JPS60107825A - Manufacture of amorphous silicon - Google Patents

Manufacture of amorphous silicon

Info

Publication number
JPS60107825A
JPS60107825A JP58216868A JP21686883A JPS60107825A JP S60107825 A JPS60107825 A JP S60107825A JP 58216868 A JP58216868 A JP 58216868A JP 21686883 A JP21686883 A JP 21686883A JP S60107825 A JPS60107825 A JP S60107825A
Authority
JP
Japan
Prior art keywords
silane
magnetic field
gas
pipe
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58216868A
Other languages
Japanese (ja)
Inventor
Tsutomu Otake
大竹 勉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Suwa Seikosha KK
Original Assignee
Seiko Epson Corp
Suwa Seikosha KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp, Suwa Seikosha KK filed Critical Seiko Epson Corp
Priority to JP58216868A priority Critical patent/JPS60107825A/en
Publication of JPS60107825A publication Critical patent/JPS60107825A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Photoreceptors In Electrophotography (AREA)
  • Silicon Compounds (AREA)
  • Chemical Vapour Deposition (AREA)
  • Photovoltaic Devices (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To improve efficiency on the utilization of silane by applying a magnetic field to a substrate at a right angle when amorphous Si is manufactured through the plasma CVD of silane. CONSTITUTION:Monosilane 21a diluted by H2 and a doping gas 21b are introduced conventionally into a core pipe 30, the pipe 30 is evacuated by pumps 32, 33, the inside of the pipe 30 is heated 26, and high frequency is applied to two sets of electrodes connected on every other electrode by a high-frequency oscillator 31. A magnetic field is applied vertically to the surfaces of substrates 34 by a coil 35, and a diffusion in the direction of a pipe wall of ions and electrons generated by plasma discharge is prevented. Accordingly, plasma is hardly dispersed, the speed of film formation is increased by 1.3-1.5 times, and efficiency on the utilization of expensive silane is improved by 1.3-1.5 times.

Description

【発明の詳細な説明】 本発明はシランのプラズマOVDKよるアモルファスシ
リコン(以下ではα−8iとかく)の製造において、基
板に対しilj角方向に磁界を加えることにより、シラ
ンガスの利用効率を高め六α−Biの製造方向に関する
Detailed Description of the Invention The present invention improves the utilization efficiency of silane gas by applying a magnetic field to the substrate in the ilj angle direction in the production of amorphous silicon (hereinafter referred to as α-8i) using a silane plasma OVDK. - Concerning the manufacturing direction of Bi.

α−Biの作製方法には、熱OVD、蒸着、光CVD、
あるいはプラズマCVD等がある。その中で基板の温度
が低く、成膜速度が早い等の理由からプラズマOVDが
注目を集めている。
α-Bi production methods include thermal OVD, vapor deposition, photo-CVD,
Alternatively, there is plasma CVD, etc. Among these, plasma OVD is attracting attention because of its low substrate temperature and fast film formation rate.

従来のプラズマOVD法について、ホットウォール型の
対向電極タイプの装置により、その製造方法を説明する
Regarding the conventional plasma OVD method, a manufacturing method thereof will be explained using a hot wall type counter electrode type device.

第1図は従来のホットウォールタイプのσ、−si製造
装置である。同図において1αと1bけガスボンベで前
者はシラン、後者はドーピングガスを充填して用いる。
FIG. 1 shows a conventional hot wall type σ, -si manufacturing apparatus. In the figure, gas cylinders 1α and 1b are used, the former filled with silane and the latter filled with doping gas.

2αと2bけ調圧器、5aと3− bnマスフローコントロー5 +4a ト4 b Td
 /< kプ、5α〜5Gはガスの配管、6け電気炉、
7はガスの吹き出し口、8けW榛、9けf!極固定棒、
10は炉芯管、11け高周波発擾器、12はメカニカル
ブースタポンプ、13け油回転ポンプである。なお、基
板14けW8Bの表面に固定する。
2α and 2b pressure regulator, 5a and 3-bn mass flow controller 5 +4a and 4b Td
/<kp, 5α~5G are gas piping, 6-piece electric furnace,
7 is the gas outlet, 8 is W, 9 is F! pole fixed rod,
10 is a furnace core tube, 11 high frequency generators, 12 are mechanical booster pumps, and 13 oil rotary pumps. Note that 14 substrates are fixed to the surface of W8B.

この装置を用いて次のような方法でn、−Biを作製す
る。メカニカルブースタポンプ12と油回転ポンプ13
によって炉芯管10の内部と排気しつつ、電気炉6によ
って炉芯管内部を200〜250’Cに加熱する。
Using this apparatus, n,-Bi is produced by the following method. Mechanical booster pump 12 and oil rotary pump 13
While exhausting the inside of the furnace core tube 10, the electric furnace 6 heats the inside of the furnace core tube to 200 to 250'C.

一定の温度に達したところで、ボンベ1αからシランガ
スを流す。シランは通常、モノシラン(PiH4)を水
素、またはヘリウムで希釈したものを用いる。このシラ
ンガスは調圧器2αで約I Kg/(m 2K 圧力f
lll it’ll L fc iスをマスフローコン
トローラ3 a、で200〜300 cc/ln、in
、に流量制御して配管5aと5Cを通して流す。
When a certain temperature is reached, silane gas is introduced from cylinder 1α. The silane used is usually monosilane (PiH4) diluted with hydrogen or helium. This silane gas is applied to the pressure regulator 2α at approximately I Kg/(m 2K pressure f
lll it'll L fc i with mass flow controller 3a, 200-300 cc/ln, in
, and flow through the pipes 5a and 5C with flow rate control.

a−BiKドーピングを行なう場合には、ボンベ1bか
らドーピングガス、たとえばジボランあるいけホスヒン
の水素ヤたはヘリウムで希釈したガス’r 、 tiP
J圧器2 b 、マスフローコントローラ5b、配管5
bを;ir+ Lで流すこれらのガスは、ガスの吹出し
L17から炉芯管内に導入される。
When carrying out a-BiK doping, a doping gas such as diborane or phosphin diluted with hydrogen or helium is added from the cylinder 1b.
J pressure device 2b, mass flow controller 5b, piping 5
These gases flowing at b;ir+L are introduced into the furnace core tube from the gas outlet L17.

一方、N、I@8は一つおきの電接が同電位になるよう
に2絹のブロックに分けてあり、2絹のブロック間に高
周波発振器11によって高周波が印加さft、各電(面
間でプラズマ放電が発生する。
On the other hand, N, I@8 is divided into two silk blocks so that every other electrical connection has the same potential, and a high frequency is applied between the two silk blocks by a high frequency oscillator 11. A plasma discharge occurs between the two.

この放?l(Kより電wL表面上の基板14の上に、a
−Bi膜が形成される。未反応のガスはメカニカルブー
スターポンプ12と油回転ポンプ13によって炉芯管外
に排気される。
This release? l (from K on the substrate 14 on the surface of wL, a
-Bi film is formed. Unreacted gas is exhausted to the outside of the furnace core tube by a mechanical booster pump 12 and an oil rotary pump 13.

この方法によってa −Sjの成膜を行ブc5場合、シ
ランの利用効率は10チ以下であり、成膜速度がたかだ
か15μ%/Hで非常に遅い。まにガスの利用効率が悪
いことは高価なシランガスを使う点で非常に不利である
When a-Sj film is formed by this method, the silane utilization efficiency is less than 10%, and the film-forming rate is very slow, at most 15 μ%/H. The low utilization efficiency of silane gas is very disadvantageous in terms of using expensive silane gas.

本発明はかかる欠点を除去したものであって、その目的
とするところはシランガスの利用効率を上げることにあ
る。。
The present invention eliminates these drawbacks, and its purpose is to improve the efficiency of using silane gas. .

本発明の詳細については実施例をもって説明する、 実施例1 第2図は本発明の製造に用いる装置である。第1図に示
した従来の装置と大たく異なる点け、炉芯管の周囲に磁
場発生用のコイルを巻いたことである。その他の部分に
ついては従来の装置第1図とかわりはない。すなわち、
第2図において、21αと21bはガスボンベで前者は
シラン、後者はドーピングガスを充填して用いる。
The details of the present invention will be explained with reference to examples. Example 1 FIG. 2 shows an apparatus used for manufacturing the present invention. The main difference from the conventional device shown in FIG. 1 is that a coil for generating a magnetic field is wound around the furnace core tube. Other parts are the same as the conventional device shown in FIG. That is,
In FIG. 2, 21α and 21b are gas cylinders, the former filled with silane and the latter filled with doping gas.

22’Qと22bけ調圧器、25aと25bけマスフロ
ーコントローラ、24αと24bはバルブ、25α〜2
5cはガスの配管、26け電気炉、27はガスの吹き出
し口、28け電価、29は1R極固定棒、30C炉芯管
、31は高周波発振器、32、はメカニカルブースター
ポンプ、33け油回転ポンプ、34は基板である。さら
に35け磁場発生用のコイルである。
22'Q and 22b pressure regulator, 25a and 25b mass flow controller, 24α and 24b are valves, 25α~2
5c is gas piping, 26 electric furnace, 27 is gas outlet, 28 is electric power, 29 is 1R pole fixed rod, 30C furnace core tube, 31 is high frequency oscillator, 32 is mechanical booster pump, 33 is oil The rotary pump 34 is a substrate. Furthermore, there is a coil for generating 35 magnetic fields.

α−8i膜の製造方法については、装置の操作は従来と
大きくかわるところはなく、シラン、fcとえば水素で
希釈したモノシラン20係のガスボンベ21(Zと、ド
ーピングが必要な場合にはドーピングガスのボンベ21
 /Jから配管25cを通して炉芯管内にガスを導入す
る。一方、メカニカルブースターポンプ52と油回転ポ
ンプ33とによって炉芯管内の圧力が05〜1.5 T
Orrになる′ように排気を続ける。
Regarding the manufacturing method of the α-8i film, the operation of the equipment is not much different from the conventional method. cylinder 21
Gas is introduced into the furnace core tube from /J through piping 25c. On the other hand, the mechanical booster pump 52 and the oil rotary pump 33 reduce the pressure inside the furnace core tube to 05 to 1.5 T.
Continue evacuation until the temperature becomes Orr.

同時に71j 5炉26VCよって、炉芯管内を200
℃に加熱し、高周波発振器31によって、一つおきに接
続されている2組の電極に高周波を印加する。
At the same time, 71j 5 furnace 26VC allows 200
℃, and a high frequency oscillator 31 applies high frequency to two sets of electrodes connected every other pair.

以上までの操作は従来の操作と同じセある。The operations described above are the same as conventional operations.

本発明では以上の操作に加え、炉芯管周囲に巻いたコイ
ル35によって、基板34の面に対して垂直方向に磁界
を加える。磁界の強さは炉芯管の中心軸上で200〜5
00ガウスである。この磁界により、電極間のプラズマ
放電によって生じたイオンや電子が炉芯管の壁方向に向
って発散するのが妨げられる。すなわち、荷電粒子が炉
芯管の壁方向に向おうとすると、磁界との作用で標線運
動を行ない電極間へとパされる。このようにして、プラ
ズマの分散が少なく成膜速度が上がる。実験結果では、
他の条件をまったく同じにしに場合、磁界をかけない場
合に比べ、磁界をかけることにより成膜速度1d1.3
〜1.5倍となる。すなわち、シランガスの利用効率は
13〜15倍となる。
In the present invention, in addition to the above operations, a magnetic field is applied in a direction perpendicular to the surface of the substrate 34 using the coil 35 wound around the furnace core tube. The strength of the magnetic field is 200~5 on the central axis of the furnace core tube.
00 Gauss. This magnetic field prevents ions and electrons generated by the plasma discharge between the electrodes from dispersing toward the wall of the furnace core tube. That is, when charged particles try to move toward the wall of the furnace core tube, they perform a marked line movement due to the action of the magnetic field and are pushed between the electrodes. In this way, plasma dispersion is reduced and the deposition rate is increased. In the experimental results,
With all other conditions being the same, applying a magnetic field increases the deposition rate by 1d1.3 compared to not applying a magnetic field.
~1.5 times. That is, the utilization efficiency of silane gas is 13 to 15 times higher.

実施例2 ガス系、排気系、ならびに加熱系′は第1図の従来の装
置と同じであるが、’1Itsが第3図に示す構造とな
っている。すなわち、第3図は、一つおきに接続されf
c2組の7バ俸のうち1枚を示したものである。
Embodiment 2 The gas system, exhaust system, and heating system' are the same as the conventional apparatus shown in FIG. 1, but '1Its has the structure shown in FIG. 3. That is, in Fig. 3, every other unit is connected f
This shows one of the 7 bars of group c2.

同図において、41け高周波電極、42は基板固定用の
ピン、43は基板、44a、と44bけ電1に連結棒で
あり、いずれもN極f1枚おきに連結し、2絹のプロ、
ツクを形成している。45は永久磁石、a6.zと46
b1−を電(ゲと磁石との固定用絶縁物である。
In the figure, 41 high-frequency electrodes, 42 are pins for fixing the board, 43 are the board, 44a and 44b are connecting rods to the energizer 1, all of which are connected to every other N pole f, 2 silk professional electrodes,
It forms a tsuku. 45 is a permanent magnet, a6. z and 46
b1- is an insulator for fixing the wire and magnet.

磁石45け、アルニコ、焼結等の200℃の温度に耐憂
られろものを用い、リングの表面と裏面がそれぞれN、
5ifi(ま7’(はS、N)になるように磁化する。
45 magnets, alnico, sintered, or other materials that can withstand temperatures of 200°C are used, and the front and back sides of the ring are N, respectively.
5ifi (ma 7' (is S, N).

このような電極と磁石を面が対向するように並べること
により、磁界の方向は炉芯管の中心線の方向となる。し
たがって、実施例1に述べたことと同じ原理により成膜
速度を上げることがでfAた。成膜速度1d’J施例1
とほぼ同じで、従来に比べると13〜14倍であった。
By arranging such electrodes and magnets so that their surfaces face each other, the direction of the magnetic field becomes the direction of the center line of the furnace core tube. Therefore, it was possible to increase the film formation rate using the same principle as described in Example 1. Film formation rate 1d'J Example 1
It was almost the same, 13 to 14 times as much as before.

実施例1および実施例2で述べたように本発明はガスの
利用効率を従来の16〜15倍に高めたものであって、
シランが効果なガスであるため価値の大きいものである
As described in Examples 1 and 2, the present invention increases the gas utilization efficiency by 16 to 15 times compared to the conventional method,
Silane is of great value because it is an effective gas.

また本発明はa、−Biを用いるデバイス、すなわち太
陽電池、光センサ−、薄膜トランジスタ等応用範囲は峠
わめて広い。
Furthermore, the present invention has a very wide range of applications, including devices using a, -Bi, such as solar cells, optical sensors, and thin film transistors.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のホットウォールタイプのa−si製造装
置、第2図は本発明の製造に用いる装置である。また、
第3図は実施例2で述べfc電極の構造を示している。 21α〜21b・・)・・・ガスボンベ22α〜22b
・・・・・・調圧器 23α〜23b・・・・・マスフローコントローラ24
α〜24b・・・・・・パルプ 25α〜25C・・・・・・ガスの配管26・・・・・
・電気炉 27・・・・・・ガスの吹き出し口 28・・・・・・電極 29・・・・・・電極固足棒 50・・・・・・炉芯管 31 ・・・・・・高周波発振器 62 ・・・・・・メカニカルブースターポンプ33・
・・・・・油回転ポンプ 34・・・・・・基板 35・・・・・・磁場発生用のコイル 41 ・・・・・・高周波′1■極 42・・・・・・基板固定用のピン 43・・・・・・基板 4a□〜44b・・・・・・電極連結棒45・・・・・
・永久磁石 46a〜46b・・・・・・固定用絶縁物以 上 出願人 株式会社 撤訪精工舎 代理人 弁理士 最上 務 汀1図
FIG. 1 shows a conventional hot wall type A-SI manufacturing apparatus, and FIG. 2 shows an apparatus used for manufacturing according to the present invention. Also,
FIG. 3 shows the structure of the fc electrode described in Example 2. 21α~21b...)...Gas cylinder 22α~22b
......Pressure regulator 23α to 23b...Mass flow controller 24
α~24b...Pulp 25α~25C...Gas piping 26...
・Electric furnace 27... Gas outlet 28... Electrode 29... Electrode fixing rod 50... Furnace core tube 31... High frequency oscillator 62... Mechanical booster pump 33.
...Oil rotary pump 34...Base 35...Coil 41 for generating magnetic field ...High frequency'1■pole 42...For fixing the board Pin 43... Board 4a□~44b... Electrode connecting rod 45...
・Permanent magnets 46a to 46b...More than fixing insulators Applicant: Heiho Seikosha Co., Ltd. Agent Patent attorney: Mogami Mutei Figure 1

Claims (1)

【特許請求の範囲】 1)シランプラズマ0VDKよるアモルファスシリコン
の製造方法において、基板に対し、直角方向に磁界を加
えたことを特徴とするアモルファスシリコンの製造方法
。 2)永久磁石を用いて磁界を加えることを特徴とする特
許請求の範囲第1項記載のアモルファスシリコンの製造
方法。
[Claims] 1) A method for producing amorphous silicon using silane plasma 0VDK, characterized in that a magnetic field is applied in a direction perpendicular to the substrate. 2) The method for producing amorphous silicon according to claim 1, characterized in that a magnetic field is applied using a permanent magnet.
JP58216868A 1983-11-17 1983-11-17 Manufacture of amorphous silicon Pending JPS60107825A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58216868A JPS60107825A (en) 1983-11-17 1983-11-17 Manufacture of amorphous silicon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58216868A JPS60107825A (en) 1983-11-17 1983-11-17 Manufacture of amorphous silicon

Publications (1)

Publication Number Publication Date
JPS60107825A true JPS60107825A (en) 1985-06-13

Family

ID=16695165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58216868A Pending JPS60107825A (en) 1983-11-17 1983-11-17 Manufacture of amorphous silicon

Country Status (1)

Country Link
JP (1) JPS60107825A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62122218A (en) * 1985-08-23 1987-06-03 テキサス インスツルメンツ インコ−ポレイテツド Plasma riactor
US5214002A (en) * 1989-10-25 1993-05-25 Agency Of Industrial Science And Technology Process for depositing a thermal CVD film of Si or Ge using a hydrogen post-treatment step and an optional hydrogen pre-treatment step

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62122218A (en) * 1985-08-23 1987-06-03 テキサス インスツルメンツ インコ−ポレイテツド Plasma riactor
US5214002A (en) * 1989-10-25 1993-05-25 Agency Of Industrial Science And Technology Process for depositing a thermal CVD film of Si or Ge using a hydrogen post-treatment step and an optional hydrogen pre-treatment step

Similar Documents

Publication Publication Date Title
JP2011530155A5 (en)
US4452828A (en) Production of amorphous silicon film
JP2000058465A (en) Plasma chemical vapor deposition equipment
JPS60107825A (en) Manufacture of amorphous silicon
Yin et al. Piezoelectric nanogenerator with 3D-ZnO micro-thornyballs prepared by chemical vapour deposition
JPH11340150A (en) Plasma chemical evaporation system
JP2626701B2 (en) MIS type field effect semiconductor device
JP4912542B2 (en) Film forming method and film forming apparatus
JPH0420985B2 (en)
JPS6060711A (en) Manufacture of semiconductor film
KR101590679B1 (en) Apparatus for generating dual plasma and method of producing polysilicon using same
JPS60109221A (en) Manufacture of amorphous silicon
TW202405988A (en) Rotary electrical feedthrough integration for process chamber
JPH0543792B2 (en)
JP2004149917A (en) Thin film production apparatus, and thin film production method using the apparatus
JPS6417869A (en) Microwave plasma chemical vapor deposition device
Peng et al. Research on resistance properties of conductive layer materials of microchannel plate film dynode
JPS59227170A (en) Manufacturing device for solar cell
JP2715277B2 (en) Thin film forming equipment
JPS59133364A (en) Electric discharge chemical reaction device
JPH01273A (en) Microwave plasma CVD equipment
JP2573970B2 (en) Semiconductor thin film manufacturing equipment
JPH01270A (en) Microwave plasma CVD equipment
JPS62263236A (en) Formation of amorphous thin film and its system
JPH02148843A (en) Manufacture of semiconductor device