JPS60107867A - Semiconductor device and manufacture thereof - Google Patents

Semiconductor device and manufacture thereof

Info

Publication number
JPS60107867A
JPS60107867A JP21397083A JP21397083A JPS60107867A JP S60107867 A JPS60107867 A JP S60107867A JP 21397083 A JP21397083 A JP 21397083A JP 21397083 A JP21397083 A JP 21397083A JP S60107867 A JPS60107867 A JP S60107867A
Authority
JP
Japan
Prior art keywords
layer
electrode
fet
gate electrode
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21397083A
Other languages
Japanese (ja)
Other versions
JP2624642B2 (en
Inventor
Masaru Miyazaki
勝 宮崎
Susumu Takahashi
進 高橋
Nobuo Kodera
小寺 信夫
Yuichi Ono
小野 佑一
Hiroshi Yanagisawa
柳沢 寛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58213970A priority Critical patent/JP2624642B2/en
Publication of JPS60107867A publication Critical patent/JPS60107867A/en
Application granted granted Critical
Publication of JP2624642B2 publication Critical patent/JP2624642B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier

Abstract

PURPOSE:To produce an FET simply by means of processing at low temperature by a method wherein, within the FET composed of a gate, source and drain region, an ohmic electrode region layer with high impurity concentration is selectively formed on an active layer and a gate source and a drain electrode are fixed respectively on the electrode resion layer. CONSTITUTION:The N type GaAs active layer 11 of an FET is formed on the surface layer of insulating GaAs substrate 10 while an N<+> type GaAs layer 12 is formed being divided into three parts by insulating materials 41, 42. Next a gate electrode 20 is fixed on the central part of the layer 12 divided into three parts while a source electrode 30 and a drain electrode 31 are respectively formed on the layer 12 located on both sides of the central part. Through these procedures, the temperature for heat treatment in case of forming the FET may be reduced down to nearly 600 deg.C so that a laminated film of low resistance metal such as Pt, Au based on Mo base metal, W, Mo as well as W, W.Si alloy may be utilized for the electrode material.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はGaAs−FETとこれらを中心に集積した半
導体装置及びその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a GaAs-FET, a semiconductor device mainly integrated with the GaAs-FET, and a method for manufacturing the same.

〔発明の背景〕[Background of the invention]

従来のGaAs−FE’I’は、第1図に示すように、
性能を向上するためにゲート電極20とソース・ドレイ
ン領域15がセルファラインで形成され、この間隔δ1
.δ2が1μm以下になるよう配慮されている。半絶縁
性G a A s基板結晶1oの所定位置にSiイオン
が打込まれn形GaAs層11となる。つぎにWを主体
とした高融点金属のゲート電極20をn影領域11上に
加工する。つづいて高濃度のSiイオンを打込み、ゲー
ト電極2゜の周辺に低抵抗n0形領域15を形成する。
The conventional GaAs-FE'I', as shown in FIG.
In order to improve performance, the gate electrode 20 and the source/drain regions 15 are formed with self-aligned lines, and this interval δ1
.. Consideration is given so that δ2 is 1 μm or less. Si ions are implanted into predetermined positions of the semi-insulating GaAs substrate crystal 1o to form an n-type GaAs layer 11. Next, a gate electrode 20 made of a high melting point metal mainly composed of W is processed on the n-shaded region 11. Subsequently, high concentration Si ions are implanted to form a low resistance n0 type region 15 around the gate electrode 2°.

この場合、ゲート電極20の直下及びδ1.δ2領域(
これは、ホトレジパターンをゲート電極2o上に残した
ま家打込むとできる領域)はn形のまま保持され、セル
ファラインによって09形が加工される。つづいてイオ
ン打込みされた3iをGaAs中で活性化するために8
000以上のアニールを施す。この場合、W系のゲート
電極2oはショットキ特性を保つ必要がある。つづいて
ALIGe系のソース・ドレイン電極30.31を09
形15上に形成したプロセスを基本として素子が作られ
ている。このPETは、最大温度5oocで処理するプ
ロセスが必要であるため、ゲート電極材の種類がW系に
限られていること、高温によってGaAsと各種材質(
例えば810z、W系など)の反応が起きやすくなシ、
これがPET特性がばらつく原因の1つとして考えられ
ていること、イオン打込みでの00形のキャリア濃度は
〜1018コ/cm”以上にできないため、オーミック
接触抵抗、直列抵抗を極限まで小さくできない、などの
欠点が考えられていた。
In this case, directly below the gate electrode 20 and δ1. δ2 region (
This is because the area (formed when the photoresist pattern is left on the gate electrode 2o) is kept as an n-type, and the 09 type is processed by the self-alignment. Next, in order to activate the ion-implanted 3i in GaAs, 8
000 or more is applied. In this case, the W-based gate electrode 2o needs to maintain Schottky characteristics. Next, add the ALIGe-based source/drain electrodes 30.31 to 09
The device is fabricated based on the process formed on Shape 15. This PET requires a process that processes at a maximum temperature of 5ooc, so the type of gate electrode material is limited to W-based materials.
For example, 810z, W series, etc.) reactions are likely to occur.
This is thought to be one of the causes of variations in PET properties, and because the carrier concentration of type 00 during ion implantation cannot be higher than ~1018 co/cm, ohmic contact resistance and series resistance cannot be minimized. disadvantages were considered.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、従来のセル7アラインプロセスで80
0Cの高温処理を必要とする工程にかわって、より低温
で処理できる製造法を提供し、新構造の半導体装置を提
供することにある。
It is an object of the present invention to
The object of the present invention is to provide a manufacturing method that allows processing at a lower temperature instead of a process requiring high temperature processing at 0C, and to provide a semiconductor device with a new structure.

〔発明の概要〕[Summary of the invention]

上記目的を達成するための本発明の構成は、PETの能
動層上に高濃度からなるオーミック電極領域を選択的に
設けることにあろう また、ゲート電極を形成後に、従来はn0形領域をイオ
ン打込みし、アニールして形成していた工程にかわって
、本発明ではn0形領域を結晶成長によって形成する工
程を特徴とする。結晶成長によるn9形層はDMVPE
法では成長温度の低温化限界として低圧CVD技術を用
いて550〜600Cであり、MBE法では500〜6
00Cである。またこの時のn形キャリア濃度としてS
e(セレン)やS(いおう)を用いることにより10′
8〜5×10′9/crn3の範囲で制御できる。
The structure of the present invention for achieving the above object is to selectively provide a high concentration ohmic electrode region on the active layer of PET.Furthermore, after forming the gate electrode, conventionally the n0 type region is ionized. In place of the step of forming the n0 type region by implantation and annealing, the present invention is characterized by a step of forming the n0 type region by crystal growth. The n9 type layer formed by crystal growth is DMVPE.
In the MBE method, the growth temperature limit is 550 to 600C using low pressure CVD technology, and 500 to 600C in the MBE method.
It is 00C. Also, the n-type carrier concentration at this time is S
10' by using e (selenium) and S (sulfur)
It can be controlled within the range of 8 to 5×10'9/crn3.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明を実施例によって説明する。第2図は本発
明による一実施例のGaAs−FETの断面図でおる。
Hereinafter, the present invention will be explained by examples. FIG. 2 is a sectional view of a GaAs-FET according to an embodiment of the present invention.

半絶縁性G a A s基板結晶10に選択的にn形G
aAs11を形成し、同領域上にゲート電極20を加工
する。絶縁材41.42を形成した後に、結晶成長によ
って01形層12を形成し、ソース・ドレイン電極30
.31を形成した主工程によ!D、FETは構成されて
いる。ゲート電極20の側面にある絶縁材42はn0形
層とゲート電極20の接触をさけるためにある。このF
ETの製造方法を図3により説明する。半絶縁性基板結
晶10にレジストパターン1を加工し、Siイオンを5
0kVで〜10I!コ/cm”打込む。つづいてレジス
トを除去したあと、800Cで結晶を加熱してn形層1
1を形成する(a)。W−Siメタルをスパッタで被着
したのち、レジストノ(ターンでケート電極20を加工
し、全面をCVIll18i(h膜3000人で覆い、
のちレジストパターン2を加工する(b)。つづいてC
F4系ガスを用いた異方性のプラズマエツチングによっ
て3+0.膜を加工して、n形層110表面一部を露出
する。この場合ゲート電極20の側面には5i02膜4
2が残る(C)。レジスト2を除去したのち、n0形G
 a A s層12を〜600CのOM (Organ
ic Metal )−VPE (Voper Pha
seli:pitaxy )法にヨッテ〜063μmの
厚さに結晶成長する。この成長では、8i02やw−s
iヅメタル上はGaAsが成長できず、n形GaAs1
l、hのみに〜1×10I9コ/cm”の高濃度をもつ
n3形層12がえられる(di、つぎKCVD−8i 
02 膜を”3000人被着したのち、リフトオフ法に
よってAuGe系のオーミックメタルを形成し、ソース
・ドレイン電極30.31をを加工する。これによって
GaAs−FETの新構造がえられる。この構造ではゲ
ート電極20とソース・ドレイン領域となるn1形G 
a A 8層12がセル7アラインされ、第1図で示し
たδl、δ、が5i(h膜42の0.3μmで短間隔に
形成できた。
Selectively injecting n-type G into the semi-insulating GaAs substrate crystal 10
AAs 11 is formed, and a gate electrode 20 is processed on the same region. After forming the insulating materials 41 and 42, the 01 type layer 12 is formed by crystal growth, and the source/drain electrodes 30 are formed.
.. By the main process that formed 31! D. FET is configured. The insulating material 42 on the side surface of the gate electrode 20 is provided to avoid contact between the n0 type layer and the gate electrode 20. This F
The method for manufacturing ET will be explained with reference to FIG. A resist pattern 1 is processed on a semi-insulating substrate crystal 10, and 5 Si ions are applied.
~10I at 0kV! After removing the resist, heat the crystal at 800C to form the n-type layer 1.
1 (a). After depositing W-Si metal by sputtering, the gate electrode 20 is processed using a resist layer (turn), and the entire surface is covered with a CVIll18i (h film of 3,000 layers).
Afterwards, the resist pattern 2 is processed (b). Continued by C
3+0. by anisotropic plasma etching using F4 gas. The film is processed to expose a portion of the surface of the n-type layer 110. In this case, a 5i02 film 4 is formed on the side surface of the gate electrode 20.
2 remains (C). After removing resist 2, n0 type G
aAs layer 12 is OM (Organ) at ~600C
ic Metal )-VPE (Voper Pha
Crystals are grown to a thickness of ~063 μm using the seli: pitaxy) method. With this growth, 8i02 and w-s
GaAs cannot grow on izu metal, and n-type GaAs1
An n3 type layer 12 with a high concentration of ~1×10I9/cm” is obtained only in l and h (di, then KCVD-8i
02 After 3,000 layers of film are deposited, an AuGe-based ohmic metal is formed using the lift-off method, and the source/drain electrodes 30 and 31 are processed. As a result, a new structure of GaAs-FET is obtained. n1 type G which becomes the gate electrode 20 and the source/drain region
a A The eight layers 12 were aligned in the cell 7, and δl and δ shown in FIG. 1 could be formed at short intervals of 5i (h at 0.3 μm of the film 42).

この発明による構造では(1)n’形層の形成温度が〜
600Cと低いので、ゲート電極20と(jaAsの反
応がなくショットキ接合の性質は800Cで処理するも
のよ多安定である。(2) rl ”形が高濃度で厚く
形成できるので、オーミック接触抵抗とn0形Q a 
A 8直列抵抗は小さい(3)第1図と第2図を比較し
て明らかなように、本発明による構造の方がIC,LS
I化にとってより平坦化でき、集積化しやすい、などの
特徴がある。OM−VPE法によるGaAs成長層はウ
ェーハ内の厚さ、濃度の均一性がよく、イオン打込み技
術と対等の制御性がある。
In the structure according to this invention, (1) the formation temperature of the n'-type layer is ~
Since the temperature is as low as 600C, there is no reaction between the gate electrode 20 (jaAs) and the properties of the Schottky junction are more stable than those processed at 800C. n0 type Q a
A 8 Series resistance is small (3) As is clear from comparing Figures 1 and 2, the structure according to the present invention is better for ICs and LSs.
It has the characteristics that it can be made more flat for integrated circuits and easier to integrate. The GaAs grown layer by the OM-VPE method has good uniformity in thickness and concentration within the wafer, and has controllability comparable to that of ion implantation technology.

本発明の他の実施例を第4図で説明する。半絶縁性Ga
As1 Oの一部にn形層11を形成し、つづいてWメ
タルのゲート電極21を加工する。不要のG a A 
s表面は8102膜45で被覆し、OM−VPEにより
n3形層12を気相成長させる(a)。
Another embodiment of the invention will be described with reference to FIG. Semi-insulating Ga
An n-type layer 11 is formed on a part of As1O, and then a gate electrode 21 of W metal is processed. Unnecessary G a A
The s surface is covered with an 8102 film 45, and the n3 type layer 12 is grown in vapor phase by OM-VPE (a).

この後、WがドライエッチできるC F a系ガスを用
いたプラズマエッチ装置により試料表面を削るとゲート
電極と00形層12が間隔100,101によって両者
は絶縁されてFETが形成される(b)。
After that, when the sample surface is etched using a plasma etching device using CFa-based gas that can dry-etch W, the gate electrode and the 00 type layer 12 are insulated by the gaps 100 and 101, forming an FET (b ).

この場合、両者を絶縁する手段としてあらかじめメタル
ゲートの表面に酸化膜の薄膜を形成したりn0形層Ga
Asを約0.1μm程度ウェットエッチすることも可能
である。
In this case, as a means to insulate the two, a thin oxide film may be formed on the surface of the metal gate in advance, or an n0 type layer Ga
It is also possible to wet-etch As by about 0.1 μm.

本発明のさらに他の実施例を第5図で説明する。Still another embodiment of the present invention will be described with reference to FIG.

半絶縁性GaAs1Oの一部にn形層11を形成し、M
o−5tのゲート電極22とこの上面に8jOzの絶縁
膜2−5を形成する。不用のG a A s表面を8i
0z膜46で被覆して、OM−VPEによりn1形層1
2を形成し、MO・Siをドライエッチにより200,
201のサイドエッチを施す(a)。
An n-type layer 11 is formed on a part of semi-insulating GaAs1O, and M
A gate electrode 22 of o-5t and an insulating film 2-5 of 8jOz are formed on its upper surface. 8i of unnecessary G a As surface
The n1 type layer 1 is coated with a 0z film 46 and formed by OM-VPE.
2 and dry etched MO/Si to 200,
Perform side etching of 201 (a).

このあとレジストのパターンを利用してA u Q e
系のオーミックメタル35,36.37をリフトオフで
形成しくb)、ゲート電極上についたメタル36を、絶
縁膜25の除去と共に取シ去って、ソース・ドレイン電
極35.37を形成する。この上に5loz膜47を被
覆してFETがえられる(C)。ここで述べた構造では
ゲート電極22に対して、n0形層12とソース・ドレ
イン電極35.37が共にセルファラインできる特長を
有する。
After this, using the resist pattern, A u Q e
The ohmic metals 35, 36, 37 of the system are formed by lift-off b), and the metal 36 on the gate electrode is removed together with the removal of the insulating film 25, to form source/drain electrodes 35, 37. A FET is obtained by covering this with a 5loz film 47 (C). The structure described here has the feature that both the n0 type layer 12 and the source/drain electrodes 35 and 37 can be self-aligned with respect to the gate electrode 22.

〔発明の効果〕〔Effect of the invention〕

本発明の製法によって、ゲート電極の材質を選定できる
領域が広がった。つまり従来、800Cのアニールに対
してはWとW−St金合金けが使用できるメタルでちっ
たが、処理温度を600C近辺まで下げることで例えば
MO系メタルやW。
The manufacturing method of the present invention has expanded the range in which the material of the gate electrode can be selected. In other words, conventionally, metals that can be used for annealing at 800C are W and W-St gold alloy, but by lowering the processing temperature to around 600C, for example, MO-based metal or W.

MOをベースとしてpt、Auなどの低抵抗メタルの積
層膜でもプロセスに耐えて使える。これによって、ゲー
ト電極の低抵抗化を達成することができる。また高濃度
の09形層であるため、従来のAUGe合金系のオーミ
ック電極材にかわって、Niなど低マロイ温度で処理で
きるプロセスに改良できる特徴を有する。
MO-based laminated films of low-resistance metals such as PT and Au can withstand the process and can be used. This makes it possible to reduce the resistance of the gate electrode. Moreover, since it is a highly concentrated 09 type layer, it has the characteristic that it can be improved to a process that can be processed at a low malloy temperature, such as Ni, in place of the conventional AUGe alloy-based ohmic electrode material.

n0形GaAs層の形成法は以上の実施例で述べた他に
MB E (Mo1ecul、Ir BeaW Epi
taxy )、L P E (Liquid Phas
e Epitaxy)法でsつても本発明の趣旨を逸脱
するものではない。
In addition to the method described in the above embodiments, the method for forming the n0 type GaAs layer may be
taxi), L P E (Liquid Phas
(Epitaxy) method does not depart from the spirit of the present invention.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のGaAs−FETの断面図、第2図は本
発明の一実施例としてのFETの断面図、第3〜5図は
本発明の他の実施例としての製造工程を示す概略図であ
る。 10 ・・・半絶縁性GaAS、11−・n形GaAs
、 12・・・結晶成長で形成したn°形GaAs、2
θ・・・ゲート電極、40,41.42・・・絶縁材、
30.31第 1 図 第 2図 第3 日 2 第4− 図 第5 図 第1頁の続き 0発 明 者 柳 沢 寛 国分寺布[央研究所1 粗砥ケ窪1丁目28幡地 株式会社日立製作所中勺
Fig. 1 is a cross-sectional view of a conventional GaAs-FET, Fig. 2 is a cross-sectional view of an FET as an embodiment of the present invention, and Figs. 3 to 5 are schematic diagrams showing manufacturing steps as other embodiments of the present invention. It is a diagram. 10...Semi-insulating GaAS, 11-・n-type GaAs
, 12...n° type GaAs formed by crystal growth, 2
θ...gate electrode, 40, 41.42...insulating material,
30.31 Figure 1 Figure 2 Figure 3 Day 2 4- Figure 5 Continuation of Figure 1 page 0 Inventor Hiroshi Yanagisawa Kokubunjifu [Central Research Institute 1 Kotogakubo 1-28 Hatachi Co., Ltd. Hitachi, Ltd.

Claims (1)

【特許請求の範囲】 1、ゲート、ソース、ドレイン領域からなるFETにお
いて能動層なる層上に高濃度からなるオーミック電極領
域層を選択的に設けたことを特徴とする半導体装置。 2、ゲート電極を有する半導体結晶と、少なくとも上記
ゲート電極が結晶成長上の温度にショットキ特性が保持
される材質で構成され、ゲート電極を結晶成長時のマス
クとしてこの近傍に高濃度のキャリアをもつ半導体結晶
層を設けた工程を基本としてなる半導体装置の製法。
[Scope of Claims] 1. A semiconductor device characterized in that a highly doped ohmic electrode region layer is selectively provided on an active layer of an FET consisting of a gate, source, and drain region. 2. A semiconductor crystal having a gate electrode, and at least the gate electrode made of a material that maintains Schottky characteristics at the temperature of crystal growth, and having a high concentration of carriers in the vicinity of the gate electrode as a mask during crystal growth. A method for manufacturing semiconductor devices that is based on a process in which a semiconductor crystal layer is provided.
JP58213970A 1983-11-16 1983-11-16 Semiconductor device manufacturing method Expired - Lifetime JP2624642B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58213970A JP2624642B2 (en) 1983-11-16 1983-11-16 Semiconductor device manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58213970A JP2624642B2 (en) 1983-11-16 1983-11-16 Semiconductor device manufacturing method

Publications (2)

Publication Number Publication Date
JPS60107867A true JPS60107867A (en) 1985-06-13
JP2624642B2 JP2624642B2 (en) 1997-06-25

Family

ID=16648074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58213970A Expired - Lifetime JP2624642B2 (en) 1983-11-16 1983-11-16 Semiconductor device manufacturing method

Country Status (1)

Country Link
JP (1) JP2624642B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6230382A (en) * 1985-04-12 1987-02-09 Nec Corp Manufacture of semiconductor device
JPS62200771A (en) * 1986-02-28 1987-09-04 Hitachi Ltd Semiconductor device and manufacture thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58145162A (en) * 1982-02-23 1983-08-29 Nec Corp Manufacture of semiconductor device
JPS58213970A (en) * 1982-06-05 1983-12-13 日産自動車株式会社 Check link support structure of door for automobile

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58145162A (en) * 1982-02-23 1983-08-29 Nec Corp Manufacture of semiconductor device
JPS58213970A (en) * 1982-06-05 1983-12-13 日産自動車株式会社 Check link support structure of door for automobile

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6230382A (en) * 1985-04-12 1987-02-09 Nec Corp Manufacture of semiconductor device
JPS62200771A (en) * 1986-02-28 1987-09-04 Hitachi Ltd Semiconductor device and manufacture thereof

Also Published As

Publication number Publication date
JP2624642B2 (en) 1997-06-25

Similar Documents

Publication Publication Date Title
US4711858A (en) Method of fabricating a self-aligned metal-semiconductor FET having an insulator spacer
US4379005A (en) Semiconductor device fabrication
EP0244840B1 (en) Method of manufacturing mes fet
JPH03173442A (en) Junction type fet and its manu- facture
JPS60107867A (en) Semiconductor device and manufacture thereof
US5350702A (en) Method for fabricating a dual-gate metal-semiconductor field effect transistor
JPS59188978A (en) Manufacture of schottky gate type field effect transistor
US4757358A (en) MESFET semiconductor device fabrication with same metal contacting source, drain and gate regions
JPS6318348B2 (en)
JPH0969611A (en) Semiconductor device and its manufacturing method
JPS59222966A (en) Semiconductor device
JPH0219622B2 (en)
JPH035658B2 (en)
JPS59127871A (en) Manufacture of semiconductor device
US5021363A (en) Method of selectively producing conductive members on a semiconductor surface
JPS59218778A (en) Semiconductor device and manufacture thereof
JPS6332273B2 (en)
JPH0563946B2 (en)
JPS6342177A (en) Manufacture of semiconductor element
JPS6143443A (en) Manufacture of semiconductor device
JPS59193070A (en) Manufacture of schottky gate field effect transistor
JPH04217329A (en) Fabrication of field effect transistor
JPH0737905A (en) Manufacture of semiconductor device
KR960000384B1 (en) Making method of hbt using emitter re-growth
JPH04120779A (en) Manufacture of superconducting transistor