JPS60107511A - Measuring method of straightness - Google Patents

Measuring method of straightness

Info

Publication number
JPS60107511A
JPS60107511A JP21414383A JP21414383A JPS60107511A JP S60107511 A JPS60107511 A JP S60107511A JP 21414383 A JP21414383 A JP 21414383A JP 21414383 A JP21414383 A JP 21414383A JP S60107511 A JPS60107511 A JP S60107511A
Authority
JP
Japan
Prior art keywords
straightness
measurement
measured
detector
guide surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21414383A
Other languages
Japanese (ja)
Other versions
JPH0444928B2 (en
Inventor
Hiroaki Shimazutsu
島筒 博章
Kanji Hayashi
寛治 林
Tsuneo Egawa
庸夫 江川
Kazuo Ideue
井出上 和夫
Masashi Oya
大屋 正志
Tadahisa Miyaguchi
宮口 周久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP21414383A priority Critical patent/JPS60107511A/en
Publication of JPS60107511A publication Critical patent/JPS60107511A/en
Publication of JPH0444928B2 publication Critical patent/JPH0444928B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/30Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring roughness or irregularity of surfaces

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

PURPOSE:To grasp a straightness shape in detail by installing three detectors which measure the distance from an object of measurement on a detector mount base at equal intervals, obtaining a measured value for every movement distance, and obtaining the straightness shape from data obtained by specific arithmetic. CONSTITUTION:Three displacement detectors A, B, and C are arranged on the detector mount base 3, and measured values are obtained at intervals of movement distance l/2 while the detectors are moved as shown by an arrow. Consequently, straightness errors are calculated at measurement objective points (ai) (i=2, 3, 4...) from one measurement data group of data obtained at the measurement objective points (ai) (i=0, 1, 2...). Similarly, straightness errors are obtained at measurement objective points (bi) (i=2, 3, 4...) from one measurement data group at measurement objective points (bi) (i=0, 1, 2...). The straightness shape of the object 1 of measurement is grasped in detail from the straightness errors at couples of measurement objective points.

Description

【発明の詳細な説明】 本発明は、測定対象物の真直度と移動案内面の真直度及
び移動時の縦ゆれム(ピッチング)とを同時に測定しつ
る実用化に供し得る方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a practical method for simultaneously measuring the straightness of an object to be measured, the straightness of a moving guide surface, and pitching during movement.

近年、工作機械に対する高精度化への要求が高まシつつ
ある中で、案内面(摺動面)の真直度管理は重要な課題
の一つとなっておシ、その測定の容易化が望まれている
。従来から行なわれている真直度の測定方法としては、
ストレートエツジ等の基準バーやピアノ線を基準直線と
したシ、あるいはオートコリメータを利用する方法が知
られておシ、最近ではレーザ光による独立光学座標系を
用いた方法も開発されている。
In recent years, with the increasing demand for higher precision in machine tools, the straightness control of guide surfaces (sliding surfaces) has become an important issue, and it is desirable to make its measurement easier. It is rare. The conventional method of measuring straightness is
Methods using a reference bar such as a straight edge, a piano wire as a reference straight line, or an autocollimator are known, and recently a method using an independent optical coordinate system using laser light has also been developed.

ところが、これらの方法ではいずれも、測定作業に相当
な準備と熟練度が璧求され、しかも能率が悪い上に種々
の雑音による悪影響を受け易い久点かあり、現場での実
用化という点で多くの問題を残している。
However, all of these methods require considerable preparation and skill for measurement work, are inefficient, and are susceptible to adverse effects from various noises, making them difficult to put to practical use in the field. Many problems remain.

これらの問題を解決しつる真直度の新しい測定方法とし
て、3台の変位検出器を測定対象物に沿って移動させ、
これら変位検出器による測定値から、逐次測定対象物の
真直度と賀位検出器の移動案内面の真直度とを同時に測
定する方法が本発明者等によシ報告されている。(%願
昭57−1675611’−真直度測定方法」)この先
に出願した「真直度測定方法」(特願昭57−1675
61)はその原理を表わす第1図に示すように、測定対
象物1に沿って設けられた案内面2に沿って移動する検
出器取付台3を設け、この検出器取付台3に測定対象物
1との距離を測定する3個の変位検出器A、B。
As a new method for measuring the straightness of a vine that solves these problems, three displacement detectors are moved along the object to be measured.
The present inventors have reported a method of simultaneously measuring the straightness of the object to be measured and the straightness of the moving guide surface of the position detector from the measured values by these displacement detectors. (% patent application No. 57-1675611' - Straightness measurement method)
61), as shown in FIG. Three displacement detectors A and B measure the distance to object 1.

Cを検出器取付台3の移動方向に等間隔!で設置する。C at equal intervals in the moving direction of the detector mount 3! Install it with.

そして、検出器取付台3を図中矢印方向に移動させなが
ら変位検出器A、B、Cの間隔eと等しい移動距離l毎
に測定対象物1表面との隔υを測定し、その値全それぞ
れDKA。
Then, while moving the detector mounting base 3 in the direction of the arrow in the figure, the distance υ from the surface of the object to be measured 1 is measured every movement distance l that is equal to the distance e between the displacement detectors A, B, and C. DKA respectively.

DKB ’、 DKO(K = 0 、1 、2 、−
 )とする。この時の距離e毎の代表点を用いて測定対
象物1の真直度、案内面2の真直度および検出器取付台
3のピッチングがそれぞれYK 、Xic 、 0K(
K=0.1,2.・・・)で堀わされているとする。
DKB', DKO (K = 0, 1, 2, -
). At this time, using the representative points for each distance e, the straightness of the measuring object 1, the straightness of the guide surface 2, and the pitching of the detector mount 3 are determined as YK, Xic, and 0K, respectively.
K=0.1,2. ...).

尚、検出器取付台3のピッチングは変位検出器Aを基準
として考える。
Incidentally, the pitching of the detector mount 3 is considered with the displacement detector A as a reference.

ここで、第2図に示すように、測定開始位置における案
内面2の真直度tA!’eXo、 1番目の位置のそれ
をXl、1番目の位置における測定対象物1の真直度誤
差をYl、2番目の位置のそれを右とし、測定開始位置
に2ける谷変位検出器A、B、Cの測定値’t DOA
 r poBI I)ooとすると共にに番目の測定位
置における測定値fi?DKA。
Here, as shown in FIG. 2, the straightness tA of the guide surface 2 at the measurement start position! ' e Measured values of B and C't DOA
r poBI I) oo and the measured value fi at the th measurement position? D.K.A.

DKB 、 DKO,K +i番目の位置での測定値を
DK+iA+DK+iB I DK+i0 とすると1
同図から1次式tll (21(31が成立する。
DKB, DKO,K + If the measured value at the i-th position is DK+iA+DK+iB I DK+i0, then 1
From the figure, the linear equation tll (21 (31) holds true.

DKA−YK XK =DOA ・・・・・・・・・ 
・・・(1)DKB Yx+x XK l”θK = 
I)013 yIX o −(21DKOYK+2 X
K 2(1−f)1<=DOOYt Xo −(31ま
た、(2)式および(3)式を変形すると次式(4)が
得られ、る。
DKA-YK XK = DOA ・・・・・・・・・
...(1) DKB Yx+x XK l"θK =
I) 013 yIX o −(21DKOYK+2
K2(1-f)1<=DOOYt

2DKB−2+DoB−DKO+DOO=XK+2YK
+I YK+2−2 Y、 +Y、−人 ・・・(4)
また、+11式において、K−に+1.に→に+2とす
ることによって得たYK+□、YK+2を(4)式に代
入すると次式(5)が得られる。
2DKB-2+DoB-DKO+DOO=XK+2YK
+I YK+2-2 Y, +Y, - person...(4)
Also, in the +11 formula, +1. By substituting YK+□ and YK+2 obtained by setting → to +2 into equation (4), the following equation (5) is obtained.

XK+2=26XK+I XK 2DK+IA+DK+
2人+2DKBDKO+DGA 2’D6B+I)o□
+Xo+2Y、Yt ・=(5)さらに、(2)式、(
5)式および(1)式からめたYK+2を用いて次式(
61、(71が得られる。
XK+2=26XK+I XK 2DK+IA+DK+
2 people + 2DKBDKO + DGA 2'D6B + I)o□
+Xo+2Y, Yt ・= (5) Furthermore, equation (2), (
Using YK+2 obtained from equation 5) and equation (1), the following equation (
61, (71 are obtained.

yK+2= XK+2+DK+2A DOA ”・(6
)すなわち、K=0.1,2.・・・の位置での変位検
出器A、B、Cの測定値DKA r DKB + DK
Oを用いて、上椰(5)式、(6)式および(7)式か
ら逐次、測定対象物1の真直度曲線Y、案内面2の真直
度曲線Xおよび検出器取付台3のピッチングθを算出す
ることができるのである。
yK+2=XK+2+DK+2A DOA”・(6
) That is, K=0.1, 2. Measured values of displacement detectors A, B, and C at positions DKA r DKB + DK
Using O, the straightness curve Y of the measuring object 1, the straightness curve X of the guide surface 2, and the pitching of the detector mount 3 are calculated sequentially from the above equations (5), (6), and (7). Therefore, θ can be calculated.

このように本方法によれば、検出器取付台3が案内面に
沿って移動して行く場合の検出器取付台3の浮き沈み(
X直度変化)のみtらず、前後方向の縦ゆれ(ピッチン
グ)の影響をも考慮した高精度の測定が可能となるので
ある。
In this way, according to the present method, the rise and fall of the detector mount 3 when the detector mount 3 moves along the guide surface (
This makes it possible to perform highly accurate measurements that take into account not only the influence of longitudinal fluctuations (pitching) in the longitudinal direction, but also the effects of pitching in the longitudinal direction.

尚、本例では測定対象物1が静止し、検出器取付台3が
移動する場合について説明したが、逆に検出器取付台3
が静止し、測定対象物1が移動する場合にも上記(5)
式、(6)式および(7)式を適用することができる。
In this example, the case where the object to be measured 1 is stationary and the detector mount 3 is moved is explained, but conversely, the detector mount 3 is moved.
The above (5) also applies when the measurement object 1 is moving and the object 1 is stationary.
Equations (6) and (7) can be applied.

次に、具体的な計算法について説明する。上記(5)式
、(6)式および(7)式かられかるように、(5)式
からめたXK(K=2 、3 、4・・・)を用いてY
Kが算出され、それらの値からピッチングθKがめられ
る。そこで、この(51式の具体的適用法について説明
する。
Next, a specific calculation method will be explained. As seen from the above equations (5), (6) and (7), using XK (K=2, 3, 4...) obtained from equation (5), Y
K is calculated, and pitching θK is determined from these values. Therefore, a specific application method of this formula (51) will be explained.

(5)式において、為は測定開始位置での真直度誤差で
、おり、DOA + DOB r I)ooはいずれも
測定開始位置での変位量測定値である。したがって、各
変位検出器A、B、Cの初期設定値を0とすれば、XO
= DQA=DOB=DOO= 0と仮定することがで
きる。
In Equation (5), is the straightness error at the measurement start position, and DOA + DOBr I)oo are both displacement measurement values at the measurement start position. Therefore, if the initial setting value of each displacement detector A, B, and C is 0, then
= DQA=DOB=DOO=0.

この仮定のもとで、K=0.1,2.・・・、nに対し
てXK+2 は次のようになる。
Under this assumption, K=0.1, 2. ..., XK+2 for n is as follows.

Xt= 2X、−0−2−DIA+D2A+O−0+2
Y、 −Y。
Xt= 2X, -0-2-DIA+D2A+O-0+2
Y, -Y.

ム=2X、−X、−2・D2A+D3A +2 ・’D
I B DI O+2YI Y2Xn+2=2Xn+1
−Xn−2・Dn+1人十Dn+2人+2・DnB−D
o。
M=2X, -X, -2・D2A+D3A +2・'D
I B DI O+2YI Y2Xn+2=2Xn+1
-Xn-2・Dn+1 person 10Dn+2 people+2・DnB-D
o.

+2Y’+ Yz しかし、Xl、 Y、 、 Y、は(5)式および(6
)式の漸化式からはめることはできない値であシ、真直
度曲線Xをめるためには、何んらかの方法で、これらの
値を推定するか、または、その影響分を除去する必要が
ある。
+2Y'+ Yz However, Xl, Y, , Y, are expressed by formula (5) and (6
) cannot be fitted into the recurrence formula of the equation.In order to fit the straightness curve X, these values must be estimated in some way or their influence must be removed There is a need to.

そこで、(51式において、X1=α、 2Y、−Y、
=βとおくと、次式(8)が成立する。
Therefore, (in formula 51, X1=α, 2Y, -Y,
=β, the following equation (8) holds true.

XKSK番目の位置での真直度誤差(真の値)CKs 
K番目の位置での真直度誤差(計算値)また、このCK
はα=β=0と仮定して(5)式によって測定値DNA
 I DKI31 DKOからめた値である。
Straightness error (true value) at XKSKth position CKs
Straightness error (calculated value) at the Kth position Also, this CK
is the measured value DNA by equation (5) assuming α = β = 0.
IDKI31 This is the value calculated from DKO.

ここで、真直度誤差を「各測定点での誤差の二乗平均値
が最小になるような仮想直線からのへだたシ」としてと
らえることとすれば上記(8)式を用いて真直度誤差を
次の手順でめることができる。
Here, if we consider the straightness error as ``the deviation from the virtual straight line that minimizes the root mean square value of the error at each measurement point,'' then we can calculate the straightness error using equation (8) above. can be set using the following steps.

(1) K=2 + 3 + 4 + ・= + 1に
対してCKをめておく。
(1) Set CK for K=2 + 3 + 4 + ・= + 1.

(it) (at式で示されたXKの二乗平均値を最小
とするα、βをめる。
(it) (Find α and β that minimize the root mean square value of XK expressed by the at formula.

このび、βは最小2乗法によって比較的簡単に次式+9
1 (IIでめることができる。
Now, β can be calculated relatively easily using the least squares method using the following formula +9
1 (Can be determined in II.

但しと、=Σに’ 、 r、 =Σに−r、 = Σに
4゜K=2に−2K−2 δ1=Σ (K−CK)、δ、;Σ (K″・cK)K
−2に−2 (it+)(91式および鵠式でめたα、βおよび(1
)でめたCKから(8)式によってXKをめる。
However, = Σ', r, = Σ - r, = Σ 4° K = 2 - 2K - 2 δ1 = Σ (K - CK), δ,; Σ (K''・cK)K
-2 to -2 (it+) (α, β and (1
) Calculate XK from CK using equation (8).

このkが各測定点での誤差の二乗平均値が最小となるよ
うな仮想直線からのへだたシとしての真直度誤差となる
This k becomes the straightness error as a deviation from the virtual straight line such that the root mean square value of the error at each measurement point is minimized.

一方、測定対象物1の真直度曲線はxKを(6)式に代
入することによってまり、検出器取付台3のピッチング
はYK 、 XKを(7)式に代入してめることができ
る。
On the other hand, the straightness curve of the object to be measured 1 can be determined by substituting xK into equation (6), and the pitching of the detector mount 3 can be determined by substituting YK and XK into equation (7).

以上の説明かられかるように、第1図を基に説明した方
法は、測定対象物1の真直度形状と案内面2の真直度形
状を同時に測定できる有益な方法であるが、その測定、
演算方式の制約から、距wlj、e毎のとびとびの点で
の値(真直度誤差)しか把握できないという欠点がある
。すなわち、測定対象物1あるいは案内面2の詳細な真
直度形状を把握する為には、3台の変位検出器A、B、
Cの取付間隔eを小さくし、細かいステップで測定、演
算を行う必要がある。しかし、取付間隔eを小さくする
ことには、検出器の寸法、検出器取付台30寸法等から
の制約がちシ、eを十分小さくすることは困難である。
As can be seen from the above explanation, the method explained based on FIG.
Due to the limitations of the calculation method, there is a drawback that only values (straightness errors) at discrete points for each distance wlj, e can be determined. That is, in order to grasp the detailed straightness shape of the measurement object 1 or the guide surface 2, three displacement detectors A, B,
It is necessary to reduce the mounting interval e of C and perform measurements and calculations in fine steps. However, reducing the mounting interval e tends to be constrained by the dimensions of the detector, the dimensions of the detector mounting base 30, etc., and it is difficult to reduce e sufficiently.

本発明は、前述の欠点を解消し、詳細な真直度把握を可
能とする真直度測定方法を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a straightness measuring method that eliminates the above-mentioned drawbacks and makes it possible to grasp straightness in detail.

かかる目的を達成する本発明の構成は、検出器取付台と
測定対象物とのいずれか一方が案内面に沿って移動する
該検出器取付台に前記測定対象物との距離を測定する3
個の検出器を前記移動方向に等間隔eで設置し、測定開
始位置に於ける前記3個の検出器の測定値をそれぞれり
。A I DQB + Dooとし、前記検出器取付台
もしくは測定対象物を前記間隔e毎に移動してその都度
前記検出器の測定値を得、K番目の測定位置における前
記測定値をそれぞれDKA r DKB r DKOと
し、測定開始位置での案内面真直度誤差をム、1番目の
位置のそれをXl、1番目の位置での測定対象物の真直
度誤差をYl、2番目の位置でのそれをY2とし、K+
2番目の位置での前記案内面の真直度誤差XK +2 
をXx+z=2+Xx+I XK 21Dx+xA+D
x−+−z人+2”DKn−DKQ+2−Y、 −Y2 によって算出し、K=0 、1 、2 、・・・につい
て算出したXK+2の値を、真直度誤差の二乗平均値が
最小となるように演算してめたX、及びYl。
The configuration of the present invention to achieve such an object is such that one of the detector mount and the object to be measured measures the distance between the object and the detector mount, which moves along a guide surface.
The three detectors are installed at equal intervals e in the movement direction, and the measured values of the three detectors at the measurement start position are obtained. A I DQB + Doo, move the detector mount or the object to be measured every interval e to obtain the measured value of the detector each time, and calculate the measured value at the Kth measurement position as DKA r DKB. r DKO, the guide surface straightness error at the measurement start position is M, that at the first position is Xl, the straightness error of the object to be measured at the first position is Yl, and that at the second position is Y2 and K+
Straightness error of the guide surface at the second position XK +2
Xx+z=2+Xx+I XK 21Dx+xA+D
x-+-z people+2"DKn-DKQ+2-Y, -Y2, and the value of XK+2 calculated for K=0, 1, 2,... is the value of X and Yl are calculated as follows.

Ylに関係する数値によって補正して前記案内面の真直
度を推定・算出し、この位置に於ける前記測定対象物の
真直度YK+2及び移動による前後方向の縦ゆれ量θに
+□をそれぞれ YK十Q = XK+2+DK+2人 によって算出する真直度の測定方法において、前記検出
器取付台もしくは測定対象物の移動距離e/N毎に前記
検出器の測定値を得、これによってDKA 、 DKB
 + DKO(K=0’ 、 ’1 、2−)からなる
N組のデータ群を得、それぞれのデータ群1(−から、
N組の案内面真直度XK及び測定対象物の真直度YKを
め、これらN組の真直度形状XK 、 yKから全体の
詳細な真直度形状を把握することを特徴とする。
The straightness of the guide surface is estimated and calculated by correcting it with a value related to Yl, and +□ is added to the straightness YK+2 of the object to be measured at this position and the amount of longitudinal vibration θ due to movement, respectively, by YK. 10Q = XK+2+DK+2 In the method of measuring straightness calculated by a person, the measured value of the detector is obtained for each moving distance e/N of the detector mount or the object to be measured, and thereby DKA, DKB
+DKO (K=0', '1, 2-), and each data group 1 (from -,
The present invention is characterized in that it includes N sets of guide surface straightness XK and straightness YK of the object to be measured, and determines the overall detailed straightness shape from these N sets of straightness shapes XK and yK.

以下本発明の実施例に係る真直度測定方法を第2図によ
って説明する。第2図(a)は本発明での測定方法を示
す図であり第1図と同一番号を付したものは同一のもの
であることを示している。なお簡単の為、案内面2は省
略した。第2図(a)に於て、al(1==Q l 1
 + 2+・・・)は測定対象物1上の1組の測定対象
点列であシ、等間隔6f設定され一’rいる。bi(i
=o 、 1.2 。
A straightness measuring method according to an embodiment of the present invention will be explained below with reference to FIG. FIG. 2(a) is a diagram showing the measurement method according to the present invention, and the same numbers as in FIG. 1 indicate the same items. Note that for simplicity, the guide surface 2 has been omitted. In FIG. 2(a), al(1==Q l 1
+2+...) is a set of measurement object point sequences on the measurement object 1, set at equal intervals of 6f and 1'r. bi(i)
=o, 1.2.

・・・)は別の1組の測定対象点列であり、同様に等間
隔eで設定されている。aiとbiのへだたシは11図
に示したようにe/2に設定しである。
...) is another set of measurement target point sequences, which are similarly set at equal intervals e. The separation between ai and bi is set to e/2 as shown in Figure 11.

図のように検出器取付台3上に3ケの変位検出器A、B
、Cを配置し、図中の矢印方向に移動させながら移動距
離%毎に測定値を得る。測定対象点列a1 (1=(1
、1,2・・・)に対する1組の測定データ群に対して
、%願昭57−167561の方法を適用することによ
って、測定対象点aえ(i=2.3,4.・・・)での
真直度誤差をめることができる。同様に測定対象点列b
i(i=0、’1,2.・・・)に対する1組の測定デ
ータ群から、測定対象点bi(i=2.3.4・・・)
での真直度誤差をめることができる。
As shown in the figure, there are 3 displacement detectors A and B on the detector mount 3.
, C are placed, and while moving in the direction of the arrow in the figure, a measured value is obtained for each moving distance %. Measurement target point sequence a1 (1=(1
, 1, 2, . . . ) by applying the method of 167561/1987 to a set of measurement data for the measurement target points ae (i=2.3, 4, . . . ). ) can be used to account for straightness errors. Similarly, measurement target point sequence b
From one set of measurement data group for i (i=0, '1, 2...), the measurement target point bi (i=2.3.4...)
Straightness error can be reduced.

かくて第2図(b)に示したように、これら2組の測定
対象点での真直度誤差から、測定対象物1の詳細な真直
度形状を把握することができる。
Thus, as shown in FIG. 2(b), the detailed straightness shape of the measurement object 1 can be grasped from the straightness errors at these two sets of measurement object points.

2組の測定対象点での真直度誤差の合成方法としては、
例えは、測定対象点aiでの真直度誤差から、測定対象
点biの始点と終点(真直度誤差が算出されている最初
の点と最後の点、例えばb、とbn)に対応する位置で
の真直度誤差を内そうし、biの始点と終点での真直度
誤差がその内そう値になるように換算してbi点の真直
度誤差をめる方法が考えられる。また、第2図(a)に
於ては、2組の測定対象点列ai + biの場合につ
いて説明したが、悩のへだたシで設定され7’CN組の
測定対象点列ai、 b s + Ci・・・・につい
ても同様な測定・演算処理が可能である。もちろんこの
場合には移動距離へ毎にN組の測定データ群を得、N組
のデータ群に対して特願昭57−167561の方法を
適用すればよい。
The method for synthesizing straightness errors at two sets of measurement points is as follows:
For example, from the straightness error at the measurement target point ai, the positions corresponding to the start and end points of the measurement target point bi (the first and last points for which the straightness error is calculated, for example b and bn) A possible method is to calculate the straightness error at point bi by converting the straightness error at the start point and end point of bi to a value within the range. In addition, in FIG. 2(a), the case of two sets of measurement object point sequences ai + bi was explained, but the measurement object point sequence ai of the 7'CN set set in the middle of trouble, ai, Similar measurement and calculation processing is possible for b s + Ci... Of course, in this case, it is sufficient to obtain N sets of measurement data for each moving distance and apply the method of Japanese Patent Application No. 167561/1983 to the N sets of data sets.

以上説明したように、本発明によれば、測定対象物1の
真直度形状を細かいピンチで詳細に把握することが可能
となる。
As described above, according to the present invention, it is possible to grasp the straightness shape of the object 1 to be measured in detail with a fine pinch.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来技術を説明するための説明図。 第2図(a) ; (b)は本発明の詳細な説明するた
めの説明図である。 図面中、 1は測定対象物、 3は検出器取付台、 A 、 B’、 Cは変位検出器である。 特許出願人 三菱重工業株式会社 復代理人 弁理士 光 石 士 部(他1名)
FIG. 1 is an explanatory diagram for explaining the prior art. FIGS. 2(a) and 2(b) are explanatory diagrams for explaining the present invention in detail. In the drawings, 1 is an object to be measured, 3 is a detector mounting base, and A, B', and C are displacement detectors. Patent applicant: Mitsubishi Heavy Industries, Ltd. Patent attorney: Shibu Mitsuishi (and one other person)

Claims (1)

【特許請求の範囲】 検出器取付台と測定対象物とのいずれか一方が案内面に
沿って移動する該検出器取付台に前記測定対象物との距
離を測定する3個の検出器を前記移動方向に等間隔lで
設置し、測定開始位置に於ける前記3個の検出器の測定
値をそれぞれDOA + DOB t I)ooとし、
前記検出器取付台もしくは測定対象物を前記間隔e毎に
移動してその都度前記検出器の測定値を得、K番目の測
定位置における前記測定値をそれぞれDKA。 DKB I DKOとし、測定開始位置での案内面真直
度誤差t−Xo、1番目の位置のそれを入、1番目の位
置での測定対象物の真直度誤差をY2.2番目の位置で
のそれを右とし、K+2番目の位置での前記案内面の真
直度誤差XK+2をXK+2°2°XK+I XK 2
6Dx+1人+DK−1−2人+2ΦKB−DKO+2
1Xゞηによって算出し、K’=o 、 1 、2.、
・・・について算出したXK+2の値を、真直度誤差の
二乗乎、均値が最小となるように演算してめたXl及び
Yl。 Y2に関係する数値によって補正して前記案内面の真直
度を推定・算出し、この位置に於ける前記測定対象物の
真直度YK+2 及び移動による前後方向の縦ゆれ量θ
に+2 をそれぞれYK+2 = XK+2 十DK+
2 Aによって算出する真直度の測定方法において、前
記検出器取付台もしくは測定対象物の移動距離G袋毎に
前記検出器の測定値を得、これによってDKA r D
KB + DKO(K = O、、1、2・−)からな
るN組のデータ群を得、それぞれのデータ群!(、から
、N組の案内面真直度XK及び測定対象物の真直度YK
をめ、これらN組の真直度形状XK 、 YKから全体
の詳細な真直度形状を把握することを特徴とする真直度
測定方法。
[Scope of Claims] Three detectors for measuring the distance to the object to be measured are installed on the detector mount, in which one of the detector mount and the object to be measured moves along a guide surface. They are installed at equal intervals l in the movement direction, and the measured values of the three detectors at the measurement start position are respectively DOA + DOB t I)oo,
The detector mount or the object to be measured is moved every interval e to obtain the measured value of the detector each time, and the measured value at the Kth measurement position is DKA. Set DKB I DKO, enter the guide surface straightness error t-Xo at the measurement start position, that at the 1st position, and set the straightness error of the object to be measured at the 1st position as Y2. Taking it to the right, the straightness error XK+2 of the guide surface at the K+2nd position is XK+2°2°XK+I XK 2
6Dx+1 person+DK-1-2 people+2ΦKB-DKO+2
Calculated by 1Xゞη, K'=o, 1, 2. ,
Xl and Yl are obtained by calculating the value of XK+2 calculated for ... so that the square of the straightness error and the average value are minimized. The straightness of the guide surface is estimated and calculated by correcting it with a value related to Y2, and the straightness of the measurement object at this position YK+2 and the amount of vertical vibration in the longitudinal direction due to movement θ
+2 to each YK+2 = XK+2 10DK+
2 In the straightness measurement method calculated by A, the measured value of the detector is obtained for each travel distance G bag of the detector mounting base or the object to be measured, and thereby DKA r D
Obtain N sets of data groups consisting of KB + DKO (K = O,, 1, 2・-), and each data group! (from , N sets of guide surface straightness XK and straightness of measurement object YK
A straightness measuring method characterized in that the overall detailed straightness shape is determined from these N sets of straightness shapes XK and YK.
JP21414383A 1983-11-16 1983-11-16 Measuring method of straightness Granted JPS60107511A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21414383A JPS60107511A (en) 1983-11-16 1983-11-16 Measuring method of straightness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21414383A JPS60107511A (en) 1983-11-16 1983-11-16 Measuring method of straightness

Publications (2)

Publication Number Publication Date
JPS60107511A true JPS60107511A (en) 1985-06-13
JPH0444928B2 JPH0444928B2 (en) 1992-07-23

Family

ID=16650935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21414383A Granted JPS60107511A (en) 1983-11-16 1983-11-16 Measuring method of straightness

Country Status (1)

Country Link
JP (1) JPS60107511A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008096294A (en) * 2006-10-12 2008-04-24 Jfe Steel Kk Method and apparatus for measuring bent shape
CN105737731A (en) * 2016-03-03 2016-07-06 安徽理工大学 Handheld angular displacement probe

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53109660A (en) * 1977-03-04 1978-09-25 Osaka Kiko Co Ltd Measuring method of straightness in three points
JPS57156512A (en) * 1981-03-20 1982-09-27 Tokyo Daigaku Detector for turning angle of inspection table

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53109660A (en) * 1977-03-04 1978-09-25 Osaka Kiko Co Ltd Measuring method of straightness in three points
JPS57156512A (en) * 1981-03-20 1982-09-27 Tokyo Daigaku Detector for turning angle of inspection table

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008096294A (en) * 2006-10-12 2008-04-24 Jfe Steel Kk Method and apparatus for measuring bent shape
CN105737731A (en) * 2016-03-03 2016-07-06 安徽理工大学 Handheld angular displacement probe

Also Published As

Publication number Publication date
JPH0444928B2 (en) 1992-07-23

Similar Documents

Publication Publication Date Title
KR920010735B1 (en) Roll profile measuring method and apparatus
CN101493687B (en) Real time forward looking whole-process acceleration and deceleration controlled NURBS curve self-adapting subsection interpolation method
SE454539B (en) SETS AND DEVICES FOR SEATING THE CONTOUR OF TWO-RESPECT THREE-DIMENSIONAL SURFACES
JPS60107511A (en) Measuring method of straightness
CN111060056B (en) Reconstruction device and reconstruction method for accurately reconstructing parallel contour
CN1147083A (en) Method and apparatus for indirect measurement of coordinate
JPS60205311A (en) Three-dimensional coordinate measuring method
JPS58208612A (en) Measuring system
CN113551600B (en) Detection system for path precision of two-dimensional motion platform
JPH0464003B2 (en)
EP1092125B1 (en) Vector measurement for coordinate measuring machine
CN109737893B (en) Method for increasing measurement range of autocollimator
Henry et al. The use of analog computers for determining surface parameters required for prediction of thermal contact conductance
JPS60107512A (en) Measuring method of straightness
CN112504318A (en) Angle measurement error correction method for distance coding pulse loss condition
JPS6131915A (en) Straightness measuring method
JPS6358108A (en) Measurement of straightness
JPS60252211A (en) Straightness measuring method
JPS61139712A (en) Measurement of out of straightness
TWI521188B (en) Error Correction Method for Position Detector
JPS62162908A (en) Method and instrument for measuring surface profile
EP1147367A1 (en) Tool path measurement
JPS58100707A (en) Method and device for inspecting tooth form of gear
JPS6147653B2 (en)
JPS59222705A (en) Method and device for measuring straightness