜を介して電極を設け
。It is known that in a Josephson junction device in which a thin insulating film is sandwiched between superconductors, the current flowing between the conductors changes depending on the potential difference between the conductors. Focusing on this point, the inventors of the present invention have conducted extensive research, and as a result, electrodes were provided on either superconductor of the Josephson element via a sufficiently thick insulating film.
この電極に印加する電圧によって上記導体間の電位差を
可変し、導体間に流れる電流を可変制御し得ることを見
出した。It has been found that the potential difference between the conductors can be varied by changing the voltage applied to the electrodes, and the current flowing between the conductors can be variably controlled.
すなわち本発明は、絶縁基板上に形成した超伝導体から
なる*Xの電極と、この電極上に薄い絶縁膜を介して形
成した超伝導体からなる第2の電極と、この第2の電極
上に十分厚い絶縁膜を介して形成した第3の電極とで超
伝導トランジスタを構成し、上記第3の電極に印加する
電圧によってよ記11及び第2の電極間に流れ電流を制
御するようにしたものである。That is, the present invention provides an electrode *X made of a superconductor formed on an insulating substrate, a second electrode made of a superconductor formed on this electrode with a thin insulating film interposed therebetween, and this second electrode. A superconducting transistor is formed with a third electrode formed on the top via a sufficiently thick insulating film, and the current flowing between the first electrode and the second electrode is controlled by the voltage applied to the third electrode. This is what I did.
本発明によれば、第3の電極に印加する電圧によって駆
1及び第2の電極間に流れる電流を制御、すなわち第1
及び第2の電極間に流れる電流をON・OF’F制御す
ることができる。そしてこの場合、電圧によってスイッ
チング動作を制御しているので、スイッチング動作の高
速化をはかシ得る。また、磁界制御型のものと異なシジ
ョセフソン接合素子を十分接近させることが可能であシ
、高集積化に極めて有効である。According to the present invention, the current flowing between the first electrode and the second electrode is controlled by the voltage applied to the third electrode.
And the current flowing between the second electrodes can be controlled ON/OFF. In this case, since the switching operation is controlled by voltage, it is possible to speed up the switching operation. In addition, it is possible to bring the Josephson junction elements, which are different from those of the magnetic field control type, sufficiently close together, which is extremely effective for high integration.
また、ジョセフソン接合素子を2重に形成する必要もな
く、その製造が極めて容易である等の利点がある。Further, there is an advantage that there is no need to form double Josephson junction elements, and manufacturing thereof is extremely easy.
第3図は本発明の一実施例に係わる超伝導トランジスタ
の概略構造を示す斜視図である。図中7Fi絶縁性の基
板であシ、この基板1上にNb等の超伝導体からなる第
1及び第2の電極2.3が一部重なるよう形成されてい
る。そして、第1及び第2の電極2,3間には、超伝導
電子でめるクーパ対がトンネル可能であるような十分薄
い絶縁膜4が形成されている。すなわち、絶縁膜4.第
1及び第2の1極2.3からジョセフソン接合素子が構
成されている。また。FIG. 3 is a perspective view showing a schematic structure of a superconducting transistor according to an embodiment of the present invention. In the figure, a 7Fi insulating substrate is shown, and first and second electrodes 2.3 made of a superconductor such as Nb are formed on this substrate 1 so as to partially overlap with each other. A sufficiently thin insulating film 4 is formed between the first and second electrodes 2 and 3 so that Cooper pairs formed by superconducting electrons can tunnel therethrough. That is, the insulating film 4. A Josephson junction element is constructed from the first and second single poles 2.3. Also.
上記各電極2.3の重なシ部分の上には、ジョセフソン
効果を無視できる程十分厚い絶縁@5を介して第3の電
極6が形成されている。そして、第4図に示す如く第3
の電極6に印加する電圧vKよって、第1及び第2の電
極2.3間に流れる電流Iが制御されるものとなってい
る。A third electrode 6 is formed on the overlapping portion of each of the electrodes 2.3 via an insulation @5 that is sufficiently thick that the Josephson effect can be ignored. Then, as shown in Figure 4, the third
The current I flowing between the first and second electrodes 2.3 is controlled by the voltage vK applied to the electrode 6.
このような構造において、第3の電極6に電圧V =
V (tlが印加された場合、ジョセフン接合菓子をな
す第1及び第2の電極2.3間にはなる電流が流れる。In such a structure, a voltage V =
When V (tl) is applied, a current flows between the first and second electrodes 2.3 forming the Josephine junction confection.
ここで、 J、=2Pρ。でノは2つの超伝導体(電極
2.3)の相関を表わすもので、ρ。はキャリアの平均
密度である。また、θは各々の超伝導体の秩序パラメー
タの位相差、q=2eでeは電気素量、 fi = b
/2gで五はブランク定数でおる。Here, J,=2Pρ. Deno represents the correlation between the two superconductors (electrodes 2 and 3), and ρ. is the average density of carriers. Also, θ is the phase difference of the order parameters of each superconductor, q = 2e, e is the elementary charge, fi = b
/2g and 5 is a blank constant.
いま、第3の電極6に電圧がかかつていない場合、すな
わちv=0の時は、直流ジョセフソン効果によ〕
J (tJ = Jr、sinθ ・・・・・・・・・
・・・・・・・・・・・・・・・・・・(21なる超伝
導電流が絶縁膜4をトンネルすることによシ第1及び第
2の電極2.3間を流れる。Now, when no voltage is applied to the third electrode 6, that is, when v=0, due to the DC Josephson effect] J (tJ = Jr, sinθ...
(A superconducting current 21 flows between the first and second electrodes 2.3 by tunneling through the insulating film 4.
また、第3の電極6にv=vyなる直流電圧を加えると
、交流ソヨセフソン効果によりJ(fl= Jo SI
n’(θ十 + Vf 重 ) ・す・・・・・・・(
3)なる交流電流が流れる。ここで。Furthermore, when a DC voltage of v=vy is applied to the third electrode 6, J(fl= Jo SI
n'(θ1 + Vf weight) ・Su・・・・・・・(
3) An alternating current flows. here.
ω= q V?/、F、 = 4.836 X 10”
VJ’(H2) −(41なる値を持ち、これに対応
した高い周波数を持つ交流電流となる。これは、超伝導
体(電極2.3)間を行き来する超伝導電子の振動数を
表わしており、この行き来する超伝導電子の数は電極2
から電極3へ行くものと電極3から電極2へ行くものと
の数が等しく、電極2.3を外部で接続した閉回路を考
えた場合、この閉回路を流れる電流は実質的に零となる
。ω= q V? /, F, = 4.836 x 10”
The alternating current has a value of VJ'(H2) - (41) and a correspondingly high frequency. This represents the frequency of superconducting electrons moving back and forth between the superconductors (electrodes 2.3). The number of superconducting electrons going back and forth is
If we consider a closed circuit in which the numbers going from electrode 3 to electrode 3 and from electrode 3 to electrode 2 are equal, and electrodes 2 and 3 are connected externally, the current flowing through this closed circuit will be essentially zero. .
以上の説明から明らかなように、前記8F!3図の構造
において、電界効果トランジスタのダートに相当する第
3の電極6に印加する直流電圧を変化させることにより
、第1及び第2の電極よりなる超伝導体中のキャリア(
クーパ対)全体の運動を制御し、結果として2つの超伝
導体間を流れる電流を制御することができる。したがっ
て、第3の電極6に印加する電圧をON・。FFTl?
ニーIVcよつ工、□1□□2゜。 12.3間に流れ
る電流を0N−OFFでき、スイッチング動作が可能と
なる。また、?八が非常に大きいため、第3の電極6に
印加すべき電圧は極めて小さいものでよく、シかもスイ
ッチング時間1は略零である。このため、第3の電極6
に微小電圧を印加することによシ、超高速スイッチング
動作が可能となる。As is clear from the above explanation, the 8F! In the structure shown in FIG. 3, carriers (
It is possible to control the motion of the entire Cooper pair) and, as a result, the current flowing between the two superconductors. Therefore, the voltage applied to the third electrode 6 is turned on. FFTl?
Knee IVc Yotsuko, □1□□2゜. The current flowing between 12.3 and 3 can be turned ON and OFF, allowing switching operation. Also,? 8 is very large, the voltage to be applied to the third electrode 6 only needs to be extremely small, and the switching time 1 is approximately zero. Therefore, the third electrode 6
By applying a minute voltage to the oscillator, ultra-high-speed switching operation becomes possible.
なお1本発明は上述した実施例に限定されるものではな
い。例えば、前記第1及び第2の電極の形成材料はNb
に限るものではなく、超伝導体であればよい。さらに、
前記第3の電極の形成材料としては、超伝導体であって
もなくてもよい。また、第1及び第2の電極間に形成す
る絶縁膜の材料や厚さ等は、クーパ対がトンネル可能で
ある範囲内で適宜定めればよい。さらに、第2及び第3
の電極間に形成する絶縁膜の材料や、厚さ等は、ジョセ
フソン効果が無視できる範囲内で適宜定めればよい。そ
の他1本発明の要旨を逸脱しない範囲で1種々変形して
実施することができる。Note that the present invention is not limited to the embodiments described above. For example, the material forming the first and second electrodes is Nb.
The material is not limited to , and any superconductor may be used. moreover,
The material for forming the third electrode may or may not be a superconductor. Further, the material, thickness, etc. of the insulating film formed between the first and second electrodes may be determined as appropriate within a range that allows the Cooper pair to tunnel. Furthermore, the second and third
The material, thickness, etc. of the insulating film formed between the electrodes may be appropriately determined within a range where the Josephson effect can be ignored. In addition, various modifications can be made without departing from the gist of the present invention.
第1図は磁界制御型のジョセフソン接合素子の原理構成
を示す模式図、第2図はジョセフソン接合素子を2個直
列に接続した3端子素子の原理構成を示す模式図、24
3図は本発明の一実施例に係わる超伝導トランジスタの
概略構造を示す斜視図、第4図は上記トランジスタの作
用を説明するための断面図である。
J・・・絶縁基板、2・・・第1の電極(超伝導体)。
3・・・第2の電極(超伝導体)、4・・・薄い絶縁膜
。
5・・・厚い絶縁膜、6・・・第3の電極。
出願人代理人 弁理士 鈴 圧式 彦
0
第1図
第2図
第3図
第4図Figure 1 is a schematic diagram showing the principle configuration of a magnetic field-controlled Josephson junction element, and Figure 2 is a schematic diagram showing the principle configuration of a three-terminal element in which two Josephson junction elements are connected in series.
FIG. 3 is a perspective view showing a schematic structure of a superconducting transistor according to an embodiment of the present invention, and FIG. 4 is a sectional view for explaining the operation of the transistor. J... Insulating substrate, 2... First electrode (superconductor). 3... Second electrode (superconductor), 4... Thin insulating film. 5... Thick insulating film, 6... Third electrode. Applicant's agent Patent attorney Hiko Rin Ushiki 0 Figure 1 Figure 2 Figure 3 Figure 4
Claims (1)
、この第1の電極上に超伝導電子であるクー−9対がト
ンネル可能であるような薄い絶縁膜を介して形成された
超伝導体からなる第2の電極と、この第2の電極上にジ
ョセフソン効果を無視できる程度の厚い絶縁膜を介して
形成された第3の電極とを具備し、上記第3の電極に印
加する電圧によシ上記載1及び第2の電極間に流れる電
流を制御するととを特徴とする超伝導トランゾスタ。A first electrode made of a superconductor is formed on an insulating substrate, and a thin insulating film is formed on this first electrode through which Cu-9 pairs, which are superconducting electrons, can tunnel. A second electrode made of a superconductor, and a third electrode formed on the second electrode with an insulating film so thick that the Josephson effect can be ignored. A superconducting transistor characterized in that a current flowing between the first and second electrodes described above is controlled by an applied voltage.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58119337A JPS6010792A (en) | 1983-06-30 | 1983-06-30 | Superconducting transistor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58119337A JPS6010792A (en) | 1983-06-30 | 1983-06-30 | Superconducting transistor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6010792A true JPS6010792A (en) | 1985-01-19 |
Family
ID=14758979
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58119337A Pending JPS6010792A (en) | 1983-06-30 | 1983-06-30 | Superconducting transistor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6010792A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2638569A1 (en) * | 1988-10-25 | 1990-05-04 | Seiko Epson Corp | Josephson transistor of the field-effect type and method of manufacturing a Josephson junction |
US5318952A (en) * | 1992-12-24 | 1994-06-07 | Fujitsu Limited | A superconducting transistor wherein hot electrons are injected into and trapped from the base |
US5441926A (en) * | 1992-12-29 | 1995-08-15 | Fuji Electric Co., Ltd. | Superconducting device structure with Pr-Ba-Cu-O barrier layer |
-
1983
- 1983-06-30 JP JP58119337A patent/JPS6010792A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2638569A1 (en) * | 1988-10-25 | 1990-05-04 | Seiko Epson Corp | Josephson transistor of the field-effect type and method of manufacturing a Josephson junction |
US5318952A (en) * | 1992-12-24 | 1994-06-07 | Fujitsu Limited | A superconducting transistor wherein hot electrons are injected into and trapped from the base |
US5441926A (en) * | 1992-12-29 | 1995-08-15 | Fuji Electric Co., Ltd. | Superconducting device structure with Pr-Ba-Cu-O barrier layer |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2052970A1 (en) | Superconducting device having an extremely thin superconducting channel formed of oxide superconductor material and method for manufacturing the same | |
JPH01170080A (en) | Superconducting fet element | |
GB887652A (en) | Superconductor circuitry | |
US4710651A (en) | Josephson-junction logic device | |
JPS6010792A (en) | Superconducting transistor | |
US3521133A (en) | Superconductive tunneling gate | |
US3573661A (en) | Sns supercurrent junction devices | |
JP3123164B2 (en) | Superconducting device | |
JP3519303B2 (en) | Single flux quantum digital device | |
US11005023B2 (en) | Superconducting logic element | |
JPS63308975A (en) | Current control element | |
JPH0983027A (en) | Superconducting circuit | |
JP3212088B2 (en) | Superconducting device | |
JPH01130580A (en) | Superconducting electronic device | |
JP2955415B2 (en) | Superconducting element | |
JP3511212B2 (en) | Electron wave interference device | |
JP2730368B2 (en) | Superconducting field effect element and method for producing the same | |
JPS6043885A (en) | Superconducting element | |
JP2857898B2 (en) | Semiconductor device | |
JP3016566B2 (en) | Superconducting switch element | |
JP2978738B2 (en) | Electrostatic Josephson interferometer | |
JPS6218776A (en) | Superconductive device | |
JPS63280473A (en) | Switching element | |
Ohki et al. | Anomalous magnetoresistance of partially superconducting mesoscopic loop | |
JPS6358978A (en) | Superconducting tunnel junction device |