JPS60106911A - Arc furnace steel making method of chromium steel - Google Patents

Arc furnace steel making method of chromium steel

Info

Publication number
JPS60106911A
JPS60106911A JP58213055A JP21305583A JPS60106911A JP S60106911 A JPS60106911 A JP S60106911A JP 58213055 A JP58213055 A JP 58213055A JP 21305583 A JP21305583 A JP 21305583A JP S60106911 A JPS60106911 A JP S60106911A
Authority
JP
Japan
Prior art keywords
molten steel
steel
air
arc furnace
chromium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58213055A
Other languages
Japanese (ja)
Inventor
Hiroshi Noguchi
宏 野口
Goro Kagami
鏡味 五郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP58213055A priority Critical patent/JPS60106911A/en
Publication of JPS60106911A publication Critical patent/JPS60106911A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/52Manufacture of steel in electric furnaces
    • C21C5/5264Manufacture of alloyed steels including ferro-alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

PURPOSE:To enable stirring by inexpensive and simple means in the stage of melting the raw material for a chromium steel in an arc furnace then performing refining operation in succession thereto by blowing air to the molten steel to stir the molten steel in the reduction period thereof. CONSTITUTION:The raw material for a chromium steel such as a stainless steel is melted by using an arc furnace. The molten steel in the reduction period of the refining operation is stirred by blowing of air thereto in the stage of subjecting the molten chromium steel formed in the arc furnace to the refining operation. The dry air removed of moisture as far as possible (for example, about <=10 deg.C dew point) is used for the air to be blown. The grade of the molten steel is thus satisfactorily maintained and the variance in the grade of the molten steel occurring in the change of weather, season, etc. is prevented.

Description

【発明の詳細な説明】 本発明はステンレス鋼などの含クロム鋼の製鋼法に係り
、特に、その溶解、精錬をアーク炉のみにて行うアーク
炉製鋼法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing chromium-containing steel such as stainless steel, and particularly to an arc furnace steel manufacturing method in which melting and refining are performed only in an arc furnace.

ステンレス鋼等の含クロム鋼の製鋼法として、まス含ク
ロム鋼原料のスクラップ等をアーク炉にて溶解せしめた
後、その溶鋼を炉外精錬設備等に移して酸化脱炭せしめ
(酸化期)、次に酸化クロム等の酸化物を還元して溶鋼
中に戻す(還元期)という方法が用いられてきたが、従
来からそれ等一連の溶解、精錬工程をアーク炉のみにて
行うアーク炉製鋼法が実施されているところも少なくな
い。
As a steel manufacturing method for chromium-containing steel such as stainless steel, scraps of chromium-containing steel raw materials are melted in an arc furnace, and then the molten steel is transferred to an outside furnace refining facility where it is oxidized and decarburized (oxidation stage). Next, a method has been used in which oxides such as chromium oxide are reduced and returned to the molten steel (reduction stage), but conventionally, arc furnace steelmaking involves a series of melting and refining processes performed only in an arc furnace. There are many places where the law is being implemented.

そして、かかるアーク炉製鋼法を実施する場合、その還
元期においては、Fe−8i、8i→i等の還元剤を投
入した後、溶鋼とスフグとの間の界面反応の促進および
溶鋼の均一化を図るために溶鋼を攪拌することが望まし
く、通常電磁攪拌設備による攪拌や、プレツキ(撹拌棒
)を用いて攪拌したり、或いは酸素ガス等を溶鋼中に吹
き込んだりしていた。
When carrying out such an arc furnace steelmaking method, in the reduction period, after adding a reducing agent such as Fe-8i, 8i→i, etc., the interfacial reaction between the molten steel and puffer fish is promoted and the molten steel is homogenized. In order to achieve this, it is desirable to stir the molten steel, and this is usually done by stirring with electromagnetic stirring equipment, stirring with a pletsuki (stirring rod), or by blowing oxygen gas or the like into the molten steel.

しかしながら、電磁攪拌設備は非常に高価であり、また
、プレツキによる攪拌は、作業が面倒であるばかりでな
く充分な攪拌効果を得るためには長時間を要するという
不都合があった。さらに、酸素を吹き込む場合には、還
元反応が阻害されてOrやそれ以外の8i、Kn等の合
金元素の歩留が低下するという欠点がある。
However, electromagnetic stirring equipment is very expensive, and stirring using a platter is not only laborious but also requires a long time to obtain a sufficient stirring effect. Furthermore, when oxygen is blown in, there is a drawback that the reduction reaction is inhibited and the yield of Or and other alloying elements such as 8i and Kn is reduced.

ここにおいて、本発明は、以上の如き事情を背景として
為されたものであり、その目的とするところは、還元期
における溶鋼の攪拌を安価で簡便な手段にて行う含クロ
ム鋼のアーク炉製鋼法を提供することにある。
The present invention has been made against the background of the above-mentioned circumstances, and its purpose is to produce chromium-containing steel in an electric arc furnace by stirring molten steel during the reduction period by an inexpensive and simple means. It is about providing law.

そして、かかる目的を達成するために、本発明は、アー
ク炉を用いて含クロム鋼原料を溶解せしめた後、引き続
いてそのアーク炉内において、形成された含クロム溶鋼
に対する精錬操作を実施するに際し、その精錬操作の還
元期における溶鋼の攪拌を、その溶鋼への空気の吹込み
によって行うようにしたのである。
In order to achieve this object, the present invention provides a method for melting a chromium-containing steel raw material using an arc furnace, and subsequently performing a refining operation on the formed chromium-containing molten steel in the arc furnace. The molten steel was stirred during the reduction stage of the refining operation by blowing air into the molten steel.

このようにすれば、従来の酸素攪拌と同様に極めて簡便
かつ効果的に溶鋼を撹拌し得、しかも酸素攪拌に比較し
て還元反応に与える悪影響が緩和され、Cr等の合金元
素の歩留が向上せしめられるとともに経済的なのである
In this way, molten steel can be stirred extremely simply and effectively in the same way as conventional oxygen stirring, and the negative effects on the reduction reaction are alleviated compared to oxygen stirring, and the yield of alloying elements such as Cr is reduced. It is both improved and economical.

加えて、酸素攪拌の場合には、還元剤として投入したF
e−8i、81−Mn等が吹き込んだ酸素と一部反応す
るため、多量の還元剤を必要としていたのであるが、空
気を用いることによって供給酸素量が減少するため、還
元剤の消費量が軽減せしめられるのである。
In addition, in the case of oxygen stirring, F added as a reducing agent
Since e-8i, 81-Mn, etc. partially react with the blown oxygen, a large amount of reducing agent was required, but since the amount of oxygen supplied was reduced by using air, the amount of reducing agent consumed was reduced. It can be reduced.

ここで、溶鋼を攪拌するために空気を用いることは、従
来より空気中の窒素ガス、水素ガス等が溶鋼中に侵入し
て品質を劣化せしめてしまうものと考えられており、本
発明者等もその点を懸念していたのであるが、後述の実
施例に示される如く、それ等の溶鋼中の窒素濃度、水素
濃度が酸素攪拌の場合に比較してほとんど変化せず、寧
ろ低下する傾向さえ認められたことは特筆すべき事であ
ろう。なお、この現象に対する理論的解析は今後の研究
に委ねられるところである。
Here, it has been conventionally believed that using air to stir molten steel causes nitrogen gas, hydrogen gas, etc. in the air to enter the molten steel and deteriorate the quality. However, as shown in the examples below, the nitrogen and hydrogen concentrations in the molten steel do not change much compared to oxygen agitation, and instead tend to decrease. It is noteworthy that this was even recognized. The theoretical analysis of this phenomenon will be left to future research.

また、このように空気を用いることKより、酸素を用い
ていた場合に比較してその発熱量が低下することとなる
が、冷材使用斌、或いは投入電力等を調節することによ
って、溶鋼温度を適当に維持することができる。
In addition, by using air in this way, the calorific value is lower than when oxygen is used, but by adjusting the cold material used or the input power, etc., the molten steel temperature can be lowered. can be maintained properly.

ここにおいて、本発明を適用し得る含クロム鋼原料とし
ては、ステンレス鋼を特徴とする特殊鋼、合金鋼など、
クロムを含むものであれば如何なるものであっても良く
、それらは一般に12%〜25%程度のCr含有量のも
のである。
Here, the chromium-containing steel raw materials to which the present invention can be applied include special steel characterized by stainless steel, alloy steel, etc.
Any material containing chromium may be used, and they generally have a Cr content of about 12% to 25%.

そして、それ等の含クロム鋼原料をアーク炉内にて溶解
せしめた後、そのまま該アーク炉内で当該溶鋼中に酸素
を吹き込んで炭素、鉛等の不純物および(H)(N)ガ
スを酸化除去せしめるのである。この時、クロムなどの
合金成分をも同時に酸化されてスラグ中に溶は込むため
、次に還元剤を加えて必要な合金成分を溶鋼中に戻すこ
ととなル。コノ還元剤とt、−Cは、Fe−8i、Fe
−Mn。
After melting these chromium-containing steel raw materials in an arc furnace, oxygen is blown into the molten steel in the arc furnace to oxidize impurities such as carbon and lead and (H) (N) gases. It will be removed. At this time, alloy components such as chromium are also oxidized and melted into the slag, so a reducing agent is then added to return the necessary alloy components to the molten steel. Kono reducing agent and t, -C are Fe-8i, Fe
-Mn.

81−Mn、A1等を用いることができるが、その還元
力、還元すべき酸化物の種類等を考慮して適宜採用すれ
ば良い。
81-Mn, A1, etc. can be used, but they may be appropriately adopted in consideration of their reducing power, the type of oxide to be reduced, etc.

ここで、還元剤と酸化物との反応を促進し、かつスラグ
と溶鋼との界面反応を促進するために、空気を吹き込ん
で溶鋼を攪拌するのであるが、この時吹き込む空気とし
ては、一般に工場内において設けられている既設の工業
用エアー配管から取り入れることが便利であるが、新た
に圧縮ポンプ等を設けて大気中の空気を吹き込むように
しても良い。なお、この時の空気圧力は溶鋼の攪拌程度
によって異なるが、少なくとも溶鋼とスラグとの間の界
面を流動せしめる程度以上であれば良く、工業用エアー
をそのままの圧力(約8 kg/ad )で用いても良
い。
Here, in order to promote the reaction between the reducing agent and oxides and the interfacial reaction between the slag and the molten steel, air is blown into the molten steel to stir it. Although it is convenient to take in air from the existing industrial air piping installed in the interior, a new compression pump or the like may be installed to blow in air from the atmosphere. Note that the air pressure at this time varies depending on the degree of agitation of the molten steel, but it is sufficient that it is at least at a level that causes the interface between the molten steel and slag to flow. May be used.

また、このような空気を溶鋼へ吹き込む前にエアードラ
イヤー等の乾燥装置に通し、空気中の水蒸気成分が溶鋼
中に侵入して、その溶鋼品位に影響を及はξない程度に
まで乾燥せしめられた乾燥空気、たとえば露点にしてl
O°C程度以下の乾燥空気を用いれば、溶鋼品位が良好
に維持されるとともに、天候、季節等の変化に起因する
溶鋼品位のバラツキが防止され得る。なお、この乾燥空
気の使用は、あくまでも空気中の水蒸気成分が溶鋼に及
ばず影響を考慮したもので、本発明の実施に際して必ず
しも乾燥空気を用いる必要はないのである。
In addition, before blowing such air into the molten steel, it is passed through a drying device such as an air dryer to dry it to the extent that water vapor components in the air will not enter the molten steel and affect the quality of the molten steel. Dry air, e.g.
By using dry air at about 0° C. or lower, the quality of molten steel can be maintained well, and variations in the quality of molten steel due to changes in weather, seasons, etc. can be prevented. Note that the use of dry air is based on the consideration that the water vapor component in the air does not affect the molten steel, and it is not necessarily necessary to use dry air when carrying out the present invention.

そして、以上のような空気を吹き込む場合、アーク炉の
底部や側壁に吹込み口を設け、溶鋼中に直接空気を吹き
込んでも良いし、また、アーク炉の炉蓋、或いは側壁上
部から吹込管を挿入して、溶鋼の上方から吹き付けたり
吹込管の先端を溶鋼内に挿し入れて吹き込んだりしても
良い。その−例を第1図に示す。
When blowing air as described above, an air inlet may be provided at the bottom or side wall of the arc furnace and the air may be blown directly into the molten steel, or a blowing pipe may be inserted from the top of the arc furnace lid or side wall. Alternatively, the blowing pipe may be inserted and blown from above the molten steel, or the tip of the blowing pipe may be inserted into the molten steel and blown into the molten steel. An example of this is shown in FIG.

図において、アーク炉10内では電極12と含クロム鋼
の溶鋼14との間でアークが発生せしめられており、溶
鋼14の上部には酸化クロム等の酸化物を含むスラグ1
6が浮遊している。また、アーク炉10の炉壁18上部
にはランスパイプ20が挿入されており、酸化期におい
ては酸素を吹き込むとともに、還元期においては溶鋼攪
拌のための空気を吹き込むようになっている。なお、ラ
ンスパイプ20の先端位置は、酸化、還元時における精
錬の段階に応じて適宜上下し得るようになっている。図
は、還元期の空気吹き込みによる攪拌状態を示したもの
で、ランスパイプ2(1)先iが溶鋼中に挿し入れられ
た場合を示している。
In the figure, an arc is generated between an electrode 12 and a chromium-containing molten steel 14 in an arc furnace 10, and a slag 1 containing oxides such as chromium oxide is placed above the molten steel 14.
6 is floating. Further, a lance pipe 20 is inserted into the upper part of the furnace wall 18 of the arc furnace 10, and is used to blow oxygen during the oxidation period and to blow air for stirring the molten steel during the reduction period. Note that the position of the tip of the lance pipe 20 can be moved up and down as appropriate depending on the stage of refining during oxidation and reduction. The figure shows the stirring state due to air blowing during the reduction period, and shows the case where the tip i of the lance pipe 2 (1) is inserted into the molten steel.

次に、本発明を更に具体的に明らかにするために、本発
明の一実施例を説明する。なお、本発明がかかる実施例
の記載によって何等の制約をも受けるものでないことは
言うまでもないところである。
Next, one embodiment of the present invention will be described in order to clarify the present invention more specifically. It goes without saying that the present invention is not limited in any way by the description of the embodiments.

実施例 1 含クロム鋼原料としてステンレス鋼の流れ材を用い、こ
れをアーク炉にて溶解せしめ、その後引き続いて酸素を
吹き込み、溶鋼中の炭素等の成分調整を行うとともに有
害ガス、不純物を除去した(酸化期几次に、スラグ中の
酸化クロム等を還元するために、還元剤として低次素の
51−Mn。
Example 1 Stainless steel flow material was used as a raw material for chromium-containing steel, and it was melted in an arc furnace, and then oxygen was continuously blown in to adjust the components of carbon, etc. in the molten steel, and remove harmful gases and impurities. (During the oxidation period, 51-Mn, a lower element, is used as a reducing agent to reduce chromium oxide etc. in the slag.

Fe−8iを投入した(還元期)。Fe-8i was introduced (reduction period).

この時、スラグと溶鋼との間の界面反応を促進するため
に、市販のエアードライヤーにて、露点にして約5°C
程度にまで乾燥せしめられた工業用エアーを、吹込量8
Nm/min、にて2分ずつ2回溶鋼中に吹き込むこと
により、溶鋼を攪拌した。
At this time, in order to promote the interfacial reaction between the slag and molten steel, a commercially available air dryer was used to dry the slag at a dew point of approximately 5°C.
Blowing amount of industrial air that has been dried to a certain degree is 8.
The molten steel was stirred by blowing into the molten steel twice for 2 minutes each at Nm/min.

なお、この攪拌に伴う溶鋼の温度変化を調べるため、攪
拌前後の溶鋼温度を測定した。
In addition, in order to investigate the temperature change of the molten steel accompanying this stirring, the molten steel temperature before and after stirring was measured.

その後、合金調整を行ってし一ドル中に出鋼し、クロム
およびシリコンの含有率を測定するとともに、溶鋼中の
酸素濃度、窒素濃度、水素濃度を測定した。
Thereafter, the alloy was adjusted and the steel was tapped into steel, and the chromium and silicon contents were measured, as well as the oxygen, nitrogen, and hydrogen concentrations in the molten steel.

なお、比較のため、空気攪拌の代わりにアルゴン攪拌お
よび酸素攪拌を行なった場合についても実施した。
For comparison, a case was also conducted in which argon stirring and oxygen stirring were performed instead of air stirring.

まず、クロムの含有率から歩留を計算した結果を第2図
に示す。そして、これ等の結果の平均値をめると、クロ
ム歩留は、酸素攪拌の場合が約89.0%、空気攪拌の
場合が約90.9%、アルゴン攪拌の場合が約91.1
%となり、本発明に従う空気攪拌は、アルゴン攪拌に比
較して約0.2%劣るものの、酸素攪拌に比べると約1
.9%の向上が認められるのである。
First, FIG. 2 shows the results of calculating the yield from the chromium content. Taking the average values of these results, the chromium yield is approximately 89.0% in the case of oxygen stirring, approximately 90.9% in the case of air stirring, and approximately 91.1% in the case of argon stirring.
%, and air agitation according to the present invention is about 0.2% inferior to argon agitation, but about 1% inferior to oxygen agitation.
.. This represents an improvement of 9%.

次に、酸素攪拌、空気攪拌について、レードル中へ出鋼
した溶鋼中の酸素濃度、窒素濃度、水素濃度を測定した
結果を第3図乃至第5図に示す。
Next, regarding oxygen stirring and air stirring, the results of measuring the oxygen concentration, nitrogen concentration, and hydrogen concentration in the molten steel tapped into the ladle are shown in FIGS. 3 to 5.

そして、これ等の結果についてそれぞれ平均値をめると
、酸素濃度については酸素攪拌の場合が約107 pp
m、空気攪拌の場合が約105 ppmとなり、はとん
ど変化のないことが判る。また、窒素濃度については酸
素攪拌の場合が約450 ppm、空気攪拌の場合が約
495 ppmとなって、寧ろ空気攪拌の方が低いとい
う予想外の結果となった。
Then, taking the average value of each of these results, the oxygen concentration in the case of oxygen stirring is approximately 107 pp
m, and in the case of air agitation, it is about 105 ppm, which shows that there is almost no change. Furthermore, the nitrogen concentration was approximately 450 ppm in the case of oxygen agitation and approximately 495 ppm in the case of air agitation, which was an unexpected result in that air agitation was actually lower.

水素濃度についても、酸素攪拌の場合が約5.3cc/
 100g 1空気攪拌の場合が約8.5cc/100
gとなり、後者の空気攪拌の方が低い結果が得られてい
る。
Regarding the hydrogen concentration, in the case of oxygen stirring, it is about 5.3cc/
Approximately 8.5cc/100 for 100g 1 air agitation
g, and the latter air agitation has a lower result.

また、還元剤として投入したシリコンの歩留を計算した
結果について、酸素攪拌と空気攪拌とを比較して第1表
に示す。なお、この表におけるシリコン歩留の数値は、
酸素攪拌80回、空気攪拌20回の平均値である。また
、攪拌に伴う溶鋼の温度変化、窒素濃度および水素濃度
の変化量について測定した結果を、併せて示すこととす
る。
Table 1 also shows the results of calculating the yield of silicon introduced as a reducing agent, comparing oxygen agitation and air agitation. In addition, the silicon yield values in this table are
This is the average value of 80 times of oxygen stirring and 20 times of air stirring. In addition, the results of measuring changes in temperature, nitrogen concentration, and hydrogen concentration of molten steel due to stirring will also be shown.

第 1 表 表から明らかなように、空気攪拌の方が酸素攪拌に比較
して約6.2%シリコン歩留が向上した。
As is clear from Table 1, air agitation improved the silicon yield by about 6.2% compared to oxygen agitation.

これにより、還元剤として投入するシリコンの量が低減
せしめられるとともに、合金元素としてシリコンを含む
場合には合金調整時におけるシリコン投入量が低減させ
られることとなる。
As a result, the amount of silicon added as a reducing agent is reduced, and when silicon is included as an alloying element, the amount of silicon added at the time of alloy adjustment is reduced.

また、攪拌に伴う溶鋼の温度変化については、酸素攪拌
の場合が上昇するのに対して空気攪拌の場合にはやや低
下しているが、この程度の湿度変化であれば温度調整に
何ら支障を生じないのである。加えて、窒素濃度および
水素濃度の変化量についても、酸素攪拌と空気攪拌では
はとんど差がないことが判る。
In addition, the temperature change in molten steel due to stirring increases in the case of oxygen stirring, but slightly decreases in the case of air stirring, but this level of humidity change does not interfere with temperature adjustment. It does not occur. In addition, it can be seen that there is almost no difference in the amount of change in nitrogen concentration and hydrogen concentration between oxygen agitation and air agitation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法にかかる空気攪拌を説明するための
、アーク炉の縦断面図である。第2図は、本発明方法を
実施した場合と従来方法を実施した場合の、クロムの歩
留を比較して示すヒストグラムである。第8図乃至第5
図は、それぞれレードμ中に出鋼した溶鋼の機素濃度、
窒素濃度、水素濃度について、本発明方法を!!施した
場合と従来方法を実施した場合とを比較して示すヒスト
グラムである。 10:アーク炉 14:溶鋼(含クロム溶鋼) 20:フンスバイグ 出願人 大同特殊鋼株式会社 第2図 クロム11(’ム) 第3図 第51!1 ネJ釈沫U (cc/1009)
FIG. 1 is a longitudinal sectional view of an arc furnace for explaining air agitation according to the method of the present invention. FIG. 2 is a histogram showing a comparison of the chromium yield when the method of the present invention is implemented and when the conventional method is implemented. Figures 8 to 5
The figure shows the element concentration of molten steel tapped during rad μ, and
Use the method of the present invention for nitrogen concentration and hydrogen concentration! ! This is a histogram showing a comparison between a case where the conventional method is applied and a case where the conventional method is applied. 10: Arc furnace 14: Molten steel (chromium-containing molten steel) 20: Applicant Hunsbaig Daido Special Steel Co., Ltd. Figure 2 Chromium 11 ('mu) Figure 3 51! 1 NeJ Shakyam U (cc/1009)

Claims (2)

【特許請求の範囲】[Claims] (1)アーク炉を用いて含クロム鋼原料を溶解せしめた
後、引き続いて該アーク炉内において、形成された含ク
ロム溶鋼に対する精錬操作を実施するに際し、該精錬操
作の還元期における溶鋼の攪拌を、該溶鋼への空気の吹
込みによって行うことを特徴とする含クロム鋼のアーク
炉製鋼法。
(1) After melting a chromium-containing steel raw material using an arc furnace, when subsequently performing a refining operation on the formed chromium-containing molten steel in the arc furnace, stirring of the molten steel during the reduction period of the refining operation An arc furnace steelmaking method for chromium-containing steel, characterized in that the steps are performed by blowing air into the molten steel.
(2)前記吹込み空気が、水分が可及的に除去された乾
燥空気である特許請求の範囲第1項に記載の含クロム鋼
のアーク炉製鋼法。
(2) The arc furnace steelmaking method for chromium-containing steel according to claim 1, wherein the blown air is dry air from which moisture has been removed as much as possible.
JP58213055A 1983-11-12 1983-11-12 Arc furnace steel making method of chromium steel Pending JPS60106911A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58213055A JPS60106911A (en) 1983-11-12 1983-11-12 Arc furnace steel making method of chromium steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58213055A JPS60106911A (en) 1983-11-12 1983-11-12 Arc furnace steel making method of chromium steel

Publications (1)

Publication Number Publication Date
JPS60106911A true JPS60106911A (en) 1985-06-12

Family

ID=16632780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58213055A Pending JPS60106911A (en) 1983-11-12 1983-11-12 Arc furnace steel making method of chromium steel

Country Status (1)

Country Link
JP (1) JPS60106911A (en)

Similar Documents

Publication Publication Date Title
US3046107A (en) Decarburization process for highchromium steel
JPH02141540A (en) Method and device for manufacturing copper with low oxygen content
US3169058A (en) Decarburization, deoxidation, and alloy addition
US3649246A (en) Decarburizing molten steel
JP2000129335A (en) Production of extra-low sulfur steel excellent in cleanliness
US5609199A (en) Method of manufacturing steel containing Ca
JP4463701B2 (en) Decarburization method for molten stainless steel and method for producing ultra-low carbon stainless steel
JP3915386B2 (en) Manufacturing method of clean steel
JPS60106911A (en) Arc furnace steel making method of chromium steel
JP4686917B2 (en) Melting method of molten steel in vacuum degassing equipment
US1034785A (en) Method of producing refined metals and alloys.
US1034787A (en) Process of refining metals and alloys.
US4436553A (en) Process to produce low hydrogen steel
JPS5922765B2 (en) Manufacturing method for low-oxygen, low-sulfur steel that controls sulfide formation
WO2023013377A1 (en) Method for deoxidizing/refining molten steel, method for producing steel material, and steel material thereof
JPS5831012A (en) Preferential desiliconizing method for molten iron by blowing of gaseous oxygen
JP2897639B2 (en) Refining method for extremely low sulfur steel
JPS60141818A (en) Production of dead soft steel by vacuum degassing treatment
JP4404025B2 (en) Melting method of low nitrogen steel
JP2659596B2 (en) Preservation method of metal-containing iron dust powder
JP2897647B2 (en) Melting method of low hydrogen extremely low sulfur steel
JPH11293329A (en) Production of extra-low carbon silicon-killed steel excellent in cleaning property
JPS56146817A (en) Refining method for molten steel in ladle
JP2003041311A (en) Method for desulfurizing molten pig iron
RU1768647C (en) Method of steel melting in converter