JPS60107512A - Measuring method of straightness - Google Patents
Measuring method of straightnessInfo
- Publication number
- JPS60107512A JPS60107512A JP21414483A JP21414483A JPS60107512A JP S60107512 A JPS60107512 A JP S60107512A JP 21414483 A JP21414483 A JP 21414483A JP 21414483 A JP21414483 A JP 21414483A JP S60107512 A JPS60107512 A JP S60107512A
- Authority
- JP
- Japan
- Prior art keywords
- straightness
- measured
- guide surface
- measuring
- error
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B21/00—Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
- G01B21/30—Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring roughness or irregularity of surfaces
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
- Length Measuring Devices With Unspecified Measuring Means (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、測定対象物の真直度と移動案内面の真直度及
び移動時の縦ゆれ量(ピッチング量)とを同時に測定し
うる方法の改良に関するっ近年、工作機械に対する高精
度化への要求が高まりつつある中で、案内面(摺動面)
の真直度管理及び加工物の真直度形状の把握は重要な課
題の一つとなっている。従来から行なわれている真直度
の測定方法としては、ストレートエッソ等の基準バーや
ピアノ線を基準直線としたり、あるいはオートコリメー
タを利用する方法が知られており、最近ではレーザ光に
よる独立光学座標系を用いた方法も開発されている。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to the improvement of a method that can simultaneously measure the straightness of an object to be measured, the straightness of a moving guide surface, and the amount of pitching (pitting amount) during movement. With the increasing demand for higher precision in the guideway (sliding surface)
One of the important issues is controlling the straightness of the machine and understanding the straightness shape of the workpiece. Conventional methods for measuring straightness include using a reference bar such as Straight Esso, a piano wire as a reference straight line, or using an autocollimator. Methods using systems have also been developed.
ところが、これらの方法ではいずれも、測定作業に相当
な準備と熟練度が要求され、しかも能率が悪い上に種々
の雑音等による悪影響を受けやすいという欠点があり、
現場での実用化という点で多くの問題を残している。However, all of these methods require a considerable amount of preparation and skill for the measurement work, and have the drawbacks of being inefficient and susceptible to negative effects from various noises, etc.
Many problems remain in terms of practical application in the field.
これらの問題を解決しうる真直度の新しい測定方法とし
て、3(@の変位検出器を測定対象物に沿って移動させ
、 これら変位検出器による測定値から逐次、測定対象
物の真直度と変位検出器の移動案内面の真直度とを同時
に測定する方法が本発明者等により報告されている。(
特願昭57−167561 r真直度測定方法」)これ
は、その原理を表わす図に示すように、測定対象物1に
沿って案内面2上を移動する検出器取付台3(例えば刃
物取付台を利用)に、測定対象物1との距離を測定する
3個の変位検出器A 、 B。As a new method for measuring straightness that can solve these problems, we move displacement detectors (3) along the object to be measured, and sequentially calculate the straightness and displacement of the object from the measured values by these displacement detectors. The present inventors have reported a method for simultaneously measuring the straightness of the moving guide surface of the detector. (
(Japanese Patent Application No. 57-167561 r Straightness Measuring Method) As shown in the diagram showing the principle, this method is based on a detector mount 3 (for example, a cutter mount) that moves on a guide surface 2 along a measuring object 1. ), three displacement detectors A and B are used to measure the distance to the object to be measured 1.
ct、検出器取付台3の移動方向に一定距離lを隔てて
並置し、この検出器取付台3を図中の矢印方向に移動し
て、移動距離l毎に3個の変位検出器A、B、Cの測定
値を得、これらの測定値から逐次、測定対象物1の真直
度及び案内面2の真直度を分離して算出する方法である
。ct, the detector mounts 3 are placed in parallel at a fixed distance l in the direction of movement, and the detector mounts 3 are moved in the direction of the arrow in the figure to remove three displacement detectors A for every moving distance l; In this method, the measured values of B and C are obtained, and the straightness of the object to be measured 1 and the straightness of the guide surface 2 are separated and calculated from these measured values one after another.
すなわち1測定開始位置における測定対象物1及び案内
面2の真直度誤差をそれぞれYO,X。That is, the straightness errors of the measurement object 1 and the guide surface 2 at the measurement start position are YO and X, respectively.
とし、K番目の測定位置に於ける真直度誤差をそれぞれ
YK I XKとすると、第1図中にY及びXでそれぞ
れ示される測定対象物1及び案内面2の真直度曲線が得
られる。(簡単の為、図中では区間毎の直線で近似して
示した。)各々の変位検出器での測定値は、Y、X及び
移動時の縦ゆれ量(ピッチング量)が重畳されたもので
あるが、3ケの変位検出器A、B、Cでの611j定値
を%願昭57−167561に示される方法によって演
算処理することによって、Y及びXを同時に分離して抽
出することができる。If the straightness error at the K-th measurement position is YK I XK, then the straightness curves of the measurement object 1 and the guide surface 2, respectively indicated by Y and X in FIG. 1, are obtained. (For simplicity, each section is approximated by a straight line in the figure.) The measurement value from each displacement detector is a superimposition of Y, X, and the amount of pitching (pitting amount) during movement. However, by processing the 611j constant values of the three displacement detectors A, B, and C using the method shown in % Application No. 57-167561, it is possible to separate and extract Y and X at the same time. .
以下に演算処理方法の概略を説明する。K番目の測定位
置での変位検出器A、B、Cでの測定値をDKA r
DK、B + DKO(K” Or 1 + 2 +
・・・) とすると、次式(1) 、 (2) 、 (
3)が成立する。An outline of the calculation processing method will be explained below. The measured values of displacement detectors A, B, and C at the Kth measurement position are DKA r
DK, B + DKO (K” Or 1 + 2 +
), then the following equations (1), (2), (
3) holds true.
DKA−YK −XK = DOA ・−−” (1)
DKB YK+I XK l”θに=DOB Y+ −
−−(2)DKO−YK+2−XK−2°t@0K=D
00−Y、 曲−−−(3)但し、θにはに番目の測定
位置での検出器取付台3のピッチング量である。また、
第1図に於てはん=Yo=oとし、xi、yiはそれぞ
れXo 、Yoとの差分として評価した量である。DKA-YK-XK=DOA・--” (1)
DKB YK+I XK l”θ=DOB Y+ −
--(2) DKO-YK+2-XK-2°t@0K=D
00-Y, Curve --- (3) However, θ is the pitching amount of the detector mount 3 at the second measurement position. Also,
In FIG. 1, = Yo = o, and xi and yi are quantities evaluated as differences from Xo and Yo, respectively.
(1) 、 (2) 、 f3)式から、詳細は割愛す
るが、(4) 、 (5) 。From formulas (1), (2), f3), (4) and (5), although the details are omitted.
(6)式が得られる。Equation (6) is obtained.
XK+2 ”’ 2・XK+1− XK−2・DK+I
A +DK+2A+ 2 ・DKB−Q<(3+’;h
Ys Yt ’・’ (4)YK+2 =XK+2 +
DK+2A ・・・・・・・・・(5)XK+2 Y
K+3 + DK+2 Bθに+2−− ’山゛−−−
− (6)但し、測定開始位置での変位検出器A、B。XK+2 ”' 2・XK+1− XK−2・DK+I
A +DK+2A+ 2 ・DKB-Q<(3+';h
Ys Yt '・' (4) YK+2 =XK+2 +
DK+2A ・・・・・・・・・(5)XK+2 Y
K+3 + DK+2 Bθ +2−− 'Mountain゛−−−
- (6) However, displacement detectors A and B at the measurement start position.
Cの測定値DOA r DOB 、 DoaをOとした
。The measured value of C DOA r DOB , Doa was set to O.
K=0 、1 、2 、・・・の位置での変位検出器A
、B。Displacement detector A at positions K=0, 1, 2,...
,B.
Cの測定値DKA + DKB + DKOを用いて、
上記(4)。Using the measured value of C DKA + DKB + DKO,
(4) above.
(5)及び(6)式から逐次、案内面2の真直度曲線X
、測定対象物1の真直度曲線Y及び検出器取付台3のピ
ッチングθを算出することができる。From equations (5) and (6), the straightness curve of guide surface 2
, the straightness curve Y of the measurement object 1 and the pitching θ of the detector mount 3 can be calculated.
しかし、X、、Y、、右は(4)式及び(5)式の漸化
式からはめることができない値であシ、真直度曲線X、
Yをめる為には、何らかの方法でこれらの値を推定する
か又はその影響分を除去する必要がある。その為の方法
として、特願昭57−167561では以下に説明する
方法が提案されている。(4)式に於てん=α、 2Y
+ Yt =βとおくと、次の(7)式が成立する。However, the values on the right side of X, Y, are values that cannot be fitted from the recurrence formulas of equations (4) and (5), and the straightness curve X,
In order to reduce Y, it is necessary to estimate these values by some method or remove their influence. As a method for this purpose, Japanese Patent Application No. 57-167561 proposes the method described below. In formula (4), = α, 2Y
When + Yt = β, the following equation (7) holds true.
(K=2.3,4.・・・)
CK:α=β−〇と仮定して(4)式からめた絢Q値こ
こで、真直度誤差を「各測定点での誤差の二乗平均値が
最小となるような仮想直線からのへだたシ」としてとら
えることにすれば、最小二乗法によってXKの二乗平均
値を最小とするようなα、βをめ、このα、β及びCK
を用いて(7)式によってXKをめることができる。x
Kと(5)式からYKをめることができる。(K = 2.3, 4...) CK: Aya Q value obtained from equation (4) assuming α = β - If we consider it as a deviation from the virtual straight line that minimizes the value, we can find α, β that minimizes the root mean square value of
XK can be calculated using equation (7). x
YK can be calculated from K and equation (5).
以上説明したように、特願昭57−167561の方法
によれば、測定対象物1の真直度形状と移動案内面2の
真直度形状及び検出器取付台3の移動時の縦ゆれ量とを
一度の測定で同時にめることができる。その演算手順か
られかるように、この方法には次のような特徴がある。As explained above, according to the method of Japanese Patent Application No. 57-167561, the straightness shape of the object to be measured 1, the straightness shape of the movement guide surface 2, and the amount of vertical wobbling during movement of the detector mount 3 can be calculated. Both can be measured at the same time in one measurement. As can be seen from the calculation procedure, this method has the following characteristics.
■ 測定対象物1がどのように動いても、それが剛体と
して動くならば、測定対象物の正確な真直度形状を把握
することができる。(2) No matter how the object to be measured 1 moves, if it moves as a rigid body, the accurate straightness shape of the object can be determined.
(測定対象物の動きを移動案内面の真直度形状及び検出
器取付台移動時の縦ゆれに転嫁して評価する。従って、
この時の移動案内面の真直度形状及び検出器取付台の縦
ゆれ敞はほんとうの呟ではない。)本発明は、上記従来
技術(特願昭57−167561)に鑑み1、特に移動
案内面の真直度を正確に測定できる方法を提供すること
を目的とする。かかる目的を達成する本発明の構成は、
検出器取付台と測定対象物とのいずれか一方が案内面に
沿って移動する該検出器取付台に前記測定対象物との距
離を測定する3個の検出器を前記移動方向に等間隔!で
設置し、測定開始位置における前記3個の検出器の測定
値をそれぞれDOA+DOB+I)ooとし、前記検出
器取付合着しくは測定対象物を前記間隔!毎に移動して
その都度前記検出器の測定値を得1に番目の測定位置に
おける前記測定値をそれぞれDKA 、DKB 、DK
Oとし、順次に+i番目の位置での測定値をDK+lA
、 DK+lB、D[4iQとすると共に測定開始位置
での案内面真直度誤差をん、1番目の位置のそれをXl
、1番目の位置での測定対象物の真直度誤差をY8.2
番目の位置でのそれをY2とし、前記に+2香目の位置
での前記測定対象物の真直度誤差YK+2をYK+2=
2 ・YK+z −YK +DKA −2−DKB+
DKO−2・Yt +Ytによって算出し、I(=O,
]、、2.・・・について算出したYK+2の値を、真
直度誤差の二乗平均値が最小となるように演算してめた
X、及びYt 、Ytに関係する数値によって補正して
前記測定対象物の真直度を推定・算出し、この位置にお
ける前記移動案内面の真直度XK+2及び移動による前
後方向の縦ゆれ量θに+2をそれぞれ
XK+2 ”−YK+2 + DK+2 Aによって算
出することを特徴とする。(Evaluation is performed by transferring the movement of the measurement object to the straightness shape of the moving guide surface and the vertical sway when the detector mount is moved. Therefore,
At this time, the straightness of the moving guide surface and the vertical sway of the detector mounting base were not real. ) In view of the above-mentioned prior art (Japanese Patent Application No. 57-167561), it is an object of the present invention to provide a method capable of accurately measuring the straightness of a moving guide surface. The configuration of the present invention that achieves this objective is as follows:
Either the detector mount or the object to be measured moves along a guide surface, and three detectors for measuring the distance to the object are placed at equal intervals in the moving direction! The measured values of the three detectors at the measurement start position are respectively DOA+DOB+I)oo, and the detector mounting joint or the object to be measured is spaced at the distance ! the measured values of the detector are obtained each time, and the measured values at the first measuring position are DKA, DKB, and DK, respectively.
O, and the measured value at the +i-th position is DK+lA
, DK+lB, D[4iQ, the guide surface straightness error at the measurement start position, and that at the first position as Xl
, the straightness error of the object to be measured at the first position is Y8.2
The straightness error YK+2 of the object to be measured at the +2nd position is defined as YK+2=
2 ・YK+z -YK +DKA -2-DKB+
Calculated by DKO-2・Yt +Yt, I(=O,
],,2. The value of YK+2 calculated for . is estimated and calculated, and +2 is calculated for the straightness XK+2 of the movement guide surface at this position and the amount of vertical wobbling θ in the longitudinal direction due to the movement, respectively, by XK+2''-YK+2+DK+2A.
以下本発明の実施例に係る真直度測定方法について説明
する。A straightness measuring method according to an embodiment of the present invention will be described below.
(1) 、 (2) 、 (3)式をYKについて整理
すると、(8) 、 (9)。When formulas (1), (2), and (3) are rearranged for YK, we get (8) and (9).
α0)式が得られる。α0) formula is obtained.
YK+2””2’YK+I YK+DKA 2’DKB
+DKOz・y1+y、・・(a)XK+2 ” −Y
K+2 + DK+2A ”°°゛°“°(91(8)
式に於てY、 =α’、 zy、y、==β′とおくと
、次の(II)式が成立する。YK+2""2'YK+I YK+DKA 2'DKB
+DKOz・y1+y,...(a)XK+2" -Y
K+2 + DK+2A ”°°゛°“°(91(8)
If we set Y, =α', zy, y, ==β' in the equation, the following equation (II) holds true.
(K=2.3,4.・・・)
CIK:α′=βl−oと仮定して(8)式からめたY
f)値ここで、前述と同じ手順でα′及びβ′をめ、こ
のα′、β′及びα′Kを用いて60式からYKをめる
ことができる。(K = 2.3, 4...) CIK: Y calculated from equation (8) assuming α' = βl-o
f) Value Here, α' and β' can be determined using the same procedure as described above, and YK can be determined from Equation 60 using α', β', and α'K.
以上説明した方法は、特願昭57−167561にて提
案した方法に比べ、次のような特徴を有している。The method described above has the following features compared to the method proposed in Japanese Patent Application No. 57-167561.
■ 測定対象物1がどのように動いても、それが剛体と
して動くならば、移動案内面の正確な真直度形状を把握
することができる。(2) No matter how the object 1 to be measured moves, if it moves as a rigid body, the accurate straightness shape of the moving guide surface can be determined.
(測定対象物の動きを、測定対象物の真直度形状及び検
出器取付台移動時の縦ゆれに転嫁して評価する。従って
、この時の測定対象物の真直度形状及び検出器取付台の
縦ゆれ量はほんとうの値ではない)以上説明したように
5本発明方法によれば。(The movement of the object to be measured is evaluated by transferring it to the straightness shape of the object to be measured and the vertical sway when the detector mount is moved. (The amount of pitching is not the real value.) As explained above, according to the method of the present invention.
図に示した方法による測定中に測定対象物がどのように
動いても、それが剛体として動くならば、移動案内面の
正確な真直度形状が把握できる。本発明方法はこのよう
な条件下での移動案内面の真直度形状の測定に適用して
きわめて有効である。なお、測定対象物が静止している
場合には、特願昭57−167561の方法によっても
本発明の方法によっても、正確な測定対象物及び移動案
内面の真直度形状が把握できることは勿論である。No matter how the object to be measured moves during measurement using the method shown in the figure, if it moves as a rigid body, the accurate straightness shape of the moving guide surface can be determined. The method of the present invention is extremely effective when applied to measuring the straightness shape of a moving guide surface under such conditions. Note that when the object to be measured is stationary, it is of course possible to accurately determine the straightness and shape of the object to be measured and the moving guide surface by the method of Japanese Patent Application No. 57-167561 or by the method of the present invention. be.
図は本発明方法を説明するだめの説明図である。 図面中、 1は測定対象物、 2は案内面、 3は検出器取付台。 A、B、Cは変位検出器である。 The figure is an explanatory diagram for explaining the method of the present invention. In the drawing, 1 is the object to be measured, 2 is the information surface, 3 is the detector mounting base. A, B, and C are displacement detectors.
Claims (1)
沿って移動する該検出器取付台に前記測定対象物との距
離を測定する3個の検出器を前記移動方向に等間隔!で
設置し、測定開始位置における前記3個の検出器の測定
値をそれぞれDOA + DOB +’DOOとし、前
記検出器取付合着しくは測定対象物を前記間隔!毎に移
動してその都度前記検出器の測定値を得、K番目の測定
位置における前記測定値をそれぞれDKA +DKB+
I)icoとし、順次に+i番目の位置での測定値をD
K+I A + DK+ f B r DK+ i 0
とすると共に測定開始位置での案内面真直度誤差を為、
1番目の位置のそれをXl、1番目の位置での測定対象
物の真直度誤差をYl、2番目の位置でのそれをY2と
し、前記に+2番目の位置での前記測定対象物の真直度
誤差YK+2 を YK+2=24x+x−YK+DKA−2・DKn+D
xo−2YI+Y2によって算出し、に=0.1.2・
・・について算出したYK+2の値を、真直度誤差の二
乗平均値が最小となるように演算してめたXl及びYl
、Y2に関係する数値によって補正して前記測定対象物
の真直度を推定・算出し、この位置における前記移動案
内面の真直度XK+2及び移動による前後方向の縦ゆれ
景θに+2をそれぞれ XK+2= YK+2+DK+2A によって算出することを特徴とする真直度測定方法。[Scope of Claims] Three detectors for measuring the distance to the object to be measured are installed on the detector mount, in which one of the detector mount and the object to be measured moves along a guide surface. Equally spaced in the direction of movement! The measurement values of the three detectors at the measurement start position are set as DOA + DOB + 'DOO, respectively, and the detector attachment point or the object to be measured is set at the interval ! The measured value of the detector is obtained each time, and the measured value at the Kth measuring position is DKA +DKB+.
I) ico, and the measured value at +i-th position sequentially is D
K+I A + DK+ f B r DK+ i 0
In addition, to account for the guide surface straightness error at the measurement start position,
The straightness error of the measuring object at the first position is Xl, the straightness error of the measuring object at the first position is Yl, the straightness error of the measuring object at the second position is Y2, and the straightness of the measuring object at the second position is degree error YK+2, YK+2=24x+x-YK+DKA-2・DKn+D
Calculated by xo-2YI+Y2, = 0.1.2・
Xl and Yl are obtained by calculating the value of YK+2 calculated for ... so that the root mean square value of the straightness error is minimized.
, Y2 to estimate and calculate the straightness of the object to be measured, and add +2 to the straightness XK+2 of the movement guide surface at this position and the vertical sway θ in the front-rear direction due to the movement, respectively XK+2= A straightness measuring method characterized by calculating by YK+2+DK+2A.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21414483A JPS60107512A (en) | 1983-11-16 | 1983-11-16 | Measuring method of straightness |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21414483A JPS60107512A (en) | 1983-11-16 | 1983-11-16 | Measuring method of straightness |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS60107512A true JPS60107512A (en) | 1985-06-13 |
Family
ID=16650953
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21414483A Pending JPS60107512A (en) | 1983-11-16 | 1983-11-16 | Measuring method of straightness |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60107512A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112212781A (en) * | 2020-09-14 | 2021-01-12 | 上海中船三井造船柴油机有限公司 | Straightness measuring device and method based on reference comparison |
-
1983
- 1983-11-16 JP JP21414483A patent/JPS60107512A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112212781A (en) * | 2020-09-14 | 2021-01-12 | 上海中船三井造船柴油机有限公司 | Straightness measuring device and method based on reference comparison |
CN112212781B (en) * | 2020-09-14 | 2022-03-25 | 上海中船三井造船柴油机有限公司 | Straightness measuring device and method based on reference comparison |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7285793B2 (en) | Coordinate tracking system, apparatus and method of use | |
US5617645A (en) | Non-contact precision measurement system | |
CN110500978A (en) | The beam direction vector sum dead-center position online calibration method of dot laser sensor | |
CN108007347B (en) | One kind being used for laser traces instrument geometric error compensation method | |
SE9201879D0 (en) | PROCEDURES TO ESTABLISH THE DISTRIBUTIONS OF THE IST-LAYING A SLICE SECTION | |
CN108195321B (en) | A kind of ball line slideway auxiliary raceway depth of parallelism On-line Measuring Method | |
NO944658L (en) | Procedure for the maintenance of railway tracks | |
CN106989670B (en) | A kind of non-contact type high-precision large-scale workpiece tracking measurement method of robot collaboration | |
CN109468899B (en) | Method for increasing observed quantity between free observation stations of railway track control network | |
JPS60107512A (en) | Measuring method of straightness | |
CN111060056B (en) | Reconstruction device and reconstruction method for accurately reconstructing parallel contour | |
CN108195295B (en) | A kind of ball line slideway auxiliary raceway radius On-line Measuring Method | |
JPH0464003B2 (en) | ||
Hemingray | Some aspects of the accuracy evaluation of machine tools | |
CN109813293B (en) | Crane track detection method based on three-point measurement method | |
JPH0444928B2 (en) | ||
CN106989661A (en) | A kind of method for testing lathe hydrostatic slideway surface shape error | |
JPH0565083B2 (en) | ||
JPS6131915A (en) | Straightness measuring method | |
JPH10260035A (en) | Column thickness judging method for railway rail | |
JPS60252211A (en) | Straightness measuring method | |
Kyrinovič et al. | Automated measurement system for crane rail geometry determination | |
JPH06273162A (en) | Flatness measuring device | |
JPS6091206A (en) | Straightness measuring method | |
CN116446227B (en) | String measurement equipment, track line restoration method, device, equipment and system |