JPS6010745A - Measurement of characteristic of semiconductor element - Google Patents

Measurement of characteristic of semiconductor element

Info

Publication number
JPS6010745A
JPS6010745A JP11959983A JP11959983A JPS6010745A JP S6010745 A JPS6010745 A JP S6010745A JP 11959983 A JP11959983 A JP 11959983A JP 11959983 A JP11959983 A JP 11959983A JP S6010745 A JPS6010745 A JP S6010745A
Authority
JP
Japan
Prior art keywords
measurements
elements
measurement method
measurement
wafers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11959983A
Other languages
Japanese (ja)
Inventor
Hideaki Namihana
浪花 秀明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Home Electronics Ltd
NEC Corp
Original Assignee
NEC Home Electronics Ltd
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Home Electronics Ltd, Nippon Electric Co Ltd filed Critical NEC Home Electronics Ltd
Priority to JP11959983A priority Critical patent/JPS6010745A/en
Publication of JPS6010745A publication Critical patent/JPS6010745A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

PURPOSE:To contrive to curtail measuring time, and to contrive to enhance working efficiency of a tester at the measurements of the characteristics of semiconductor elements by a method wherein the measurements are performed from the central elements of two wafers in an eddy type according to the parallel measurement method, and when the measurements come to the measuring elements at the boundary parts between the central parts and the peripheral parts of the wafers, the measurement method is changed over an alternative measurement method, and when come to the peripheral parts of the wafers, the measurements are changed again o ver the parallel measurement method. CONSTITUTION:Measurements are started according to the parallel measurement method from the central elements 6a, 6b of two wafers 5a, 5b, and the measurements are continued to adjoining elements in an eddy type from the central elements 6a, 6b hereafter. Because at the parallel measurements thereof, probability that fellow non-defective units are existing is high as to be nearly 100% at the central parts of the wafers, the measurements are continued at a speed nearly two times of an alternative measurement method. When the measurements come near by the peripheries at the central parts m1, n1 of the wafers, possibility that either of one side of the two elements 6a, 6b possibility of that either of one side of the two elements 6a, 6b to be measured at the same time becomes to be a defective unit is increased gradually. Therefore when defective units generate continuously for several times at least in one side of the two elements 6a, 6b to be measured at the same time, for example, it is detected to change the measurement method over the alternative measurement method. Accordingly, the measurements can be continued in a short time even when the combination of a non-defective element and a defective element is continued.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 この発明は牛4休クエーハに整列させて形成された多数
の半導体素子を個々に順次特性測定する1沃に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Industrial Application Field The present invention relates to a method for individually and sequentially measuring the characteristics of a large number of semiconductor elements formed in a four-dimensional array.

(ロ)従来技術 通信、半導体クエーハにおける半4休崖子の個々の特性
測定は7つの半導体孝子の表面ば櫨にテスターに配線さ
れ之プローバのプローグニードルと接触させて順次行わ
れる。また半導体孝子の7回の特性測定は、IJ[故の
特性積自毎に分けて順次に行われ、途中の/項目の測定
d果が不良と判定されると伐りの待・庄項目の測定は行
われずに不良品と判定され、パの牛4休素子の測定動作
に移行させて少しでも測定時1媚を短くシ、テスターの
稼動率と上げるようしている。例えば7回の特性JA目
の多い’IaBX素子においては先ず高速パルスにて大
まかな予備テストであるルーズ7アンクシヨンテスト(
以FIJXp丁と略記する)t−行い、このり、IFT
#果が良と出nは正規の刑か一特性測定を行い、L1t
T結果が不良の場合は仮υに正規の特性測定を行っても
1よぼ/θθ洛の燻率で不良の結果が出るので正規の特
性測定を省瘉して次のX181素子の測定を行うようし
ている。
(b) Prior art communications: The individual characteristic measurements of the semi-quaternary semiconductor chips in a semiconductor wafer are sequentially carried out by wiring a tester on the surface of seven semiconductor chips and bringing them into contact with the probe needle of a prober. In addition, the seven characteristic measurements of the semiconductor Takako are carried out sequentially for each IJ characteristic, and if the measurement result of an item in the middle is determined to be defective, the measurement of the item will be repeated. The product was determined to be defective without being tested, and the test was moved to the measuring operation using the four-day test element, in order to shorten the measurement time as much as possible and increase the tester's operating rate. For example, in an 'IaBX element with a large number of 7 characteristic JA's, we first conduct a loose 7-anction test (which is a rough preliminary test) using high-speed pulses.
(hereinafter abbreviated as FIJXp-cho) t-do, this, IFT
# If the results are good, measure one characteristic of the regular punishment, and L1t
If the T result is bad, even if you perform the regular characteristic measurement on the temporary υ, a defective result will be obtained with a smoke rate of about 1/θθ, so skip the regular characteristic measurement and measure the next X181 element. That's what I'm doing.

また半導体素子の特性項目が多くなる程これを測定する
テスターが高価になplその稼動率で決まるコストパフ
ォーマンスが半導体製造能−力を犬めるffi妥なもの
瀝なハそこでテ゛スターのコストパフォーマンスを上げ
るため従来は第7図及び第2図に示す即き′i−を使っ
て後述の択−測定法或は並列測定法で行って^る。
Also, as the number of characteristic items of a semiconductor element increases, the tester used to measure them becomes more expensive. Conventionally, in order to increase the measurement value, a multiple measurement method or a parallel measurement method, which will be described later, is carried out using the i- shown in FIGS. 7 and 2.

第7図及び第2図において、(1)は7台のテスター、
(、ga)(2b)はテスター+1)に記減された。2
台のプローパでその各々のF面には7個の半導体素子の
表面′4極に当徴するパターンでグローブニードル(3
a)(3b)が突設されている。(4a)(4b)は上
′F7J及び水平な直交二方同のX−Y方向に間欠助す
るIJJdJステージ、(5a)(6b)はぜ励ステー
ジ(4a)(4b)上に位置決め載置された。2枚の千
4体りエーハ(以下クエーハと亦す)で、各々にv′1
X−r方向の格子状配列でd政の牛4体素子(以T:菓
子と祢す)、(6a)・・書、(6す・O−が形成され
る。可動ステージ(4a)(4すVまプローバ(2a)
のプローブニードル(3a)にクエーハ(5a)(5b
)の菓子(6EL)*a−(61))ossを/1固ず
ツIl@iにilf気的気触接触る!1!lJきをなす
In Figures 7 and 2, (1) shows seven testers,
(, ga) (2b) was written down to tester +1). 2
A propper on a stand has a globe needle (3
a) (3b) is provided protrudingly. (4a) (4b) are IJJdJ stages that are intermittently assisted in the upper F7J and two horizontal orthogonal X-Y directions, (5a) (6b) are positioned and mounted on the gap excitation stage (4a) (4b) It was done. Two pieces of 1,400 pieces of Aha (hereinafter referred to as Quaha), each with v'1
In a grid-like arrangement in the X-r direction, four d-shaped cow elements (hereinafter referred to as confectionery), (6a)..., (6s.O-) are formed. A movable stage (4a) ( 4V prober (2a)
Quaha (5a) (5b) to the probe needle (3a) of
)'s sweets (6EL)*a-(61)) oss comes into contact with /1Katsutsu Il@i! 1! LJ makes a move.

、上記択一測定法はテスター11)に連続測定1−11
?なものを用い、−6112J′illステージ(4a
)(40金交互□に駆薊させて2枚のクエーノ−(5a
)(5b)の″6粱子(6a)・・・、(6す・・et
−g3図のタイムチャートに示す如く7個ずつ父互に特
性一定する方法である。つまり、−万のクエーノ−(5
a)の/1固の菓子(6a)の一足が完了すると同時に
他方のクエーハ(5b)の7個の菓子(6b)の測it
始め、この菓子(6N))の測定時間内に一方〇可動ス
テージ(4a)を駆鯛させてクエーハ(5&)の次に一
足される菓子(6す2i−測定IJJ能状想にセットし
て、又互に連続間に測定全行う。
, the above alternative measurement method is continuous measurement 1-11 on tester 11).
? -6112J'ill stage (4a
) (40 gold alternating □ to drive two Quaeno (5a)
) (5b) ``6 粱子 (6a)..., (6su...et
As shown in the time chart in Figure -g3, this is a method in which the characteristics of each of the seven elements are kept constant. In other words, - ten thousand quaeno - (5
At the same time as one pair of /1 hard sweets (6a) of a) is completed, the measurement of 7 sweets (6b) of the other Quaha (5b) is completed.
First, within the measurement time of this confectionery (6N), move the movable stage (4a) and set it to the confectionery (6S2i-measurement IJJ function) that will be added next to Quaha (5&). , and perform all measurements consecutively.

また上記並列測定法はテスターf1)に2−の同−内容
の菓子の特性測定t−同時に行い得るものて使用して第
7図のタイムチャートの即く各町前ステージ(4a)(
41))k同期逓伝させてコ枚のり工−ハ(5a)(5
o)の67個ずつの菓子(6aX6b)t−’1同時に
測定する方法である。
In addition, the parallel measurement method described above uses a tester (f1) that can simultaneously measure the characteristics of two confectioneries with the same contents, and performs each town-mae stage (4a) (
(5a)
o) is a method of measuring 67 confections (6aX6b)t-'1 at the same time.

このような択−測定法及び並列測定法はfJj図に示す
ように2枚のクエーハ(5a)(5I))の−噛から他
部へと蛇行状に行゛われでいる・(ハ)元側が解犬しよ
りとする問題点 択一測定法はテスターが連続間に殿子τ測定するが、1
−々の菓子の時性測定に要する時間を短、緬しない限り
処理能力の収容は望めない。−万並列04A述沃は一度
に21固の菓子を同時測定するので、次の菓子τ測疋す
Σまでのクエー・・の移妨時副(ステージのJC−Y方
間φ切時間+ス−テージ上昇時−十ステージF降時屑)
を短くすれば処理lF!、力は択−測定法の一倍弱向上
rると考えら7Lる・し刀ふし、天除VまりニーI)の
菓子の歩餉の問題が6って処理−力はコθ漏d度向上す
るの4でめる。
These selective measurement methods and parallel measurement methods are carried out in a meandering manner from the two quadrants (5a) (5I) to other parts, as shown in the fJj diagram. In the multiple-choice measurement method where the side prefers to solve the problem, the tester measures Toshi τ between successive intervals, but 1
- Unless the time required to measure the timeliness of various sweets is shortened, processing capacity cannot be expected to be accommodated. - Since 21 pieces of confectionery are measured at the same time in parallel 04A, the time required for moving the quay until the next confectionery τ is measured (φ cutting time in the JC-Y direction of the stage + stage - When ascending the stage - When descending from the 10th stage F)
If you shorten it, you can process IF! , the force is considered to be a little less than one-fold improvement in the measurement method. You can improve your degree by 4.

即′:)1裂迫時にクエーノゝは一♂ひね七の周辺tX
1sの結晶14を逮が・セ夫d1≦より劣る等の問題゛
がめってクエーハ周辺部にノe、Aされる素子には不良
品が多く、成品素子はクエーハ中犬・部に果中する一戒
l:lIJ煩回があって、7枚のクエーノ1におケル素
子成品4が惑い現ズ問題がある6<の′之め並(5) 列一定法で2枚のクエーノ・の菓子の特性測定r行う4
台、同時測定される。2個の菓子の両刀が成品、或は不
良品で6る場合は問題黒いが、第1図の破線で示す部分
の即く一方が良品で他方が不良品の場゛仕、・4成索子
は短時間tで測定完了するが成品素子は測定続行中であ
り、従って不良素子側のプローパは良品素子の特性測定
時1副itとすると(1−1)時lI!!111!け遊
び時間を生じることになプ、テスターはこの遊び時間(
t−’t)の1−その処理能力のJQ%しか発揮できな
い。このような不都合はクエーノへの菓子良品率が高い
中央部と素子不成品率が高−周辺部との成品−不良品分
布の境界部分t−測足する時に多発して処理能力の改4
を4しくしていた。
Immediately :) At the time of 1st attack, Quaeno is around 1♂Hine7 tX
Problems such as the crystal 14 of 1s is inferior to d1≦ are rarely found in the peripheral area of the quadrature, and there are many defective devices in the devices that are A, and the finished devices are in the middle of the quadratic region. One commandment to do: lIJ There is a trouble, and the Kel element product 4 is confused with the 7 pieces of Cueno 1, and there is a problem with the present problem. Measuring the characteristics of confectionery 4
Both machines are measured at the same time. It would be a problem if both of the two sweets were good or defective, but if one of the two pieces was good and the other was defective, it would be a problem. The measurement of the device is completed in a short time t, but the measurement of the finished device is still in progress.Therefore, if the proper of the defective device is 1 sub-it when measuring the characteristics of a good device, then it is lI! at (1-1)! ! 111! This play time (
t-'t)'s 1-can only demonstrate JQ% of its processing capacity. This kind of inconvenience occurs frequently when measuring confectionery in the central area where the rate of non-defective products is high and the border area of the distribution of defective products between the central area where the rate of defective products is high and the peripheral area where the rate of defective products is high.
4.

尚、上記不鄭缶t−櫨力少なくする工夫として、プロー
パやテスターにクエーハ周辺部の判所礒義金付加し、ク
エーノ″−14辺4の素子は不良品として処理して測定
を実施せず、クエーノ・周辺部から中央部に測定位置が
多り良品素子が出てくる可能性のある位置から一足を再
開すること(6) が考えられる。しかし、クエーハ周辺部の判萌は測足万
同が4j図に示した即く蛇行状で必るためクエーハ中央
部から周辺部に入る判折、クエーハ周辺部から中央部に
入るや」、IJT茫河回となく繰り返し行う心易が6っ
て虚しく、且つ薔判萌に大変時間と要して結果的に金体
の測定時間が長くなシ好ましくない。
In addition, as a device to reduce the above-mentioned t-force, it is necessary to add a special metal to the periphery of the quadrature on the propper or tester, and treat the element with 4 sides of the quadrangle as a defective product before performing the measurement. First, there are many measurement positions from the periphery to the center, and it is conceivable to restart the test from a position where there is a possibility that a non-defective element may appear (6). As shown in Figure 4j, the bank is always in a meandering shape, so the pattern of entering from the center of Quaha to the periphery is 6. This is not desirable, as it is useless and takes a lot of time to measure the gold body, resulting in a long time for measuring the metal body.

一以下鎗白一 に)、問題点を解決するための手段 本発明は上記並列測定法の問題点を解決したもので、こ
の解決手段として2枚のクエーーの中心の菓子から渦巻
き状に並列測定法で測定を始めること、及び仮測定素子
がクエーハ中央部と周辺部の境界部分にくると測定法を
択一測定法IC切換えてクエーハ周辺部に入ると再び並
列測定法で測定することを特徴とする0このようにする
と前半の測定にクエーー・中央部のほとんど良品ばかり
の測定のため同時測定されるコ個の菓子の一方が良品で
他が不良品である確率はほぼθ係となり、並列測定法の
長所がほぼloQ係活かされる。・また良品と不良品の
菓子の組み合せの確率が高くなるクエーハ中央部と周辺
部の境界部分を択一測定法で行うことにょ多並列測定法
の欠点が除去さnよシ効率的となる。このシングル測定
法への切換えにプローパやテスク−にクエーハ周辺−1
!IlI所機能を付加してソフト1クエア処理的に行え
ば難無く実行され、またとの種判断は測定進行方向が渦
巻き状のため適当なところで1回だけ行えばよいので、
この’I’ll断のため測定時間が長くなる等の問題に
無い。
Means for Solving the Problems The present invention solves the problems of the above-mentioned parallel measurement method. It is characterized by starting the measurement using the method, and when the temporary measurement element comes to the boundary between the center and the periphery of the quafer, the measurement method is switched to the alternative measurement method IC, and when it enters the periphery of the quafer, the measurement is performed again using the parallel measurement method. 0 In this way, since the first half of the measurement consists of quay and almost only non-defective products in the central part, the probability that one of the confections measured simultaneously is a good product and the other is a defective product is approximately θ, and the parallel Most of the advantages of the measurement method are utilized in relation to loQ.・Furthermore, by performing the multiple choice measurement method on the boundary between the center and the periphery of the quake where the probability of a combination of good and defective confectionery is high, the drawbacks of the multi-parallel measurement method are eliminated and the method becomes much more efficient. To switch to this single measurement method, use the propper and tester around the quaha-1.
! If you add the IlI function and perform it like a software one-square processing, it will be executed without difficulty, and because the direction of measurement is spiral, you only need to perform it once at an appropriate point.
There is no problem such as a long measurement time due to this 'I'll disconnection.

(ホ)、実施例 第6図乃至第1図に示す如く2枚の同一種類のクエーハ
(5a) (5b)の良品菓子の確率が高い中央部をm
工、 nlとし、不良品素子の確率が高い周辺部k m
2 s ri2として説明Thfると、”先ず木@明に
第6図に示すようVC2枚のクエーハ(5ω(5b)の
中心の素子(6a) (6b)から並列測定法で測定を
始め、以後中心の素子(6a)(6b)から渦巻き状V
C隣接する素子へと測定ft続行させる。この並列測定
はクエーハ中心部でに良品素子同士のi平が100係近
く高いので択一測定法の2倍近い速度での測定が続行さ
れる。この測定がり□エーハ中央Ii1’m工、n工で
の周辺近くニくると同時測定される2個の素子(6a)
 (6b)のいずれか一方が不良品となるor能性が徐
々に多くなり、そして第2図(A) rc示すように測
定位置がクエーハ中央部m□、n□とクエーハ周辺部m
2 s n2の境界部分になると不良素子が混じる可能
性が大幅(9) に増大してくる。そこで例えば同時測定される2個の菓
子(6a) (ab)の少くとも一方に不良品が数回続
けて発生すれば、これを検知して測定法を第2図(B)
 vc示す如く択一測定法rc切換える。
(E) As shown in Example Fig. 6 to Fig. 1, m
nl, and the peripheral area where the probability of defective elements is high is km
2 s ri2 Explanation Thf: ``First, as shown in Figure 6, we started measuring with the parallel measurement method from the center element (6a) (6b) of two VC quafers (5ω (5b)), and then Spiral V from the central elements (6a) (6b)
C Continue measurement ft to adjacent elements. In this parallel measurement, since the i-heta between non-defective elements is nearly 100 times higher at the center of the quafer, the measurement is continued at a speed nearly twice that of the alternative measurement method. During this measurement, two elements (6a) are measured at the same time near the periphery of the center Ii1'm and n sections.
(6b) The probability that either one of them becomes a defective product gradually increases, and as shown in FIG.
At the boundary of 2sn2, the possibility that defective elements will be mixed in increases significantly(9). For example, if at least one of the two sweets (6a) (ab) that is being measured simultaneously is defective several times in a row, this will be detected and the measurement method will be changed as shown in Figure 2 (B).
Switch the alternative measurement method rc as shown in vc.

すると良−不良素子の組合せが続いても短時間で測定が
続行される。
Then, even if a combination of good and bad elements continues, the measurement can be continued in a short time.

このンングル測定を続けていくと両りエーー(5a) 
(5b)の数組り定位置が共に周辺部”2%”2のみと
なり、ここでにほぼ/θθ係の確率で菓子に不良品であ
る。従って周辺部m2、n2をシングル測定法で測定す
ることは非能率的であるので、第2図に示すように周辺
部m2、n2FC入ると再び並列測定法rc g’J換
えて測定速度の高速化を図る。
If you continue this measurement, you will get both (5a).
The fixed positions of several pairs in (5b) are only in the peripheral area "2%" 2, and here there is a probability of approximately /θθ that the confectionery is defective. Therefore, it is inefficient to measure the peripheral areas m2 and n2 using a single measurement method, so when the peripheral areas m2 and n2FC are entered, the parallel measurement method rc g'J is used again to increase the measurement speed, as shown in Figure 2. We aim to make this possible.

尚、各クエーハ(5a) (5b)i/cおける測定の
渦巻き方向に図面でに共に右巻き方向で現わしたが、共
に左巻き方向、或に一方を右巻き、他方を左巻きの方向
で行うこともor能でるる。またクエーハ外周から中心
へと渦巻き状VC測定を進行させることもw、1!ll
!的VCは可能であるが、とnに(10) ソフト処理上非常&c難しくて、本発明のようにクエー
ー・中心から始めることが技術的に有効でめる0 (へ)、発明の効果 以上説明したように、本発明によればクエーハの素子の
歩留が悪くてもこれに十分対応した測定がCiI能で測
定時間の短縮化が図れ、高価なテスターの稼動率が向上
してコストパフォーマンスが改善される。n vc r
、 B工素子のよう&c/回の特性測定項目が多くて測
定時間の長くかかるもの程有効で、その実施効果に極め
て大きい
In addition, although the spiral direction of measurement at each Quafer (5a) (5b) I/C is shown as clockwise in the drawing, both are counterclockwise, or one is clockwise and the other is counterclockwise. Kotomo or Node Ruru. Also, it is also possible to proceed the spiral VC measurement from the outer periphery of the quaha to the center, lol, 1! ll
! VC is possible, but (10) it is very difficult in terms of software processing, and it is technically effective to start from the quay center as in the present invention. As explained above, according to the present invention, even if the yield of Quafer elements is poor, the measurement time can be shortened due to the CiI capability, which improves the operating rate of expensive testers and improves cost performance. is improved. n vc r
, The longer the measurement time is, the more characteristic measurement items are required and the longer the measurement time, such as B-process elements, the more effective the implementation effect will be.

【図面の簡単な説明】[Brief explanation of drawings]

第7図及び第2図に一般的な半導体素子特性測定装置の
一例を示す概略正面図及び平面図、第3図及び第9図は
半導体素子特性測定法の二側を説明するための測定動作
タイムチャート、第5図は従来方法による半導体ウェー
ハ上での測定順序例図、!g図乃至第1図の(ム)及び
(B)I/′X本発明の詳細な説明するための半導体ウ
ェーハ上での測定順序例図及び測定動作タイムチャート
である。 (1)・・テスター、(2a) (2b)・・プローパ
、(5a) (5b)・・半導体クエーハ、(6a)・
・・、(6b)・・・、・・半導体素子。
7 and 2 are schematic front and plan views showing an example of a general semiconductor device characteristic measuring device, and FIG. 3 and 9 are measurement operations for explaining the two sides of the semiconductor device characteristic measuring method. Time chart, Figure 5 is an example of the measurement order on a semiconductor wafer using the conventional method! FIGS. 1 and 2 are diagrams showing an example of a measurement sequence and a measurement operation time chart on a semiconductor wafer for detailed explanation of the present invention. (1) Tester, (2a) (2b) Proper, (5a) (5b) Semiconductor wafer, (6a)
..., (6b) ..., ... semiconductor element.

Claims (1)

【特許請求の範囲】[Claims] (1)7台のテスターと2酋のグローパでコクの半導体
クエーハに形成されたIiI故の半導体孝子の特性測定
Jk個々に行う1沃であって、2つの千尋体りエーハの
中心部から@辺部へと−巻き状に半導体孝子の67個ず
つの特性測定を並列測定法で同・時に行うと共に、2つ
の牛導体りエーハの中央部と周辺部の41#前後では2
枚の千導体りエーハの半導体索子t−渦書き状に択−測
定法で/ll!ずつ交互に特性測定するようにしたこと
を特徴とする牛導体菓子特性測定ガ法@
(1) Measurement of the characteristics of the IiI semiconductor wafer formed on a large semiconductor wafer using 7 testers and 2 gropers. Characteristics of 67 semiconductor chips were simultaneously measured in parallel to the sides in a winding manner, and two conductors were measured around 41# in the center and peripheral parts of the conductor.
Semiconductor wires of 1,000 conductors are selected in a spiral pattern by the measurement method /ll! A method for measuring the characteristics of cow conductor confectionery, which is characterized by measuring the characteristics alternately.
JP11959983A 1983-06-30 1983-06-30 Measurement of characteristic of semiconductor element Pending JPS6010745A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11959983A JPS6010745A (en) 1983-06-30 1983-06-30 Measurement of characteristic of semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11959983A JPS6010745A (en) 1983-06-30 1983-06-30 Measurement of characteristic of semiconductor element

Publications (1)

Publication Number Publication Date
JPS6010745A true JPS6010745A (en) 1985-01-19

Family

ID=14765373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11959983A Pending JPS6010745A (en) 1983-06-30 1983-06-30 Measurement of characteristic of semiconductor element

Country Status (1)

Country Link
JP (1) JPS6010745A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5034684A (en) * 1988-10-24 1991-07-23 Tokyo Electron Limited Probe device and method of controlling the same
JPH04180642A (en) * 1990-11-15 1992-06-26 Nec Yamagata Ltd Probing device
JPH0584365A (en) * 1990-04-10 1993-04-06 Warner Lambert Co Razor head with flexibility

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5034684A (en) * 1988-10-24 1991-07-23 Tokyo Electron Limited Probe device and method of controlling the same
JPH0584365A (en) * 1990-04-10 1993-04-06 Warner Lambert Co Razor head with flexibility
JPH04180642A (en) * 1990-11-15 1992-06-26 Nec Yamagata Ltd Probing device

Similar Documents

Publication Publication Date Title
JP3135825B2 (en) Probe card and probing test method for semiconductor integrated circuit using the probe card
JP2008527328A (en) Probe head array
JP2641816B2 (en) Measurement method for semiconductor integrated circuits
JPS6010745A (en) Measurement of characteristic of semiconductor element
US10247774B2 (en) Test key structure and method of measuring resistance of vias
JPH04230045A (en) Semiconductor device
CN113224034B (en) Wafer and photomask
JPS6281724A (en) Semiconductor device
JPH05206383A (en) Semiconductor wafer and method for inspecting the same
JPH02189946A (en) Testing method of semiconductor integrated circuit device
JP3012242B2 (en) Manufacturing method of semiconductor integrated circuit
JP3178424B2 (en) Integrated circuit test apparatus and integrated circuit test method
Lee et al. A scan segment skip technique for low power test
JPH0689932A (en) Burn-in device for power mosfet
JPH04262549A (en) Measuring method for semiconductor wafer
TW201837478A (en) Chip testing method
JPS6010716A (en) Method for testing semiconductor wafer
JPH03291952A (en) Formation of mask
KR100641471B1 (en) Common input ic
JPS6010743A (en) Measurement of characteristics of semiconductor element
JP2004146415A (en) Apparatus and method for inspecting semiconductor
JPS62194636A (en) Inspection of wiring for wafer scale integrated circuit
JP2002022809A (en) Semiconductor device
JPH07221147A (en) Semiconductor device and probing inspection thereof
JPH05136243A (en) Aging test pattern-provided semiconductor wafer